留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network

HUANG Yajie LI Zhen YE Huichun ZHANG Shiwen ZHUO Zhiqing XING An HUANG Yuanfang

HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. 中国地理科学, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
引用本文: HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. 中国地理科学, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
Citation: HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1

Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network

doi: 10.1007/s11769-019-1027-1
基金项目: Under the auspices of the National Natural Science Foundation of China (No. 41571217), the National Key Research and Development Program of China (No. 2016YFD0300801)
详细信息
    通讯作者:

    HUANG Yuanfang.E-mail:yfhuang@cau.edu.cn

Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network

Funds: Under the auspices of the National Natural Science Foundation of China (No. 41571217), the National Key Research and Development Program of China (No. 2016YFD0300801)
More Information
    Corresponding author: HUANG Yuanfang
  • 摘要: Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network (OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths (0-30 and 30-50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging (OK), back-propagation network (BP) and regression kriging (RK) were used in comparison analysis; the root mean square error (RMSE), relative improvement (RI) and the decrease in estimation imprecision (DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods (i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy.
  • [1] Akramkhanov A, Martius C, Park S J et al., 2011. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1):55-62. doi:10.1016/j. ge-oderma.2011.04.001
    [2] Akramkhanov A, Vlek P L G, 2012. The assessment of spatial distribution of soil salinity risk using neural network. Envi-ronmental Monitoring and Assessment, 184(4):2475-2485. doi: 10.1007/s10661-011-2132-5
    [3] Aldakheel Y Y, 2011. Assessing NDVI spatial Pattern as related to irrigation and soil salinity management in Al-Hassa Oasis, Saudi Arabia. Journal of the Indian Society of Remote Sensing, 39(2):171-180. doi: 10.1007/s12524-010-0057-z
    [4] Bilgili A V, 2013. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environmental Moni-toring and Assessment, 185(1):777-795. doi: 10.1007/s10661-012-2591-3
    [5] Cambardella C A, Moorman T B, Parkin T B et al., 1994. Field-scale variability of soil properties in central low a soils. Soil Science Society of America Journal, 58(5):1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
    [6] Chen X H, Duan Z H, Luo T F, 2014. Changes in soil quality in the critical area of desertification surrounding the Ejina Oasis, Northern China. Environmental Earth Sciences, 72(7):2643-2654. doi: 1007/s12665-014-3171-3
    [7] Chi C M, Wang Z C, 2010. Characterizing salt-affected soils of Songnen Plain using saturated paste and 1:5 soil-to-water ex-traction methods. Arid Land Research and Management, 24(1):1-11. doi: 10.1080/15324980903439362
    [8] Dai F Q, Zhou Q G, Lv Z Q et al., 2014. Spatial prediction of soil organic matter content integrating artificial network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45:184-194. doi: 10.1016/j.ecolind.2014.04.003
    [9] Ding J L, Yu D L, 2014. Monitoring and evaluating spatial varia-bility of soil salinity in dry and wet seasons in the Weri-gan-Kuqa Oasis, China, using remote sensing and electro-magnetic induction instruments. Geoderma, 235:316-322. doi: 10.1016/j.geoderma.2014.07.028
    [10] Eldeiry A A, Garcia L A, 2012. Evaluating the performance of ordinary kriging in mapping soil salinity. Journal of Irrigation and Drainage Engineering, 138(12):1046-1059. doi: 10.1061/(ASCE)IR.1943-4774.0000517
    [11] Emadi M, Baghernejad M, 2014. Comparison of spatial interpola-tion techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran. Archives of Agronomy and Soil Sci-ence, 60(9):1315-1327. doi:10.1080/03650340.2014. 880837
    [12] Fang H L, Liu G H, Kearney M, 2005. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environmental Management, 35(1):72-83. doi: 10.1007/s00267-004-3066-2
    [13] He B, Cai Y L, Ran W R et al., 2015. Spatiotemporal heterogeneity of soil salinity after the establishment of vegetation on a coastal saline field. Catena, 127:129-134. doi:10.1016/j. ca-tena.2014.12.028
