留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing

ZHENG Xingming ZHAO Kai

ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. 中国地理科学, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
引用本文: ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. 中国地理科学, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. Chinese Geographical Science, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
Citation: ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. Chinese Geographical Science, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3

A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing

doi: 10.1007/s11769-010-0407-3
基金项目: Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-340)
详细信息
    通讯作者:

    ZHAO Kai.E-mail:zhaokai@neigae.ac.cn

A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing

Funds: Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-340)
  • 摘要: Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the "geometric" roughness of random surface.This "geometric" roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between "geometric" roughness and integrated roughness (contain both "geometric" roughness and "dielectric" roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of "dielectric" roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the "geometric" roughness.
  • [1] Barré H M J,Duesmann B,Kerr Y H,2008.SMOS:The Mission and the System.IEEE Transactions on Geoscience and Remote Sensing,46(3):587-593.
    [2] Chen K S,Wu T D,Tsang L et al.,2003.Emission of rough surfaces calculated by the integral equation method with comparison to three dimensional moment method simulation.IEEE Transactions on Geoscience and Remote Sensing,41(1):90-101.
    [3] Chen K S,Wu T D,Tsay M K et al.,2000.A note on the multiple scattering in IEM models.IEEE Transactions on Geoscience and Remote Sensing,38(1):249-256.
    [4] Dobson M C,Ulaby F T,Hallikainen M T et al.,1985.Microwave dielectric behavior of wet soil-Part Ⅱ:Dielectric mixing models.IEEE Transactions on Geoscience and Remote Sensing,23(1):35-46.
    [5] Fung A K,Li Z,Chen K S,1992.Back scattering from a randomly rough dielectric surface.IEEE Transactions on Geoscience and Remote Sensing,30(2):356-369.
    [6] Jin Yaqiu,2008.Theory and Method of Numerical Simulation of Composite Scattering from the Object and Randomly Rough Surface.Beijing:Science Press.(in Chinese)
    [7] Kerr Y H,Waldteufel P,Wigneron J P et al.,2001.Soil moisture retrieval from space:The soil moisture and ocean salinity(SMOS)mission.IEEE Transactions on Geoscience and Remote Sensing,39(8):1729-1735.
    [8] Lane J A,Saxton J A,1952.Dielectric dispersion in pure polar liquids at very high radar frequencies Ⅲ.The effect of electrolytes in solution.In:Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,214:531-545.
    [9] Liu Ning,Li Zongqian,2003.Bi-spectrum scattering model for dielectric randomly rough surface.Tsinghua Science and Technology,8(5):617-623.
    [10] Moreno R G,Dìaz(A)lvarez M C,Alonso A T et al.,2008.Tillage and soil type effects on soil surface roughness at semiarid climatic conditions.Soil & Tillage Research,98:35-44.DOI:10.1016/j.still.2007.10.006
    [11] Njoku E G,Entekhabi D,1996.Passive microwave remote sensing of soil moisture.Journal of hydrology,184:101-129.
    [12] Panciera R,Walker J P,Kalma J D et al.,2009.Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm.Remote Sensing of Environment,113:435-444.DOI:10.1016/j.rse.2008.10.010
    [13] Peake W H,1959.Interaction of electromagnetic waves with some natural surfaces.IRE Transactions on Microwave Theory and Techniques,AP-7:5342.
    [14] Saleh K,Wigneron J P,Waldteufel P et al.,2007.Estimates of surface soil moisture under grass covers using L-band radiometry.Remote Sensing of Environment,109(1):42-53.DOI:10.1016/j.rse.2006.12.002
    [15] Schwank M,V(o)lksch T,Wigneron J P et al.,2010.Comparison of two bare soil reflectivity models and validation with L-band Radiometer Measurements.IEEE Transactions on Geoscience and Remote Sensing,48(1):325-337.
    [16] Shen Fenglin,Ye Zhongfu,Qian Yumei,2001.Signal Statistical Analysis and Processing.Hefei:University of Science and Technology of China Press.(in Chinese)
    [17] Shi Jiangcheng,Chen K S,Li Qin et al.,2002.A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer.IEEE Transactions on Geoscience and Remote Sensing,40(12):2674-2686.
    [18] Shi Jiangcheng,Jiang Lingmei,Zhang Lixin et al.,2005.A parameterized multifrequency-polarization surface emission toodel.IEEE Transactions on Geoscience and Remote Sensing,43(12):2831-2841.
    [19] Song Dongsheng,Zhao Kai,Guan Zhi,2007.Advances in research on soil moisture by microwave remote sensing in China.Chinese Geographical Science,17(2):186-191.DOI:10.1007/s11769-007-0186-7
    [20] Taconet O,Ciarletti V,2007.Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry.Soil& Tillage Research,93:64-76.DOI:10.1016/j.still.2006.03.0-18
    [21] Tsang L,Kong J A,Ding K H,2000.Scattering of Electromagnetic Waves:Theories and Applications(Wiley series in remote sensing).New York:John Wiley & Sons,Inc
    [22] Ulaby F T,Dubois P C,Zyl J V,1996.Radar mapping of sorface soil moisture.Journal of Hydrology,184(1-2):57-84.
    [23] Ulaby F T,Moore R K,Fung A K,1986.Microwave Remote Sensing:Active and Passive,Vol Ⅲ,From Theory to Application.Dedham,MA:Artech House.
