中国地理科学(英文版) ›› 2011, Vol. 21 ›› Issue (2): 241-248.

• 论文 • 上一篇    下一篇

Extracting Eco-hydrological Information of Inland Wetland from L-band Synthetic Aperture Radar Image in Honghe National Nature Reserve, Northeast China

SUN Yonghua1, 2, GONG Huili1, 2, LI Xiaojuan1, 2, PU Ruiliang3, LI Shuang1, 2   

  1. (1. College of Resources Environment & Tourism, Capital Normal University, Beijing 100048, China;
    2. National Key Laboratory Cultivation Base of Urban Environmental Processes & Digital Analog, Beijing
    100048, China; 3. Department of Geography, University of South Florida, Tampa, FL 33620, USA)
  • 出版日期:2011-03-24 发布日期:2011-04-06

Extracting Eco-hydrological Information of Inland Wetland from L-band Synthetic Aperture Radar Image in Honghe National Nature Reserve, Northeast China

SUN Yonghua1, 2, GONG Huili1, 2, LI Xiaojuan1, 2, PU Ruiliang3, LI Shuang1, 2   

  1. (1. College of Resources Environment & Tourism, Capital Normal University, Beijing 100048, China;
    2. National Key Laboratory Cultivation Base of Urban Environmental Processes & Digital Analog, Beijing
    100048, China; 3. Department of Geography, University of South Florida, Tampa, FL 33620, USA)
  • Online:2011-03-24 Published:2011-04-06

摘要:

Taking a typical inland wetland of Honghe National Nature Reserve (HNNR), Northeast China, as the study area, this paper studied the application of L-band Synthetic Aperture Radar (SAR) image in extracting eco-hydrological information of inland wetland. Landsat-5 TM and ALOS PALSAR HH backscatter images were first fused by using the wavelet-IHS method. Based on the fused image data, the classification method of support vector machines was used to map the wetland in the study area. The overall mapping accuracy is 77.5%. Then, the wet and dry aboveground biomass estimation models, including statistical models and a Rice Cloudy model, were established. Optimal parameters for the Rice Cloudy model were calculated in MATLAB by using the least squares method. Based on the validation results, it was found that the Rice Cloudy model produced higher accuracy for both wet and dry aboveground biomass estimation compared to the statistical models. Finally, subcanopy water boundary information was extracted from the HH backscatter image by threshold method. Compared to the actual water borderline result, the extracted result from L-band SAR image is reliable. In this paper, the HH-HV phase difference was proved to be valueless for extracting subcanopy water boundary information.

关键词: inland wetland, ALOS PALSAR, wetland mapping, aboveground biomass estimation, subcanopy water boundary extraction

Abstract:

Taking a typical inland wetland of Honghe National Nature Reserve (HNNR), Northeast China, as the study area, this paper studied the application of L-band Synthetic Aperture Radar (SAR) image in extracting eco-hydrological information of inland wetland. Landsat-5 TM and ALOS PALSAR HH backscatter images were first fused by using the wavelet-IHS method. Based on the fused image data, the classification method of support vector machines was used to map the wetland in the study area. The overall mapping accuracy is 77.5%. Then, the wet and dry aboveground biomass estimation models, including statistical models and a Rice Cloudy model, were established. Optimal parameters for the Rice Cloudy model were calculated in MATLAB by using the least squares method. Based on the validation results, it was found that the Rice Cloudy model produced higher accuracy for both wet and dry aboveground biomass estimation compared to the statistical models. Finally, subcanopy water boundary information was extracted from the HH backscatter image by threshold method. Compared to the actual water borderline result, the extracted result from L-band SAR image is reliable. In this paper, the HH-HV phase difference was proved to be valueless for extracting subcanopy water boundary information.

Key words: inland wetland, ALOS PALSAR, wetland mapping, aboveground biomass estimation, subcanopy water boundary extraction