留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China

LIU Qingsheng LIU Gaohuan HUANG Chong LI He

LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. 中国地理科学, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
引用本文: LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. 中国地理科学, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
Citation: LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8

Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China

doi: 10.1007/s11769-018-0997-8
基金项目: Under the auspices of Innovation Project of LREIS (No. O88RA20CYA, 08R8A010YA), National Natural Science Foundation of China (No. 41671422), International Cooperation in Science and Technology Special Project (No. 2013DFA91700)
详细信息
    通讯作者:

    LIU Qingsheng.E-mail:liuqs@lreis.ac.cn

Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China

Funds: Under the auspices of Innovation Project of LREIS (No. O88RA20CYA, 08R8A010YA), National Natural Science Foundation of China (No. 41671422), International Cooperation in Science and Technology Special Project (No. 2013DFA91700)
More Information
    Corresponding author: LIU Qingsheng.E-mail:liuqs@lreis.ac.cn
  • 摘要: Deserts and sandy land in northern China are very susceptible to sandy desertification and are the main source of sand-dust storms of Asian dust. However, because of the complex factors involved, descriptions of the relationship between sandy desertification and surface characteristics in these regions are lacking. We monitored the surface characteristics and their changes in time using information about soil, vegetation, and landforms in the Badain Jaran Desert (BJD), Tengger Desert (TD), and Ulan Buh Desert (UBD) in the northern China. The monitoring was done using tasseled cap angle (TCA), disturbance index (DI), and topsoil grain size index (TGSI) from Moderate Resolution Imaging Spectroradiometer (MODIS) images combined with a decision tree classification. Results showed that the TD had higher topsoil fine sand content, and the ratio of non-vegetated to vegetated areas was similar with that in the UBD. Northeast-southwest coarse sand dunes with thin interdune (NECTI) dominated the BD, fine sand dunes (FSD) dominated the TD, and a combination of northeast-southwest coarse sand dunes with wide interdune (NECWI) and northwest-southeast coarse sand dunes with wide interdune (NWCWI) dominated the UBD. From 2000 to 2015, in the BJD the area of the NECTI, non-sand dune (Non) and potential sand sources (PSS) increased, whereas the area of the NECWI, FSD and NWCWI decreased, indicating a improve process in the BJD. In the TD, the area covered by Non increased, whereas the area covered by PSS, NECWI, NECTI, FSD, and NWCWI decreased from 2000 to 2015. The area covered by the various surface characteristic types fluctuated annually in the UBD from 2000 to 2015. Changes in surface characteristics reflect the combined effects of natural conditions and human activity. The findings of our study will assist scientists and policy makers in proposing different management techniques to combat sandy desertification for the different surface characteristics of these regions.
  • [1] Anthony E J, Ruz M H, Vanhee S, 2009. Aeolian sand transport over complex intertidal bar-trough beach topography. Geo-morphology, 105:95-105. doi:10.1016/j.geomorph.2007.12. 013
    [2] Butterfield G R, 1998. Transitional behavior of saltation:wind tunnel observation of unsteady wind. Journal of Arid Envi-ronments, 39:377-394.
    [3] Cai D H, Zhao J H, Li Y H et al., 2011. Influence of changes of underlying surface on the output of sand-dust model. Pro-ceedings of the International Geoscience and Remote Sensing Symposium 2011, Vancouver, BC, Canada.
    [4] Carlson T N, Ripley D A, 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3):241-252. doi:10.1016/S0034-4257 (97)00104-1
    [5] Chen F H, Li G Q, Zhao H et al., 2014. Landscape evolution of the Ulan Buh Desert in Northern China during the late quaternary. Quaternary Research, 81(3):476-487. doi:10.1016/j. yqres.2013.08.005