    [14] He Wenshou, Liu Yangchun, He Jinyu, 2010. Relationships be-tween soluble salt content and electrical conductivity for dif-ferent types of salt-affected soils in Ningxia. Agricultural Re-search in the Arid Areas, 28(1):111-116. (in Chinese)
    [15] Hengl T, Heuvelink G B M, Stein A, 2004. A generic framework for spatial prediction of soil variables based on regres-sion-kriging. Geoderma, 120:75-93. doi:10.1016/j.geoderma. 2003.08.018
    [16] Huang Yajie, Ye Hechun, Zhang Shiwen et al., 2015. Zoning of arable land productivity based on self-organizing map in China. Scientia Agricultura Sinica, 48(6):1136-1150. (in Chinese)
    [17] Huang Y J, Ye H C, Zhang S W et al., 2017. Prediction of soil organic mMatter using ordinary kriging combined with the clustering of self-organizing map:a case study in Pinggu Dis-trict, Beijing, China. Soil Science, 182:52-62. doi: 10.1097/SS.0000000000000196
    [18] Isaaks E H, Srivastava R M, 1989. An Introduction to Applied Geostatistics. New York:Oxford University Press.
    [19] IUSS Working Group WRB, 2007. World reference base for soil resources 2006, first update 2007. World Soil Resources Re-ports, FAO, Rome. Available at:http://www.fao.org.
    [20] Jordán M M, Navarro-Pedreno J, García-Sánchez E et al., 2004. Spatial dynamics of soil salinity under arid and semi-arid con-ditions:geological and environmental implications. Environ-mental Geology, 45(4):448-456. doi: 10.1007/s00254-003-0894-y
    [21] Lark R M, 1999. Soil-landform relationships at within-field scales:an investigation using continuous classification. Geoderma, 92(3-4):141-165. doi:10.1016/S0016-7061(99) 00028-2
    [22] Li Q Q, Yue T X, Wang C Q et al., 2013. Spatially distributed modeling of soil organic matter across China:an application of artificial neural network approach. Catena, 104:210-218. doi: 10.1016/j.catena.2012.11.012
    [23] Li Q Q, Zhang X, Wang C Q et al., 2016. Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging. Archives of Agronomy and Soil Science, 62(11):1541-1553. doi:10.2136/sssaj1989.0361599 5005300030029x
    [24] Liu T L, Juang K W, Lee D Y, 2006. Interpolating soil properties using kriging combined with categorical information of soil maps. Soil Science Society of America Journal, 70(4):1200-1209. doi: 10.2136/sssaj2005.0126
    [25] Lu Rukun, 2000. Analysis methods of soil agricultural chemistry. China:Agricultural Science and Technology Publishing House, 85-89. (in Chinese)
    [26] McBratney A B, Santos M L M, Minasny B. 2003. On digital soil mapping. Geoderma, 17(1-2):3-52. doi:10.1016/S0016-7061 (03)00223-4
    [27] Mirakzehi K, Pahlavan-Rad M R, Shahriari A et al., 2018. Digital soil mapping of deltaic soils:a case of study from Hirmand (Helmand) river delta. Geoderma, 313:233-240. doi: 10.1016/j.scitotenv.2018.02.052
    [28] Mirlas V, 2012. Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools:a case study from the Jezre'el Valley, Israel. Agricultural Water Managemen, 109:144-154. doi: 10.1016/j.agwat.2012.03.003
    [29] Moore I D, Gessler P E, Nielsen G A et al., 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2):443-452. doi:10.2136/sssaj1993. 03615995005700020026x
    [30] Mora-Vallejo A, Claessens L, Stoorvogel J et al., 2008. Small scale digital soil mapping in Southeastern Kenya. Catena, 76(1):44-53. doi: 10.1016/j.catena.2008.09.008
    [31] Motaghian H R, Mohammadi J, 2011. Spatial estimation of satu-rated hydraulic conductivity from terrain attributes using re-gression, kriging, and artificial neural networks. Pedosphere, 21(2):170-177. doi: 10.1016/S1002-0160(11)60115-X
    [32] Mozumder R A, Laskar A I, 2015. Prediction of unconfined com-pressive strength of geopolymer stabilized clayey soil using Artificial Neural Network. Computers and Geotechnics, 69:291-300. doi: 10.1016/j.compgeo.2015.05.021
    [33] Mueller T G, Mijatovic B, Sears B G et al., 2004. Soil electrical conductivity map quality. Soil Science, 169(12):841-851. doi: 10.1097/00010694-200412000-00003
    [34] Mueller T G, Pierce F J, 2003. Soil carbon maps:Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society of America Journal, 67(1):258-267. doi: 10.2136/sssaj2003.2580
    [35] Nielsen D R, Bouma J, 1985. Soil Spatial Variability:Proceedings of a Workshop of the ISSS and the SSSA, Las Vegas, USA/Pdc296. Pudoc Wageningen, Netherlands:Center Agricultural Pub and Document.
