留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China

WANG Chunling ZHAO Hongyan WANG Guoping

WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. 中国地理科学, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
引用本文: WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. 中国地理科学, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
Citation: WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8

Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China

doi: 10.1007/s11769-015-0768-8
基金项目: Under the auspices of Chinese Academy of Sciences/State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams (No. KZZD-EW-TZ-07), National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41271209, 41401099)
详细信息
    通讯作者:

    WANG Guoping. E-mail: wangguoping@iga.ac.cn

Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China

Funds: Under the auspices of Chinese Academy of Sciences/State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams (No. KZZD-EW-TZ-07), National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41271209, 41401099)
More Information
    Corresponding author: WANG Guoping. E-mail: wangguoping@iga.ac.cn
  • 摘要: This paper documents a 7800-year proxy record from the Shenjiadian peatland on the Sanjiang Plain in Northeast China. High-resolution plant macrofossil and colorimetric humification methods were used to reconstruct the vegetation and hydrologic history from a 193 cm-long sedimentary profile. Detrended correspondence analysis (DCA) was applied to transform the raw plant macrofossil data into latent indices of peatland water level. The vegetation community transited from an Equisetum fluviatile community to a Carex lasiocarpa community at approximately 3800 cal yr BP and was followed by a Carex-shrub community at approximately 480 cal yr BP. Based on the plant macrofossil DCA axis 1 scores and humification values, we distinguished four hydrologic periods: a wet period from 7800 cal yr BP to 4500 cal yr BP, dry periods up to 1600 cal yr BP, drier periods until 300 cal yr BP, and the driest period from 300 cal yr BP until the present. Through a comparison with other climate records, we suggest that the East Asian summer monsoon (EAM) was the main driving force for vegetation and water level changes to the Shenjiadian peatland through its impacts on precipitation.
  • [1] An C B, Tang L Y, Barton L et al., 2005. Climate change and cultural response around 4000 cal. yr BP in the western part of Chinese Loess Plateau. Quaternary Research, 63(3): 347-352. doi:  10.1016/j.yqres.2005.02.004
    [2] An Z S, Porter S C, Kutzbach J E et al., 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews, 19(8): 743-762. doi: 10.1016/j.yqres.2005. 02.004
    [3] Barber K E, 1993. Peatlands as scientific archives of past biodiversity. Biodiversity and Conservation, 2(5): 474-489. doi:  10.1007/BF00056743
    [4] Barber K E, Chambers F M, Maddy D, 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews, 22(5-7): 521-539. doi:  10.1016/j.yqres.2005.02.004
    [5] Barber K E, Maddy D, Rose N et al., 2000. Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnections. Quaternary Science Reviews, 19(6): 481-487. doi:  10.1016/S0277-3791(99)00102-X
    [6] Birks H H, Birks H J B, 2000. Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography, 27(1): 31-35. doi:  10.1046/j.1365-2699.2000.00375.x
    [7] Birks H H, 2002. Plant macrofossils. In: Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer Academic Publishers: 49-74.
    [8] Blackford J J, Chambers F M, 1995. Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability. Earth and Planetary Science Letters, 133(1): 145-150. doi:  0012-821X(95)00072-0
    [9] Booth R K, Jackson S T, 2003. A high-resolution record of late-Holocene moisture variability from a Michigan raised bog, USA. The Holocene, 13(6): 863-876. doi: 10.1191/ 0959683603hl669rp
    [10] Borgmark A, 2005. Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis. The Holocene, 15(3): 387-395. doi: 10.1191/095968 3605hl816rp
    [11] Branch N P, Batchelor C R, Cameron N G et al., 2012. Holocene environmental changes in the Lower Thames Valley, London, UK: implications for understanding the history of Taxus woodland. The Holocene, 22(10): 1143-1158. doi: 10.1177/ 0959683612441805
    [12] Chambers F M, Barber K E, Maddy D et al., 1997. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene, 7(4): 391-399. doi:  10.1177/095968369700700402