    [6] Chun X, Chen F H, Fan Y X et al., 2008. Formation of Ulan Buh Desert and its environmental changes during the Holocene. Frontiers of Earth Science in China, 2(3):327-332. doi: 10.1007/s11707-008-0039-4
    [7] Cong Diange, Pang Hongli, Fang Miao et al., 2014. Dunes distri-bution study on north of Tengery desert based on remote sens-ing and DEM. China Mining Magazine, 23(supp. 2):153-159. (in Chinese)
    [8] Dong Z B, Wang H T, Liu X P et al., 2004. The blown sand flux over a sandy surface:a wind tunnel investigation on the fetch effect. Geomorphology, 57:117-127. doi:10.1016/S0169-555 X(03)00087-4
    [9] Dong Z B, Zhang Z C, Lv P et al., 2011. An Aeolian transport model for flat shifting sand fields under dynamic-limiting conditions. Journal of Arid Environments, 75:865-869. doi: 10.1016/j.jaridenv.2011.03.012
    [10] Du Heqiang, Xue Xian, Sun Jiahuan, 2012. Underlying surface characteristics and observation of blown-sand movement in UlanBuh Desert along bank of Yellow River. Transactions of the Chinese Society of Agriculture Engineering, 28(22):156-165. (in Chinese)
    [11] Du Z Q, Xu X M, Zhang H et al., 2016. Geographical detec-tor-based identification of the impact of major determinants on aeolian desertification risk. PLoS ONE, 11(3):e0151331. doi: 10.1371/journal.pone.0151331
    [12] Duan H C, Wang T, Xue X et al., 2014. Dynamics of aeolian des-ertification and its driving forces in the Horqin Sandy Land, Northern China. Environment Monitoring and Assessment, 186:6083-6096. doi: 10.1007/s10661-014-3841-3
    [13] Dymond J R, Stephens P R, Newsome P F et al., 1992. Percent vegetation cover of a degrading rangeland from SPOT. Inter-national Journal of Remote Sensing, 13(11):1999-2007. doi: 10.1080/01431169208904248
    [14] Eckert S, Husler F, Liniger H et al., 2015. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments, 113:16-28. doi: 10.1016/j.jaridenv.2014.09.001
    [15] Eltahir M E, Nagi Z, Hu G D, 2009. Landscape change and sandy desertificaiton monitoring and assessment. American Journal of Environmental Sciences, 5(5):633-638.
    [16] Fan Y X, Zhang F, Zhang F et al., 2016. History and mechanisms for the expansion of the Badain Jaran Desert, Northern China, Since 20 ka:geological and luminescence chronological evi-dence. The Holocene, 26(4):532-548. doi:10.1177/09596836 15612588
    [17] Feng L L, Jia Z Q, Li Q X, 2016. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China. Scientific Report, 6:39563. doi: 10.1038/srep39563
    [18] Gomez C, White J C, Wulder M A, 2011. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, 115:1665-1679. doi:10.1016/j.rse.2011. 02.025
    [19] Gu Lei, Wang Liqiang, Li Mingzhi, 2011. Grain sources of the Alashan Desert and Loess Plateau in arid and semi-arid regions of Northwestern China. Journal of Arid Land Resources and Environment, 25(4):45-49. (in Chinese)
    [20] Guo J, Wang T, Xue X et al., 2010. Monitoring aeolian desertifi-cation process in Hulunbir grassland during 1975-2006, Northern China. Environment Monitoring and Assessment, 166:563-571. doi: 10.1007/s10661-009-1023-5
    [21] Guo Z L, Huang N, Dong Z B et al., 2014. Wind erosion induced soil degradation in Northern China:status, measures and per-spective, Sustainability, 6:8951-8966. doi:10.3390/su6128 951
    [22] Healey S P, Cohen W B, Yang Z Q et al., 2005. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97:301-310. doi: 10.1016/j.rse.2005.05.009
    [23] He Jingli, Guo Jianying, Xing Ende et al., 2012. Structure of wind-sand flow and law of dune movement along bank of Yellow River in Ulan Buh Desert. Transactions of the Chinese Society of Agricultural Engineering, 28(17):71-77. (in Chi-nese)
    [24] Huang L, Zhang Z S, Li X R, 2014. Carbon fixation and influ-encing factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. Journal of Arid Land, 6(6):725-734. doi: 10.1007/s40333-014-0027-3
    [25] Huang S, Siegert F, 2006. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. Journal of Arid Environments, 67:308-327. doi: 10.1016/j.jaridenv.2006.02.016
    [26] Hugenholtz C H, Levin N, Barchyn T E et al., 2012. Remote sensing and spatial analysis of aeolian sand dunes:a review and outlook. Earth-Science Reviews, 111:319-334. doi: 10.1016/j.earscirev.2011.11.006