    [36] Nosetto M D, Acosta A M, Jayawickreme D H et al., 2013. Land-use and topography shape soil and groundwater salinity in central Argentina. Agricultural Water Management, 129:120-129. doi: 10.1016/j.agwat.2013.07.017
    [37] Nosetto M D, Jobbágy E G, Tóth T et al., 2008. Regional patterns and controls of ecosystem salinization with grassland affor-estation along a rainfall gradient. Global Biogeochemical Cy-cles, 22(2):1-12. doi: 10.1029/2007GB003000
    [38] Olden J D, Jackson D A, 2002. Illuminating the ‘black box’:a randomization approach for understanding variable contribu-tions in artificial neural networks. Ecological Modelling, 154(1-2):135-50. doi: 10.1016/S0304-3800(02)00064-9
    [39] Patel R M, Prasher S O, God P K, et al., 2002. Soil Salinity Pre-diction Using Artificial Neural Networks. Journal of the American Water Resources Association, 38(1):91-100. doi: 10.1111/j.1752-688.2002.tb01537.x
    [40] Park S J, Vlek P L G, 2002. Environmental correlation of three-dimensional soil spatial variability:a comparison of three adaptive techniques. Geoderma, 109(1-2):117-140. doi: 10.1016/S0016-7061(02)00146-5
    [41] Raczko E, Zagajewski B, 2017. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of Remote Sensing, 50(1):144-154. doi: 10.1080/22797254.2017.1299557
    [42] Sarangi A, Singh M, Bhattacharya A K et al., 2006. Subsurface drainage performance study using SALTMOD and ANN mod-els. Agricultural Water Management, 84(3):240-248. doi: 10.1016/j.agwat.2006.02.009
    [43] Sedaghat A, Bayat H, Sinegani A A S, 2016. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils. Eurasian Soil Science, 49(3):347-357. doi: 10.1134/S106422931603008X
    [44] Shah S H H, Vervoort R W, Suweis S et al., 2011. Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater. Water Resources Research, 47(9):09506-09522. doi: 10.1029/2010WR009790
    [45] Shahabi M, Jafarzadeh A A, Neyshabouri M R et al., 2017. Spatial modeling of soil salinity using multiple linear regression, Ordinary kriging and artificial neural network methods. Ar-chives of Agronomy and Soil Science, 63(2):151-160. doi: 10.1080/03650340.2016.1193162
    [46] Sheng J, Ma L, Jiang P et al., 2010. Digital soil mapping to enable classification of the salt-affected soils in desert agro-ecological zones. Agricultural Water Management, 97(12):1944-51. doi: 10.1016/j.agwat.2009.04.011
    [47] Taghizadeh-Mehrjardi R, Ayoubi S, Namazi Z et al., 2016. Pre-diction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30(1):49-64. doi: 10.1080/15324982.2015.1046092
    [48] Takata Y, Funakawa S, Akshalov K et al., 2007. Spatial prediction of soil organic matter in northern Kazakhstan based on topo-graphic and vegetation information. Soil Science and Plant Nu-trition, 53(3):289-299. doi:10.1111/j.1747-0765.2007.001 42.x
    [49] Visconti F, de Paz J M, Rubio J L, 2010. What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irri-gated lands? Geoderma, 154 (3-4):387-397. doi:10.1016/j. geoderma.2009.11.012
    [50] Wang S Q, Song X F, Wang Q X et al., 2012. Shallow groundwa-ter dynamics and origin of salinity at two sites in salinated and water-deficient region of North China Plain, China. Environ-mental Earth Sciences, 66(3):729-739. doi: 10.1007/s12665-011-1280-9
    [51] Wang S, Adhikari K, Wang Q B et al., 2018. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84:263-272. doi: 10.1016/j.ecolind.2017.08.046
    [52] Were K, Bui D T, Dick Ø B et al., 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52:394-403. doi: 10.1016/j.ecolind.2014.12.028
    [53] Wu J H, Li P Y, Qian H et al., 2014. Assessment of soil saliniza-tion based on a low-cost method and its influencing factors in a semi-arid agricultural area, northwest China. Environmental Earth Sciences, 71(8):3465-3475. doi: 10.1007/s12665-013-2736-x
    [54] Yahiaoui I, Douaoui A, Zhang Q et al., 2015. Soil salinity predic-tion in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. Journal of Arid Land, 7(6):794-805. doi: 10.1007/s40333-015-0053-9
    [55] Yang Q Y, Jiang Z C, Li W J et al., 2014. Prediction of soil organic matter in peak-cluster depression region using kriging and terrain indices. Soil and Tillage Research, 144:126-132. doi: 10.1016/j.still.2014.07.011
