留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands

ZOU Yuanchun LU Xianguo JIANG Ming YU Xiaofei

ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. 中国地理科学, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
引用本文: ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. 中国地理科学, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. Chinese Geographical Science, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
Citation: ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. Chinese Geographical Science, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1

Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands

doi: 10.1007/s11769-010-0409-1
基金项目: Under the auspices of National Natural Science Foundation of China (No.40901051,40830535,40871049);Discovery Research Project of Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences (No.KZCX3-SW-NA09-02)
详细信息
    通讯作者:

    LU Xianguo.E-mail:luxg@neigae.ac.cn

Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands

Funds: Under the auspices of National Natural Science Foundation of China (No.40901051,40830535,40871049);Discovery Research Project of Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences (No.KZCX3-SW-NA09-02)
  • 摘要: Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain,Northeast China,were collected randomly for phenotypic plasticity analysis.Iron content,chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well.The results show that the performance of the C.pseudocuraica is affected by the microhabitat,with the greatest performance score in perennial flooded ditch water,and the lowest in perennial flooded soil.The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area.The distribution of the total Fe in plant modules appears as pyramids from the tip to the root,while marked differences are observed in the distribution proportion of stems,tillering nodes and roots that are allometrically growing.Iron transfer from substrates to the plant is mainly controlled by the substrate type.The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.
  • [1] Audebert A,Fofana M,2009.Rice yield gap due to iron toxicity in west Africa.Journal of Agronomy and Crop Science,195(1):66-76.DOI:10.1111/j.1439-037X.2008.00339.x
    [2] Batty L C,Younger P L,2003.Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed,Phragmites australis(Cav.)Trin ex.Steudel.Annals of Botany,92(6):801-806.DOI:10.1093/aob/mcg205
    [3] Chen Z,Zhu Y G,Liu W J et al.,2005.Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice(Oryza sativa)roots.New Phytologist,165(1):91-97.DOI:10.1111/j.1469-8137.2004.01241.x
    [4] De Dorlodot S,Lutts S,Bertin P,2005.Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice.Journal of Plant Nutrition,28(1):1-20.DOI:10.1081/PLN-200042144
    [5] Diaz I,del Campillo M C,Cantos M et al.,2009.Iron deficiency symptoms in grapevine as affected by the iron oxide and car bonate contents of model substrates.Plant and Soil,322(1-2):293-302.DOI:10.1007/sl1104-009-9916-1
    [6] Dorken M E,Barrett S C H,2004.Phenotypic plasticity of vege tative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia(Alismataceae):A clonal aquatic plant.Journal of Ecology,92(1):32-44.DOI:10.1111/j.1365-2745.2004.00857.x
    [7] Fu Peiyun,1995.Key of Plant Species in Northeastern China.Beijing:Science Press.(in Chinese)
    [8] Guerinot M L,Yi Y,1994.Iron:Nutritious,noxious,and not readily available.Plant Physiology,104:815-820.DOI:10.11-04/pp.104.3.815
    [9] Gurzau E S,Neagu C,Gurzau A E,2003.Essential metals-case study on iron.Ecotoxicology and Environmental Safety,56(1):190-200.DOI:10.1016/S0147-6513(03)00062-9
    [10] Hulme P E,2008.Phenotypic plasticity and plant invasions:Is it all Jack? Functional Ecology,22(1):3-7.DOI:10.1111/j.136-5-2435.2007.01369.x
    [11] Jurjavcic N L,Harrison S,Wolf A T,2002.Abiotic stress,competition,and the distribution of the native annual grass Vulpia microstachys in a mosaic environment.Oecologia,130(4):555-562.DOI:10.1007/s00442-001-0845-9
    [12] Lemanceau P,Bauer P,Kraemer S et al.,2009.Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils,plants and microbes.Plant and Soil,321(1-2):513-535.DOI:10.1007/sl1104-009-0039-5
    [13] Liesack W,Schnell S,Revsbech N P,2000.Microbiology of flooded rice paddies.FEMS Microbiology Reviews,24(5):625-645.DOI:10.1111/j.1574-6976.2000.tb00563.x
    [14] Lindsay W L,Schwab A P,1982.The chemistry of iron in soils and its availability to plants.Journal of Plant Nutrition,5:821-840.DOI:10.1080/01904168209363012