    [27] Jia Peng, Wang Naiang, Cheng Hongyi et al., 2015. A study on the range and area of Ulan Buh Desert based on 3S technology. Journal of Arid Land Resources and Environment, 29(12):131-138. (in Chinese)
    [28] Kosmas C, Kairis O, Karavitis C et al., 2014. Evaluation and selection of indicators for land degradation and desertification monitoring:methodological approach. Environmental Man-agement, 54(5):951-970. doi: 10.1007/s00267-013-0109-6
    [29] Lam D K, Remmel T K, Drezner T D, 2011. Tracking desertifica-tion in California using remote sensing:a sand dune en-croachment approach. Remote Sensing, 3:1-13. doi:10. 3390/rs3010001.
    [30] Lamchin M, Lee J Y, Lee W K et al., 2016. Assessment of land cover change and desertification using remote sensing tech-nology in a local region of Mongolia. Advances in Space Re-search, 57:64-77. doi: 10.1016/j.asr.2015.10.006
    [31] Leprieur C, Kerr Y H, Mastorchio S et al., Monitoring vegetation cover across semi-arid regions:comparison of remote obser-vations from various scales. International Journal of Remote Sensing, 21(2):281-300. doi: 10.1080/014311600210830
    [32] Li Enju, Dong Zhibao, Zhao Jingbo, 2011. Grain size distribution of the aeolian sediments on the stoss slope of a typical mega-dune in the Badain Jaran Desert. Arid Land Geography, 34(3):471-478. (in Chinese)
    [33] Li Enju, 2011. Comparison of Characteristics of Deposits of Ba-dain Jardan Desert and Tengger Desert. Shaanxi Normal University. (in Chinese)
    [34] Li G Q, Jin M, Chen X M et al., 2015. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quaternary Science Reviews, 128:69-80. doi: 10.1016/j.quascirev.2015.09.010
    [35] Li J C, Zhao Y F, Liu H X et al., 2016. Sandy desertification cycles in the southwestern Mu Us Desert in China over the past 80 years recorded based on nebkha sediments. Aeolian Research, 20:100-107.
    [36] Liang S L, 2000. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sensing of Environment, 76:213-238. doi: 10.1016/S0034-4257(00)00205-4
    [37] Liu Fang, Hao Yuguang, Xin Zhiming et al., 2017. Characteristics of soil wind erosion under different underlying surface condi-tions in Ulanbuh Desert. Scientia Silvae Sincae, 53(3):128-137. (in Chinese)
    [38] Liu F S, Chen Y, Lu H Y et al., 2017. Albedo indicating land deg-radation around the Badain Jaran Desert for better land re-sources utilization. Science of the Total Environment, 578:67-73. doi: 10.1016/j.scitotenv.2016.06.171
    [39] Liu Haijiang, Chai Huixia, Cheng Weiming et al., 2008. A research of aeolian landform in northern China based on remote sensing imagery. Geographical Research, 27(1):109-118. (in Chinese)
    [40] Liu Q S, Liu G H, Huang C, 2018. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. Journal of Arid Land, 10(1):12-26. doi: 10.1007/s40333-017-0109-0
    [41] Liu Q S, Liu G H, Huang C et al., 2017. Remotely sensed surface characteristics of three deserts in the Alxa Plateau, Inner Mongolia, China. Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017), Fort Worth, Texas, USA.
    [42] Liu Tao, Yang Xiaoping, Dong Jufeng et al., 2010. A preliminary study of relation between Megadune shape and wind regime in the Badain Jaran Desert. Journal of Desert Research, 30(6):1285-1291. (in Chinese)
    [43] Liu Yue, 2013. Research on Dynamic Change of Land Use in Ulan Buh Desert in Recent 40 Years. Inner Mongolia Normal University. (in Chinese)
    [44] Liu Yingzi, 2013. The Morphology Characteristics and Formation of the Latticed Dunes of the Tengger Desert. Shaanxi Normal University. (in Chinese)
    [45] Lobser S E, Cohen W B, 2007. MODIS tasselled cap:land cover characteristics expressed through transformed MODIS data. International Journal of Remote Sensing, 28(22):5079-5101. doi: 10.1080/01431160701253303
    [46] Ning Kai, Li Zhuolun, Wang Naiang et al., 2013. Spatial charac-teristics of grain size and its environmental implication in the Badain Jaran Desert. Journal of Desert Research, 33(3):642-648. doi:10.7522/j.issn.1000-694X.2013.00092. (in Chinese)