    [13] Chambers F M, Booth R K, Vleeschouwer F D et al., 2012. Development and refinement of proxy-climate indicators from peats. Quaternary International, 268(3): 21-33. doi: 10.1016/ j.quaint.2011.04.039
    [14] Chambers F M, Mauquoy D, Brain S A et al., 2007a. Globally synchronous climate change 2800 years ago: proxy data from peat in South America. Earth and Planetary Science Letters, 253(3): 439-444. doi:  10.1016/j.epsl.2006.11.007
    [15] Chambers F M, Mauquoy D, Cloutman E W et al., 2007b. Recent vegetation history of Drygarn Fawr (Elenydd SSSI), Cambrian Mountains, Wales: implications for conservation management of degraded blanket mires. Biodiversity and Conservation, 16(10): 2821-2846. doi:  10.1007/s10531-007-9169-3
    [16] Chambers F M, Mauquoy D, Gent A et al., 2007c. Palaeoecology of degraded blanket mire in South Wales: data to inform conservation management. Biological Conservation, 137(2): 197-209. doi:  10.1006/j.biocon.2007.02.002
    [17] Charman D, 2002. Peatlands and Environmental Change. Chichester: John Wiley & Sons Ltd.
    [18] Chiverrell R C, 2001. A proxy record of late Holocene climate change from May Moss, Northeast England. Journal of Quaternary Science, 16(1): 9-29. doi: 10.1002/1099-1417 (200101)
    [19] Galka M, Apolinarska K, 2014. Climate change, vegetation development, and lake level fluctuations in Lake Purwin (NE Poland) during the last 8600 cal. BP based on a high-resolution plant macrofossil record and stable isotope data (δ13C and δ18O). Quaternary International, 328-329(10): 213-225. doi:  10.1016/j.quaint.2013.12.030
    [20] Galka M, Sznel M, 2013. Late glacial and early Holocene development of lakes in northeastern Poland in view of plant macrofossil analyses. Quaternary International, 292(28): 124-135. doi:  10.1016/j.quaint.2012.11.014
    [21] Galka M, Miotk S G, Goslar T et al., 2013. Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeography Palaeoclimatology Palaeoecology, 370(15): 209-221. doi: 10.1016/j.palaeo.2012. 12.001
    [22] Hong Y T, Hong B, Lin Q H et al., 2005. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Nino. Earth and Planetary Science Letters, 231(3-4): 337-346. doi:  10.1016/j.epsl.2004.12.025
    [23] Hong Y T, Jiang H B, Liu T S et al., 2000. Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose. The Holocene, 10(1): 1-7. doi:  10.119/0959830069856361
    [24] Hong Y T, Wang Z G, Jiang H B et al., 2001. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose. Earth and Planetary Science Letters, 185(1-2): 111-119. doi:  s0012-821X(00)00367-8
    [25] Hou Shuguang, 1992. Main types and characteristics of plant macrofossil in Northeast Yunnan. Yunnan Geology, 11(1): 29-31. (in Chinese)
    [26] Jakab G, Majkut P, Juhász I et al., 2009. Palaeoclimatic signals and anthropogenic disturbances from the peatbog at Nagybárkány (North Hungary). Hydrobiologia, 631(1): 87-106. doi:  10.1007/s10750-009-9803-z
    [27] Jasinski J P P, Warner B G, Andreev A A et al., 1998. Holocene environmental history of a peatland in the Lena River valley, Siberia. Canadian Journal of Earth Sciences, 35(6): 637-648. doi:  10.1139/e98-015
    [28] Ji Yuhe, Lu Xianguo, Yang Qing et al., 2006. Spacial differentiation regularity of plant species in Sanjiang Plain wetland. Ecology and Environment, 15(4): 781-786. (in Chinese)
    [29] Jiang W Y, Leroy S A G, Ogle N et al., 2008. Natural and anthropogenic forest fires recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1): 47-57. doi:  10.1016/j.paleo.2008.01.007
    [30] Jin Shuren, Lang Huiqing, 1993. Plant macrofossil in peatland of forest bog in Xiaoxinganling. Journal of Northeast Normal University (Natural Science Edition), 3: 113-117. (in Chinese)
    [31] Jong R, Blaauw M, Chambers F M et al., 2010. Climate and Peatlands. Changing Climates, Earth Systems and Society. Netherlands: Springer Netherlands: 85-121.
    [32] Lang Huiqing, Jin Shuren, 1984a. Preliminary researches on the main types of plant macrofossil in Chinese peat. Acta Phytoecologica Geobotanica Sinica, 8(3): 182-188. (in Chinese)
    [33] Lang Huiqing, Jin Shuren, 1984b. Methods on plant macrofossil in peatland. Bulletin of Botany, 5(2): 49-51. (in Chinese)
    [34] Lou Y J, Wang G P, Lu X G et al., 2013. Zonation of plant cover and environmental factors in wetlands of the Sanjiang Plain, Northeast China. Nordic Journal of Botany, 31(6): 748-756. doi:  10.1111/j.1756-1051.2013.01721.x