    [24] Wang J R,Choudhury B J,1981.Remote sensing of soil moisture content over bare field at 1.4 GHz frequency.Journal of Geophysical Research.,86:5277-5282.
    [25] Wegmüller U,M(a)tzler C,1999.Rough bare soil reflectivity model.1EEE Transactions on Geoscience and Remote Sensing,37(3):1391-1395.
    [26] Wigneron J P,Laguerre L,Keer Y H,2001.A simple parameterization of the L-band microwave emission from rough agricultural soil.IEEE Transactions on Geoscience and Remote Sensing,39(8):1697-1707.
  • [1] Song SONG, Zheng CAO, Zhifeng WU, Xiaowei CHUAI.  Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring . Chinese Geographical Science, 2022, 32(1): 174-188. doi: 10.1007/s11769-021-1252-2
    [2] LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He.  Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China . Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
    [3] CHEN Si, ZHAO Kai, JIANG Tao, LI Xiaofeng, ZHENG Xingming, WAN Xiangkun, ZHAO Xiaowei.  Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions . Chinese Geographical Science, 2018, 28(6): 986-997. doi: 10.1007/s11769-018-1007-x
    [4] ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing.  Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary . Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
    [5] HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong.  Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China . Chinese Geographical Science, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
    [6] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [7] SHANG Songhao, MAO Xiaomin.  A Two-parameter Exponential Recession Model for Simulating Cropland Soil Moisture Dynamics . Chinese Geographical Science, 2014, 0(5): 575-586. doi: 10.1007/s11769-014-0676-3
    [8] Sven Grashey-Jansen, Martin Kuba, Bernd Cyffka, Ümüt Halik, Tayierjiang Aishan.  Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China . Chinese Geographical Science, 2014, 0(6): 647-657. doi: 10.1007/s11769-014-0717-y
    [9] YU Fan, LI Haitao, GU Haiyan, HAN Yanshun.  Assimilating ASAR Data for Estimating Soil Moisture Profile Using an En-semble Kalman Filter . Chinese Geographical Science, 2013, 23(6): 666-679. doi: 10.1007/s11769-013-0623-8
    [10] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [11] GAO Junqin, OUYANG Hua, LEI Guangchun et al..  Temperature and Soil Moisture Interactively Affect Soil Carbon Mineralization in Zoige Alpine Wetlands . Chinese Geographical Science, 2011, 21(1): 27-35.
    [12] LIU Qian, WANG Mingyu, ZHAO Yingshi.  Assimilation of ASAR Data with a Hydrologic and Semi-empirical Backscattering Coupled Model to Estimate Soil Moisture . Chinese Geographical Science, 2010, 20(3): 218-225. doi: 10.1007/s11769-010-0218-6
    [13] SONG Dongsheng, ZHAO Kai, GUAN Zhi.  Advances in Research on Soil Moisture by Microwave Remote Sensing in China . Chinese Geographical Science, 2007, 17(2): 186-191. doi: 10.1007/s11769-007-0186-7
    [14] GUAN Zhi, ZHAO Kai, SONG Dong-sheng.  EXPERIMENTAL STUDY ON SOIL MOISTURE USING DUAL-FREQUENCY MICROWAVE RADIOMETER . Chinese Geographical Science, 2006, 16(1): 83-86.
    [15] XIONG Dong-hong, ZHOU Hong-yi, YANG Zhong, ZHANG Xin-bao.  SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER . Chinese Geographical Science, 2005, 15(2): 186-192.
    [16] ZHANG Bao-guang.  APPLICATION OF REMOTE SENSING TECHNOLOGY TO POPULATION ESTIMATION . Chinese Geographical Science, 2003, 13(3): 267-271.
    [17] GU Feng-xue, ZHANG Yuan-dong, CHU Yu, SHI Qing-dong, PAN Xiao-ling.  PRIMARY ANALYSIS ON GROUNDWATER, SOIL MOISTURE AND SALINITY IN FUKANG OASIS OF SOUTHERN JUNGGAR BASIN . Chinese Geographical Science, 2002, 12(4): 333-338.
    [18] CHEN Fu, PENG Bu-zhuo.  THE EFFECT OF LAND USE CHANGES ON SOIL CONDITIONS IN ARID REGION . Chinese Geographical Science, 2000, 10(3): 226-230.
    [19] 刘兆礼, 黄铁青, 万恩璞, 张养贞.  STUDY ON MODEL FOR REMOTE SENSING ESTIMATION OF MAIZE YIELD . Chinese Geographical Science, 1998, 8(2): 161-167.
    [20] 张湘南, 黄方, 周占鳌.  STUDY ON GIS FOR YIELD ESTIMATION BY REMOTE SENSING IN JILIN MAIZE BELT . Chinese Geographical Science, 1996, 6(4): 351-358.
  • 加载中
计量
  • 文章访问数:  1425
  • HTML全文浏览量:  0
  • PDF下载量:  1150
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-13
  • 修回日期:  2010-04-02
  • 刊出日期:  2010-07-01

A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing

doi: 10.1007/s11769-010-0407-3
    基金项目:  Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-340)
    通讯作者: ZHAO Kai.E-mail:zhaokai@neigae.ac.cn

摘要: Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the "geometric" roughness of random surface.This "geometric" roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between "geometric" roughness and integrated roughness (contain both "geometric" roughness and "dielectric" roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of "dielectric" roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the "geometric" roughness.

English Abstract

ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. 中国地理科学, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
引用本文: ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. 中国地理科学, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. Chinese Geographical Science, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
Citation: ZHENG Xingming, ZHAO Kai. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing[J]. Chinese Geographical Science, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
参考文献 (26)

目录

    /

    返回文章
    返回