    [47] Nolet C, Poortinga A, Roosjen P et al., 2014. Measuring and modeling the effect of surface moisture on the spectral reflec-tance of coastal beach sand. PloS ONE, 9(11):e112151. doi: 10.1371/journal.pone.0112151
    [48] Potter C, Weigand J, 2016. Analysis of desert sand dune migration patterns from Landsat image time series for the southern California desert. Journal of Remote Sensing & GIS, 5:164. doi: 10.4172/2469-4134.1000164.
    [49] Powell S L, Cohen W B, Healey S P et al., 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data:A comparison of empirical modeling approaches. Remote Sensing of Environment, 114:1053-1068. doi: 10.1016/j.rse.2009.12.018
    [50] Purevdor J T S, Tateishi R, Ishiyama T et al., 1998. Relationships between percent vegetation cover and vegetation indices. In-ternational Journal of Remote Sensing, 19(18):3519-3535. doi: 10.1080/014311698213795
    [51] Qian Guangqiang, Dong Zhibao, Luo Wanyin et al., 2011. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert. Journal of Desert Research, 31(6):1357-1364. (in Chinese)
    [52] Qian Y B, Wu Z N, Yang Q et al., 2007. Ground-surface condi-tions of sand-dust event occurrences in the southern Junggar Basin of Xinjiang, China. Journal of Arid Environments, 70:49-62. doi: 10.1016/j.jaridenv.2006.12.001
    [53] Shafie H, Hosseini S M, Amiri I, 2012. RS-based assessment of vegetation cover changes in Sistan Plain. International Journal of Forest, Soil and Erosion, 2(2):97-100.
    [54] Shao Tianjie, Zhao Jingbo, Dong Zhibao, 2013. Particle size composition and geomorphology zoning of the megadune in the Badain Jaran Desert. Journal of Mountain Science, 31(4):434-441. (in Chinese)
    [55] Shi P J, Yan P, Yuan Y et al., 2004. Wind erosion research in Chi-na:past, present and future. Progress in Physical Geography, 28(3):366-386. doi: 10.1191/0309133304pp416ra
    [56] Song Yang, Quan Zhanjun, Liu Lianyou et al., 2005. The influence of different underlying surface on sand-dust storm in northern China. Journal of Geographical Sciences, 15(4):431-438.
    [57] Sternberg T, Tsolmon R, Middleton N et al., 2011. Tracking des-ertification on the Mongolian steppe through NDVI and field-survey data. International Journal of Digital Earth, 4(1):50-64. doi: 10.1080/17538940903506006
    [58] Sweeney M R, Lu H Y, Cui M C et al., 2016. Sand dunes as po-tential sources of dust in Northern China. Science China Earth Science, 59:760-769. doi: 10.1007/s11430-015-5246-8
    [59] CGIAR (Consultative Group for International Agricultural Re-search). 2016. Drylands and land degradation. Available at:http://drylandsystems.cgiar.org/facts/drylands-land-degradation.
    [60] UNEP (Untied Nations Environment Programme), 1992. World Atlas of Desertification. London:Edward Arnold.
    [61] Wang T, Zhu Z D, Wu W, 2002. Sandy desertification in the north of China. Science in China (Series D), 45(Supp.):23-34. doi: 10.1007/Bf02878385
    [62] Wang Tao, 2004. Progress in sandy desertification research of China. Journal of Geographical Sciences, 14(4):387-400.
    [63] Wang T, Wu W, Xue X et al., 2004. Study of spatial distribution of land desertification in North China in recent 10 years. Science in China (Series D), 47(supp.):78-88. doi: 10.1360/04zd0009
    [64] Wang T, 2014. Aeolian desertification and its control in Northern China. International Soil and Water Conservation Research, 2(4):34-41.
    [65] Wang X M, 2013. Sandy desertification, Borne on the wind. Chi-nese Science Bulletin, 58(20):2395-2403. doi:10.1007/s 11434-013-5771-9
    [66] Wang X M, Cheng H, Li H et al., 2017a. Key driving forces of desertification in the Mu Us Desert, China. Scientif Report, 7:3933. doi: 10.1038/S41598-017-04363-8
    [67] Wang X M, Hua T, Lang L L et al., 2017b. Spatial differences of Aeolian desertification responses to climate in arid Asia, Global and Planetary Change, 148:22-28. doi:10.1016/j. gloplacha.2016.11.008
    [68] Wen Q, Dong Z B, 2016. Geomorphologic patterns of dune net-work in the Tengger Desert, China. Journal of Arid Land, 8(5):660-669. doi: 10.1007/s40333-016-0092-x