    [35] Lou Yanjing, Zhao Kuiyi, 2008. Study of species diversity of Carex lasiocarpa community in Sanjiang Plain for 30 years. Journal of Arid Land Resources and Environment, 22(5): 182-186. (in Chinese)
    [36] Luan Z Q, Wang Z X, Yan D D et al., 2013. The ecological response of Carex lasiocarpa community in the Riparian wetlands to the environmental gradient of water depth in Sanjiang Plain, Northeast China. The Scientific World Journal, 2013(1): 1-7. doi:  10.1155/2013/402067
    [37] Ma C M, Zhu C, Zheng C G et al., 2009. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records. Science in China Series D: Earth Sciences, 52(1): 118-131. doi:  10.1007/s11430-009-0003-5
    [38] Ma Yunyan, 2010. Dry and Wet Climatic Changes in the West of Changbai Mountains over the Last 500 Years Inferred from Multiproxy Peatland Records. Changchun: Northeast Normal University. (in Chinese)
    [39] Mauquoy D, Barber K E, 1999. A replicated 3000 yr proxy-climate record from Coom Rigg Moss and Felecia Moss, the Border Mires, northern England. Journal of Quaternary Science, 14(3): 263-275. doi: 10.1002/(SICI)1099-1417 (199905)14:3<263::AID-JQS445>3.0.CO;2-W
    [40] Mauquoy D, Van Geel B, 2007. Mire and peat cacros. In: Elias S A (ed.). Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2315-2336.
    [41] Mauquoy D, Yeloff D, Van Geel B et al., 2008. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene. Journal of Quaternary Science, 23(8): 745-763. doi:  10.1002/jqs.1158
    [42] Pawlowski D, Kloss M, Obremska M et al., 2012. Evolution of small valley mire in central Poland as a result of hydroclimatic oscillations. Geochronometria, 39(2): 133-148. doi:  10.2478/s13386-012-0004-6
    [43] Qiu Shanwen, Sun Guangyou, Holocene Yumei, 2008. Formation and evolvement of marshes in the middle-east of the Sanjiang Plain. Wetland Science, 6(2): 148-159. (in Chinese)
    [44] Scarton F, Day J W, Rismondo A, 2002. Primary production and decomposition of Sarcocornia fruticosa (L.) Scott and Phragmites australis Trin. ex Steudel in the Po Delta, Italy. Estuaries, 25(3): 325-336. doi:  10.1007/bf02695977
    [45] Stuiver M, Reimer P J, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35(1): 215-230.
    [46] Sun Fenghua, Yuan Jiang, Lu Shuang, 2006. The change and test of climate in Northeast China over the last 100 years. Climatic and Environmental Research, 11(1): 101-108. (in Chinese)
    [47] Sun Jingxia, Wang Weijing, Li Zhi et al., 2006. The reason of water resources degradation and analysis of ecological water demand in Honghe Nature Reserve. Heilongjiang Water Science and Technology, 34(4): 131-132. (in Chinese)
    [48] Telford R J, Heegaard E, Birks H J B, 2004. All age-depth models are wrong: but how badly? Quaternary Science Reviews, 23(1): 1-5. doi:  10.1016/j.quascirev.2003.11.003
    [49] Tinner W, Hofstetter S, Zeugin F et al., 2006. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps: implications for fire history reconstruction. The Holocene, 16(2): 287-292. doi: 10.1191/0959683606hl 925rr
    [50] Tuittila E S, Väliranta M, Laine J et al., 2007. Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinations. Journal of Vegetation Science, 18(6): 891-902. doi: 10.1111/j. 1654-1103.2007.tb02605.x
    [51] Väliranta M, Korhola A, Seppä H et al., 2007. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene, 17(8): 1093. doi: 10.1177/095968360 7082550
    [52] Wu Jiangying, Wang Yongjin, Dong Jinguo, 2011. Changes in East Asian Summer Monsoon during the Holocene recorded by stalagmite δ18O records from Liaoning Province. Quaternary Sciences, 31(6): 990-1001. (in Chinese)
    [53] Yeloff D, Mauquoy D, 2006. The influence of vegetation composition on peat humification: implications for palaeoclimatic studies. Boreas, 35(4): 662-673. doi: 10.1080/ 03009480600690860
    [54] Zhao Hongyan, Li Hongkai, Han Yi et al., 2014. A multi-proxy record of surface wetness in Hani mire of west Changbaishan Mountain and its possible drivers. Quaternary Sciences, 34(2): 434-442. (in Chinese)
    [55] Zhao Y, Hölzer A, Yu Z C, 2007. Late Holocene natural and human-induced environmental change reconstructed from peat records in eastern central China. Radiocarbon, 49(2): 789-798.
    [56] Zhou D M, Luan Z Q, Guo X Y et al., 2012. Spatial distribution patterns of wetland plants in relation to environmental gradient in the Honghe National Nature Reserve, Northeast China. Journal of Geographical Sciences, 22(1): 57-70. doi: 10. 1007/s11442-012-0911-8