    [15] Liu H J,Zhang J L,Christie P et al.,2008.Influence of iron plaque on uptake and accumulation of Cd by rice(Oryza sativa L.)seedlings grown in soil.Science of the Total Environment,394(2-3):361-368.DOI:10.1016/j.scitotenv.2008.02.004
    [16] Luan Jinhua,Zou Yuanchun,Lu Xianguo et al.,2006.Variation law of stem diameter and internode length aboveground of Carex pseudocuraica ramers under different water content.Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition),34(8):105-108,115.(in Chinese)
    [17] Lucassen E,Smolders A,Roelofs J,2000.Increased groundwater levels cause iron toxicity in Glyceria fluitans(L.).Aquatic Botany,66(4):321-327.DOI:10.1016/S0304-3770(99)0008-3-2
    [18] Nenova V,2009.Growth and photosynthesis of pea plants under different iron supply.Acta Physiologiae Plantarum,31(2):385-391.DOI:10.1007/sl 1738-008-0247-2
    [19] Pan X Y,Geng Y P,Zhang W J et al.,2006.The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone.Acta Oecologica,30(3):333-341.DOI:10.1016/j.actao.2006.03.003
    [20] Ponnamperuma F N,Bradfield R,Peech M,1955.Physiological disease of rice attributable to iron toxicity.Nature,175:265.DOI:10.1038/175265a0
    [21] Ratering S,Schnell S,2000.Localization of iron-reducing activity in paddy soil by profile studies.Biogeochemistry,48(3):341-365.DOI:10.1023/A:1006252315427
    [22] Reddy K R,DeLaune R,2008.Biogeochemistry of Wetlands:Science and Applications.Boca Raton:CRC Press.
    [23] Roden E E,Wetzel R G,2002.Kinetics of microbial Fe(Ⅲ)oxide reduction in freshwater wetland sediments.Limnology and Oceanography,47(1):198-211.
    [24] Sahrawat K L,2005.Iron toxicity in wetland rice and the role of other nutrients.Journal of Plant Nutrition,27(8):1471-1504.DOI:10.1081/PLN-200025869
    [25] Scheiner S M,1993.Genetics and evolution of phenotypic plasticity.Annual Review of Ecology and Systematics,24:35-68.DOI:10.1146/annurev.es.24.110193.000343
    [26] Schlichting C D,1986.The evolution of phenotypic plasticity in plants.Annual Review of Ecology and Systematics,17:667-693.DOI:10.1146/annurev.es.17.110186.003315
    [27] Shi Ruihe,1986.Soil Agrochemical Analysis(2nd edition).Beijing:China Agriculture Press.(in Chinese)
    [28] Snowdan R E D,Wheeler B D,1993.Iron toxicity to fen plant species.Journal of Ecology,81(1):35-46.
    [29] Snowden R E D,Wheeler B D,1995.Chemical changes in selected wetland plant species with increasing Fe supply,with specific reference to root precipitates and iron tolerance.New Phytologist,131(4):503-520.DOI:10.1111/j.1469-8137.1995.tb03087.x
    [30] Song C C,Wang Y S,Wang Y Y et al.,2006.Emission of CO2,CH4 and N2O from freshwater marsh during freeze-thaw period in Northeast of China.Atmospheric Environment,40(35):6879-6885.DOI:10.1016/j.atmosenv.2005.08.028
    [31] Wang J W,Yu D,2007.Influence of sediment fertility on morphological variability of Vallisneria spiralis L.Aquatic Botany,87(2):127-133.DOI:10.1016/j.aquabot.2007.04.002
    [32] Wang Shu'an,1995.Special Crop Cultivation(North Edition).Beijing:China Agriculture Press.(in Chinese)
    [33] Weiss J V,Emerson D,Backer S M et al.,2003.Enumeration of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing bacteria in the root zone of wetland plants:Implications for a rhizosphere iron cycle.Biogeochemistry,64(1):77-96.DOI:10.1023/A:1024953027-726
    [34] Weiss J V,Emerson D,Megonigal J P,2004.Geochemical control of microbial Fe(Ⅲ)reduction potential in wetlands:Comparison of the rhizosphere to non-rhizosphere soil.FEMS Microbiology Ecology,48(1):89-100.DOI:10.1016/j.femsec.20-03.12.014
    [35] Wheeler B D,Al-Farraj M M,Cook R E D,1985.Iron toxicity to plants in base-rich wetlands:Comparative effects on the distribution and growth of Epilobium hirsutum L.and Juncus subnodulosus Schrank.New Phytologist,100(4):653-669.DOI:10.1111/j.1469-8137.1985.tb02810.x
    [36] Yang Qing,Liu Jiping,Lu Xianguo et al.,2004.Structure and function of soil-vegetation-animal system of annular wetland in the Sanjiang Plain.Chinese Journal of Ecology,23(4):72-77.(in Chinese)
    [37] Yousfi S,Wissal M,Mahmoudi H et al.,2007.Effect of salt on physiological responses of barley to iron deficiency.Plant Physiology and Biochemistry,45(5):309-314.DOI:10.1016/j.plaphy2007.03.013
    [38] Zhang X K,Zhang F S,Mao D R,1999.Effect of iron plaque outside roots on nutrient uptake by rice(Oryza sativa L.):Phosphorus uptake.Plant and Soil,209(2):187-192.DOI:10.1023/A:1004505431879
    [39] Zou Yuanchan,Lu Xianguo,Jiang Ming et al.,2009.Seasonal variation of iron content in typical wetland plants and in wetland farm land crops in Sanjiang Plain of Northeast China.Chinese Journal of Ecology,28(2):216-222.(in Chinese)