    [69] Wen X H, Li B S, Wang W et al., 2006. Deposition of sandstorms in a vegetation-covered sand dune in Ejin Oasis and its characteristics. Journal of Geographical Sciences, 16(4):502-508.
    [70] Wijitkosum S, 2016. The impact of land use and spatial changes on desertification risk in degraded areas in Thailand. Sustainable Environment Research, 26:84-92. doi:10.1016/j.serj. 2015.11.004
    [71] Xiao J, Shen Y, Tateishi R et al., 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12):2411-2422. doi: 10.1080/01431160600554363
    [72] Xu D Y, Kang X W, Qiu D S et al., 2009. Quantitative assessment of desertification using Landsat data on a regional scale-A case study in the Ordos Plateau, China. Sensors, 9:1738-1753. doi: 10.3390/s90301738
    [73] Xu X K, Levy J K, Lin Z H et al., 2006. An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data. Global and Planetary Change, 52:182-196. doi: 10.1016/j.gloplacha.2006.02.009
    [74] Yao Z Y, Wang T, Han Z W et al., 2007. Migration of sand dunes on the Northern Alxa Plateau, Inner Mongolia, China. Journal of Arid Environments, 70:80-93. doi: 10.1016/j.jaridenv.
    [75] 2006.12.012
    [76] Zha Y, Gao J, 1997. Characteristics of desertification and its re-habilitation in China. Journal of Arid Environments, 37:419-432. doi: 10.1006/jare.1997.029
    [77] Zhang G L, Dong J W, Xiao X M et al., 2012. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, 38:20-29. doi: 10.1016/j.ecoleng.2011.09.005
    [78] Zhang K C, Qu J J, Zu R P et al., 2008. Characteristics of wind-blown sand on Gobi/mobile sand surface. Environ. Geol., 54:411-416. doi: 10.1007/s00254-007-0827-2
    [79] Zhang X F, Liao C H, Li J et al., 2013. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied Earth Observation and Geoinformation. 21:506-512. doi: 10.1016/j.jag.2012.07.003
    [80] Zhang Zhengcai, Dong Zhibao, Qian Guangqiang et al., 2012. Wind energy environments and aeolian geomorphology in the western and south-western Tengger Desert. Journal of Desert Research, 32(6):1528-1533. (in Chinese)
    [81] Zhang Z C, Dong Z B, Wu G X, 2017. Field observations of sand transport over the crest of a transverse dune in northwestern China Tengger Desert. Soil & Tillage Research, 166:67-75. doi: 10.1016/j.still.2016.10.010
    [82] Zhang Z Y, Wang N A, Ma N et al., 2014. Lake area changes and the main causes in the hinterland of Badain Jaran Desert during 1973-2010, China. Sciences in Cold and Arid Regions, 6(1):22-29. doi: 10.3724/SP.J.1226.2014.00022
    [83] Zhao Jingbo, Zhang Chong, Dong Zhibao et al., 2011. Particle size composition and formation of the mega-dune in the Badain Jaran Desert. Acta Geologica Sinica, 85(8):1389-1398. (in Chinese)
    [84] Zhao X, Hu H F, Shen H H et al., 2015. Satellite-indicated long-term vegetation changes and their drivers on the Mongo-lian Plateau. Landscape Ecol., 30:1599-1611. doi:10.1007/s 10980-014-0095-y
    [85] Zhong Decai, 1999. The dynamic changes and trends of modern desert in China. Advance in Earth Sciences, 14(3):229-234. (in Chinese)
    [86] Zhu Jinfeng, 2011. Monitoring of desertification on the edge of Badain Jaran Desert in recent 20 years based on remote sensing imagery. Master Thesis, Lanzhou University, Lanzhou, China, May, 2011. (in Chinese)
    [87] Zhu Jinfeng, Wang Naiang, Chen Hongbao et al., 2010. Study on the boundary and the area of Badain Jardan Desert based on remote sensing imagery. Progress in Geography, 29(9):1087-1094. (in Chinese)
    [88] Zhu Zhenda, Wu Zheng, Liu Shu et al., 1980. Deserts in China. Beijing:Science Press. (in Chinese)
    [89] Zhu Zhenda, Cui Shuhong, 1996. Distribution patterns of deserti-fied land and assessment of its control measures in China. China Environmental Science, 16:328-334. (in Chinese)
  • [1] Tian HE, Fuyuan LIU, Ao WANG, Zhanbo FEI.  Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China . Chinese Geographical Science, 2023, 33(4): 751-763. doi: 10.1007/s11769-023-1370-0
    [2] Hao WANG, Zongshan LI, Weijuan ZHANG, Xin YE, Xianfeng LIU.  A Modified Temperature-Vegetation Dryness Index (MTVDI) for Assessment of Surface Soil Moisture Based on MODIS Data . Chinese Geographical Science, 2022, 32(4): 592-605. doi: 10.1007/s11769-022-1288-y