    [57] Zhou D, Gong H, Luan Z et al., 2006. Spatial pattern of water controlled wetland communities on the Sanjiang Floodplain, Northeast China. Community Ecology, 7(2): 223-234. doi:  10.1556/ComEc.7.2006.2.9
    [58] Zhou W J, Yu X F, Jull A J et al., 2004. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18 000 years. Quaternary Research, 62(1): 39-48. doi: 10.1016/j.yqres. 2004.05.004
  • [1] REN Wanxia, XUE Bing, YANG Jun, LU Chengpeng.  Effects of the Northeast China Revitalization Strategy on Regional Economic Growth and Social Development . Chinese Geographical Science, 2020, 30(5): 791-809. doi: 10.1007/s11769-020-1149-5
    [2] WANG Qiang, ZHANG Zhongsheng1, ZHOU Xuehong, LU Xianguo.  Mercury Distribution and Accumulation in Typical Wetland Ecosystems of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 49-58.
    [3] WANG Shaowu, GE Quansheng, WANG Fang, WEN Xinyu, HUANG Jianbin.  Abrupt Climate Changes of Holocene . Chinese Geographical Science, 2013, 23(1): 1-12.
    [4] GAO Junqin, OUYANG Hua, LEI Guangchun et al..  Temperature and Soil Moisture Interactively Affect Soil Carbon Mineralization in Zoige Alpine Wetlands . Chinese Geographical Science, 2011, 21(1): 27-35.
    [5] LU Yingxia, LI Baosheng, WEN Xiaohao, QIU Shifan, WANG Fengnian, NIU Dongfeng, LI Zhiwen.  Millennial-centennial Scales Climate Changes of Holocene Indicated by Magnetic Susceptibility of High-resolution Section in Salawusu River Valley, China . Chinese Geographical Science, 2010, 20(3): 243-251. doi: 10.1007/s11769-010-0243-5
    [6] BAO Kunshan, JIA Lin, LU Xianguo, WANG Guoping.  Grain-size Characteristics of Sediment in Daniugou Peatland in Changbai Mountains,Northeast China:Implications for Atmospheric Dust Deposition . Chinese Geographical Science, 2010, 20(6): 498-505. doi: 10.1007/s11769-010-0427-z
    [7] XUE Jibin, ZHONG Wei, ZHENG Yanming, MA Qiaohong, CAI Ying, OUYANG Jun.  A New High-resolution Late Glacial-Holocene Climatic Record from Eastern Nanling Mountains in South China . Chinese Geographical Science, 2009, 19(3): 274-282. doi: 10.1007/s11769-009-0274-y
    [8] XUE Jibin, ZHONG Wei, ZHAO Yinjuan, PENG Xiaoying.  Holocene Abrupt Climate Shifts and Mid-Holocene Drought Intervals Recorded in Barkol Lake of Northern Xinjiang of China . Chinese Geographical Science, 2008, 18(1): 54-61. doi: 10.1007/s11769-008-0054-0
    [9] LONG Hao, TAN Hongbin, WANG Naiang, TAN Liangcheng, LI Yu.  Mid-Holocene Climate Variations Recorded by Palaeolake in Marginal Area of East Asian Monsoon: A Multi-proxy Study . Chinese Geographical Science, 2007, 17(4): 325-332. doi: 10.1007/s11769-007-0325-1
    [10] BU Zhao-jun, YANG Yun-fei, LANG Hui-qing.  AGE STRUCTURES OF MODULES OF CLONAL PEATLAND SEDGE Carex middendorffii . Chinese Geographical Science, 2005, 15(3): 269-274.
    [11] WANG Xi-kui, QIU Shan-wen, SONG Chang-chun, KULAKOV Aleksey, TASHCHI Stepan, MYASNIKOV Evgeny.  CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA . Chinese Geographical Science, 2001, 11(2): 150-154.
    [12] 王瑜, 宋长青, 孙湘君.  PALYNOLOGICAL RECORD OF PALEOVEGETATION CHANGE DURING HOLOCENE AT NORTH TUMD PLAIN IN INNER MONGOLIA, CHINA . Chinese Geographical Science, 1999, 9(1): 87-91.
    [13] 刘红玉.  CONSERVATION OF WETLANDS ESPECIALLY AS WATERFOWL HABITAT IN NORTHEAST CHINA . Chinese Geographical Science, 1998, 8(3): 281-288.
    [14] 张虎才.  CLIMATIC CHANGE AND HUMAN ACTIVITIES OF NORTHEASTERN SAHARA IN HOLOCENE . Chinese Geographical Science, 1998, 8(4): 377-382.
    [15] 钟巍, 熊黑钢.  ISOTOPIC EVIDENCE FOR HOLOCENE CLIMATIC CHANGES IN BOSTEN LAKE, SOUTHERN XINJIANG, CHINA . Chinese Geographical Science, 1998, 8(2): 176-182.
    [16] 王荣芬, 于国政.  THE OPEN PORT SYSTEM IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(3): 270-277.
    [17] 吴敬禄, 王苏民, 吴艳宏.  THE HOLOCENE SEDIMENTAL CHARACTERISTIC AND PALEOCLIMATIC EVOLUTION OF EBINUR LAKE, XINJIANG . Chinese Geographical Science, 1996, 6(1): 78-88.
    [18] 钟巍, 王建民.  PRELIMINARY STUDY ON THE HOLOCENE ENVIRONMENT CHANGES IN XINJIANG──GEOLOGIC RECORDS AND SEQUENCE . Chinese Geographical Science, 1996, 6(2): 166-176.
    [19] 周子康, 夏越炯, 刘为纶, 吴维棠.  RECONSTRUCTION OF PALEOVEGETATION AND PALEOCLIMATE OF HOLOCENE HYPSITHERMAL IN THE HEMUDU REGION . Chinese Geographical Science, 1995, 5(3): 232-241.
    [20] 张仲英, 刘瑞华.  THE HOLOCENE ALONG THE COAST OF HAINAN ISLAND, CHINA . Chinese Geographical Science, 1991, 1(2): 188-196.
  • 加载中
计量
  • 文章访问数:  443
  • HTML全文浏览量:  16
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-09-30
  • 刊出日期:  2015-04-27

Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China

doi: 10.1007/s11769-015-0768-8
    基金项目:  Under the auspices of Chinese Academy of Sciences/State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams (No. KZZD-EW-TZ-07), National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41271209, 41401099)
    通讯作者: WANG Guoping. E-mail: wangguoping@iga.ac.cn

摘要: This paper documents a 7800-year proxy record from the Shenjiadian peatland on the Sanjiang Plain in Northeast China. High-resolution plant macrofossil and colorimetric humification methods were used to reconstruct the vegetation and hydrologic history from a 193 cm-long sedimentary profile. Detrended correspondence analysis (DCA) was applied to transform the raw plant macrofossil data into latent indices of peatland water level. The vegetation community transited from an Equisetum fluviatile community to a Carex lasiocarpa community at approximately 3800 cal yr BP and was followed by a Carex-shrub community at approximately 480 cal yr BP. Based on the plant macrofossil DCA axis 1 scores and humification values, we distinguished four hydrologic periods: a wet period from 7800 cal yr BP to 4500 cal yr BP, dry periods up to 1600 cal yr BP, drier periods until 300 cal yr BP, and the driest period from 300 cal yr BP until the present. Through a comparison with other climate records, we suggest that the East Asian summer monsoon (EAM) was the main driving force for vegetation and water level changes to the Shenjiadian peatland through its impacts on precipitation.

English Abstract

WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. 中国地理科学, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
引用本文: WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. 中国地理科学, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
Citation: WANG Chunling, ZHAO Hongyan, WANG Guoping. Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
参考文献 (58)

目录

    /

    返回文章
    返回