  • [1] LI Xijia, ZHANG Hongyan, QU Ying.  Land Surface Albedo Variations in Sanjiang Plain from 1982 to 2015: Assessing with GLASS Data . Chinese Geographical Science, 2020, 30(5): 876-888. doi: 10.1007/s11769-020-1152-x
    [2] JIA Xueying, TIAN Zhijie, QIN Lei, ZHANG Linlin, ZOU Yuanchun, JIANG Ming, LYU Xianguo.  Iron Regulation of Wetland Vegetation Performance Through Synchronous Effects on Phosphorus Acquisition Efficiency . Chinese Geographical Science, 2018, 28(2): 337-352. doi: 10.1007/s11769-018-0949-3
    [3] YU Xiaofei, DING Shanshan, ZOU Yuanchun, XUE Zhenshan, LYU Xianguo, WANG Guoping.  Review of Rapid Transformation of Floodplain Wetlands in Northeast China: Roles of Human Development and Global Environmental Change . Chinese Geographical Science, 2018, 28(4): 654-664. doi: 10.1007/s11769-018-0957-3
    [4] YAN Baixing, GUAN Jiunian, Vladimir SHESTERKIN, ZHU Hui.  Variations of Dissolved Iron in the Amur River During an Extreme Flood Event in 2013 . Chinese Geographical Science, 2016, 26(5): 679-686. doi: 10.1007/s11769-016-0828-8
    [5] XI Min, KONG Fanlong, LYU Xianguo, JIANG Ming, LI Yue.  Spatial Variation of Dissolved Organic Carbon in Soils of Riparian Wetlands and Responses to Hydro-geomorphologic Changes in Sanjiang Plain, China . Chinese Geographical Science, 2015, 25(2): 174-183. doi: 10.1007/s11769-015-0744-3
    [6] MAO Rong, ZHANG Xinhou, SONG Changchun.  Effects of Nitrogen Addition on Plant Functional Traits in Freshwater Wetland of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2014, 0(6): 674-681. doi: 10.1007/s11769-014-0691-4
    [7] DU Jia, SONG Kaishan, WANG Zongming, ZHANG Bai, LIU Dianwei.  Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 73-91.
    [8] WANG Qiang, ZHANG Zhongsheng1, ZHOU Xuehong, LU Xianguo.  Mercury Distribution and Accumulation in Typical Wetland Ecosystems of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 49-58.
    [9] JIANG Ming, LU Xianguo, WANG Hongqing, et al.  Transfer and Transformation of Soil Iron and Implications for Hydrogeomorpholocial Changes in Naoli River Catchment, Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(2): 149-158.
    [10] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [11] ZHANG Guilan.  Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province . Chinese Geographical Science, 2010, 20(2): 139-143. doi: 10.1007/s11769-010-0139-4
    [12] GUO Yue, JIANG Ming, LU Xianguo.  Simulation Study on Purification Efficiency for Nitrogen in Different Types of Wetlands in Sanjiang Plain, China . Chinese Geographical Science, 2010, 20(3): 252-257. doi: 10.1007/s11769-010-0252-4
    [13] WANG Li, SONG Changchun, HU Jinming, YANG Tao.  Response of Regeneration Diversity of Carex Lasiocarpa Community to Different Water Levels in Sanjiang Plain, China . Chinese Geographical Science, 2010, 20(1): 37-42. doi: 10.1007/s11769-010-0037-9
    [14] LIU Xiaohui, LU Xianguo, JIANG Ming, WANG Xigang.  Value Estimation of Greenhouse Gases Exchange in Wetland Ecosystem of Sanjiang Plain, China . Chinese Geographical Science, 2009, 19(1): 55-61. doi: 10.1007/s11769-009-0055-7
    [15] WANG Jianhua, LU Xianguo, TIAN Jinghan, JIANG Ming.  Fuzzy Synthetic Evaluation of Water Quality of Naoli River Using Parameter Correlation Analysis . Chinese Geographical Science, 2008, 18(4): 361-368. doi: 10.1007/s11769-008-0361-5
    [16] XU Zhiguo, YAN Baixing, HE Yan, ZHAI Jinliang, SONG Changchun.  Effect of Nitrogen and Phosphorus on Tissue Nutrition and Biomass of Freshwater Wetland Plant in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2006, 16(3): 270-275.
    [17] YUAN Zhao-hua, LU Xian-guo, ZHOU Jia.  CUMULATIVE EFFECTS OF DIFFERENT CULTIVATING PATTERNS ON PROPERTIES OF ALBIC SOIL IN SANJIANG PLAIN . Chinese Geographical Science, 2006, 16(2): 133-140.
    [18] LIU Ru-hai, WANG Qi-chao, WANG Yan, ZHANG Lei, SHAO Zhi-guo.  DISTRIBUTION OF MERCURY IN TYPICAL WETLAND PLANTS IN THE SANJIANG PLAIN . Chinese Geographical Science, 2003, 13(3): 242-246.
    [19] WANG Shi-yan, YANG Yong-xing.  DYNAMICS OF LITTER DECOMPOSITION AND SEASONAL DYNAMICS OF PHOSPHORUS IN DECOMPOSED RESIDUA OF Calamagrotis augustifolia IN THE WETLAND OF THE SANJIANG PLAIN . Chinese Geographical Science, 2001, 11(3): 264-269.
    [20] 崔保山, 马学慧, 张明祥.  REGULARITY AND ESTIMATION OF METHANE EMISSION FROM MARSHLAND IN THE SANJIANG PLAIN . Chinese Geographical Science, 1998, 8(1): 74-84.
  • 加载中
计量
  • 文章访问数:  1485
  • HTML全文浏览量:  3
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-16
  • 修回日期:  2009-09-22
  • 刊出日期:  2010-07-01

Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands

doi: 10.1007/s11769-010-0409-1
    基金项目:  Under the auspices of National Natural Science Foundation of China (No.40901051,40830535,40871049);Discovery Research Project of Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences (No.KZCX3-SW-NA09-02)
    通讯作者: LU Xianguo.E-mail:luxg@neigae.ac.cn

摘要: Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain,Northeast China,were collected randomly for phenotypic plasticity analysis.Iron content,chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well.The results show that the performance of the C.pseudocuraica is affected by the microhabitat,with the greatest performance score in perennial flooded ditch water,and the lowest in perennial flooded soil.The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area.The distribution of the total Fe in plant modules appears as pyramids from the tip to the root,while marked differences are observed in the distribution proportion of stems,tillering nodes and roots that are allometrically growing.Iron transfer from substrates to the plant is mainly controlled by the substrate type.The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.

English Abstract

ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. 中国地理科学, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
引用本文: ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. 中国地理科学, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. Chinese Geographical Science, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
Citation: ZOU Yuanchun, LU Xianguo, JIANG Ming, YU Xiaofei. Microhabitat Effect on Iron Distribution and Transfer in Carex pseudocuraica in Sanjiang Plain Wetlands[J]. Chinese Geographical Science, 2010, 20(4): 363-371. doi: 10.1007/s11769-010-0409-1
参考文献 (39)

目录

    /

    返回文章
    返回