    [3] MAO Kebiao, YUAN Zijin, ZUO Zhiyuan, XU Tongren, SHEN Xinyi, GAO Chunyu.  Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012 . Chinese Geographical Science, 2019, 20(2): 306-315. doi: 10.1007/s11769-019-1030-6
    [4] ZHU Guofeng, QIN Dahe, TONG Huali, LIU Yuanfeng, LI Jiafang, CHEN Dongdong, WANG Kai, HU Pengfei.  Variation of Thornthwaite Moisture Index in Hengduan Mountains, China . Chinese Geographical Science, 2016, 26(5): 687-702. doi: 10.1007/s11769-016-0820-3
    [5] MAO Donglei, LEI Jiaqiang, ZENG Fanjiang, RAHMUTULLA Zaynulla, WANG Cui, ZHOU Jie.  Characteristics of Wind Erosion and Deposition in Oasis-desert Ecotone in Southern Margin of Tarim Basin, China . Chinese Geographical Science, 2014, 0(6): 658-673. doi: 10.1007/s11769-014-0725-y
    [6] DU Jia, SONG Kaishan, WANG Zongming, ZHANG Bai, LIU Dianwei.  Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 73-91.
    [7] WEN Zhaofei, ZHANG Ce, ZHANG Shuqing, et al.  Effects of Normalized Difference Vegetation Index and Related wavebands′ Characteristics on Detecting Spatial Heterogeneity Using Variogram-based Analysis . Chinese Geographical Science, 2012, 22(2): 188-195.
    [8] WEN Xiaohao LI Baosheng WANG Fengnian et al..  Grain-size Characteristics and Climate Variability in TMS5e Sequence of Tumen Section in Southern Tengger Desert, Northwestern China . Chinese Geographical Science, 2012, 22(1): 48-62.
    [9] LIU Fang, QIN Qiming, ZHAN Zhiming.  A Novel Dynamic Stretching Solution to Eliminate Saturation Effect in NDVI and Its Application in Drought Monitoring . Chinese Geographical Science, 2012, 22(6): 683-694.
    [10] GU Lingjia, ZHAO Kai, ZHANG Shuang, et al..  An AMSR-E Data Unmixing Method for Monitoring Flood and Waterlogging Disaster . Chinese Geographical Science, 2011, 21(6): 666-675.
    [11] BAO Kunshan, JIA Lin, LU Xianguo, WANG Guoping.  Grain-size Characteristics of Sediment in Daniugou Peatland in Changbai Mountains,Northeast China:Implications for Atmospheric Dust Deposition . Chinese Geographical Science, 2010, 20(6): 498-505. doi: 10.1007/s11769-010-0427-z
    [12] ZHANG Hailong, LIU Gaohuan, HUANG Chong.  Modeling All-sky Global Solar Radiation Using MODIS Atmospheric Products:A Case Study in Qinghai-Tibet Plateau . Chinese Geographical Science, 2010, 20(6): 513-521. doi: 10.1007/s11769-010-0423-3
    [13] ZHENG Yinghua, WU Yongqiu, LI Sen, TAN Lihua, GOU Shiwei, ZHANG Hongyan.  Grain-size Characteristics of Sediments Formed Since 8600 yr B.P. in Middle Reaches of Yarlung Zangbo River in Tibet and Their Paleoenvironmental Significance . Chinese Geographical Science, 2009, 19(2): 113-119. doi: 10.1007/s11769-009-0113-1
    [14] HUANG Dapeng, LIU Chuang, FANG Huajun, PENG Shunfeng.  Assessment of Waterlogging Risk in Lixiahe Region of Jiangsu Province Based on AVHRR and MODIS Image . Chinese Geographical Science, 2008, 18(2): 178-183. doi: 10.1007/s11769-008-0178-2
    [15] LIU Can-de, HE Bao-yin, LI Mao-tian, REN Xian-you.  QUANTITATIVE MODELING OF SUSPENDED SEDIMENT IN MIDDLE CHANGJIANG RIVER FROM MODIS . Chinese Geographical Science, 2006, 16(1): 79-82.
    [16] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [17] PENG Guangxiong, LI Jing, CHEN Yunhao, Abdul Patah NORIZAN, Liphong TAY.  High-resolution Surface Relative Humidity Computation Using MODIS Image in Peninsular Malaysia . Chinese Geographical Science, 2006, 16(3): 260-264.
    [18] LI Bao-sheng, GAO Shang-yu, DONG Guang-rong, JIN He-ling.  ENVIRONMENTAL EVOLUTION OF ORDOS DESERT IN CHINA SINCE 1.1 MA B. P. AS INDICATED BY YULIN STRATIGRAPHICAL SECTION AND ITS GRAIN-SIZE ANALYSIS RESULTS . Chinese Geographical Science, 2005, 15(1): 34-41.
    [19] 王协康, 方铎, 曹叔尤.  A NEW INDEX OF QUANTITATIVE STUDY ON THE DRAINAGE GEOMORPHY SYSTEM . Chinese Geographical Science, 1999, 9(3): 279-283.
    [20] 许有鹏, 杨戊.  47||HYDROLOGIC SERIES CHARACTERISTICS ANALYSIS OF THE MAJOR RIVERS AROUND THE TAKLIMAKAN DESERT . Chinese Geographical Science, 1997, 7(1): 47-52.
  • 加载中
计量
  • 文章访问数:  418
  • HTML全文浏览量:  86
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-05-03
  • 刊出日期:  2019-02-01

Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China

doi: 10.1007/s11769-018-0997-8
    基金项目:  Under the auspices of Innovation Project of LREIS (No. O88RA20CYA, 08R8A010YA), National Natural Science Foundation of China (No. 41671422), International Cooperation in Science and Technology Special Project (No. 2013DFA91700)
    通讯作者: LIU Qingsheng.E-mail:liuqs@lreis.ac.cn

摘要: Deserts and sandy land in northern China are very susceptible to sandy desertification and are the main source of sand-dust storms of Asian dust. However, because of the complex factors involved, descriptions of the relationship between sandy desertification and surface characteristics in these regions are lacking. We monitored the surface characteristics and their changes in time using information about soil, vegetation, and landforms in the Badain Jaran Desert (BJD), Tengger Desert (TD), and Ulan Buh Desert (UBD) in the northern China. The monitoring was done using tasseled cap angle (TCA), disturbance index (DI), and topsoil grain size index (TGSI) from Moderate Resolution Imaging Spectroradiometer (MODIS) images combined with a decision tree classification. Results showed that the TD had higher topsoil fine sand content, and the ratio of non-vegetated to vegetated areas was similar with that in the UBD. Northeast-southwest coarse sand dunes with thin interdune (NECTI) dominated the BD, fine sand dunes (FSD) dominated the TD, and a combination of northeast-southwest coarse sand dunes with wide interdune (NECWI) and northwest-southeast coarse sand dunes with wide interdune (NWCWI) dominated the UBD. From 2000 to 2015, in the BJD the area of the NECTI, non-sand dune (Non) and potential sand sources (PSS) increased, whereas the area of the NECWI, FSD and NWCWI decreased, indicating a improve process in the BJD. In the TD, the area covered by Non increased, whereas the area covered by PSS, NECWI, NECTI, FSD, and NWCWI decreased from 2000 to 2015. The area covered by the various surface characteristic types fluctuated annually in the UBD from 2000 to 2015. Changes in surface characteristics reflect the combined effects of natural conditions and human activity. The findings of our study will assist scientists and policy makers in proposing different management techniques to combat sandy desertification for the different surface characteristics of these regions.

English Abstract

LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. 中国地理科学, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
引用本文: LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. 中国地理科学, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
Citation: LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China[J]. Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
参考文献 (89)

目录

    /

    返回文章
    返回