    [56] Ye H C, Huang W J, Huang S Y et al., 2017. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spatial Statistics, 20:76-91. doi: 10.1016/j.spasta.2017.02.001
    [57] Ye H C, Huang Y F, Chen P F et al., 2016. Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing. Journal of Integrative Ag-riculture, 15(4):918-928. doi:10.1016/S2095-3119(15) 61066-8
    [58] Yu J B, Li Y Z, Han G X et al., 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 72(2):589-599. doi: 10.1007/s12665-013-2980-0
    [59] Yu S H, Liu J T, Eneji A E et al., 2015. Spatial Variability of Soil Salinity under Subsurface Drainage. Communications in Soil Science and Plant Analysis, 46(2):259-270. doi: 10.1080/00103624.2014.967863
    [60] Zhang F, Tiyip T, Ding J L et al., 2009. The effects of the chemical components of soil salinity on electrical conductivity in the region of the Delta Oasis of Weigan and Kuqa Rivers. Agri-cultural Sciences in China, 8(8):985-993. doi: 10.1016/S1671-2927(08)60304-1
    [61] Zhang S W, Huang Y F, Shen C Y et al., 2012. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma, 171:35-43. doi: 10.1016/j.geoderma.2011.07.012
    [62] Zhang S W, Shen C Y, Chen X Y et al., 2013. Spatial interpolation of soil texture using compositional kriging and regression kriging with consideration of the characteristics of composi-tional data and environment variables. Journal of Integrative Agriculture, 12(9):1673-1683. doi:10.1016/S2095-3119(13) 60395-0
    [63] Zhao Y, Feng Q, Yang H D, 2016. Soil salinity distribution and its relationship with soil particle size in the lower reaches of Heihe River, Northwestern China. Environmental Earth Sciences, 75(9):1-18. doi: 10.1007/s12665-016-5603-8
    [64] Zhao Z Y, Yang Q, Benoy G et al., 2010. Using artificial neural network models to produce soil organic carbon content distri-bution maps across landscapes. Canadian Journal of Soil Sci-ence, 90(1):75-87. doi: 10.4141/CJSS08057
    [65] Zhu A X, 2000. Mapping soil landscape as spatial continua:the neural network approach. Water Resources Research, 36(3):663-677. doi: 10.1016/S1671-2927(08)60349-1
    [66] Zou P, Yang J S, Fu J R et al., 2010. Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97(12):2009-2019. doi: 10.1016/j.agwat.2010.02.011
  • [1] Tian HE, Fuyuan LIU, Ao WANG, Zhanbo FEI.  Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China . Chinese Geographical Science, 2023, 33(4): 751-763. doi: 10.1007/s11769-023-1370-0
    [2] LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin.  Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China . Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
    [3] YANG Qian, SONG Kaishan, HAO Xiaohua, CHEN Shengbo, ZHU Bingxue.  An Assessment of Snow Cover Duration Variability Among Three Basins of Songhua River in Northeast China Using Binary Decision Tree . Chinese Geographical Science, 2018, 28(6): 946-956. doi: 10.1007/s11769-018-1004-0
    [4] JIA Yanqing, ZHANG Bo, MA Bin.  Daily SPEI Reveals Long-term Change in Drought Characteristics in Southwest China . Chinese Geographical Science, 2018, 28(4): 680-693. doi: 10.1007/s11769-018-0973-3
    [5] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [6] QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing.  Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China . Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
    [7] SUN Guojun, LI Weihong, ZHU Chenggang, CHEN Yaning.  Spatial Variability of Soil Carbon to Nitrogen Ratio and Its Driving Factors in Ili River Valley, Xinjiang, Northwest China . Chinese Geographical Science, 2017, 27(4): 529-538. doi: 10.1007/s11769-017-0885-7
    [8] YAN Fengqin, LIU Xingtu, CHEN Jing, YU Lingxue, YANG Chaobin, CHANG Liping, YANG Jiuchun, ZHANG Shuwen.  China's Wetland Databases Based on Remote Sensing Technology . Chinese Geographical Science, 2017, 27(3): 374-388. doi: 10.1007/s11769-017-0872-z
    [9] ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei.  Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea . Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6
    [10] WANG Fei, CHEN Xi, LUO Geping, HAN Qifei.  Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management . Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
    [11] YANG Lin, HUANG Chong, LIU Gaohuan, LIU Jing, ZHU A-Xing.  Mapping Soil Salinity Using a Similarity-based Prediction Approach:A Case Study in Huanghe River Delta, China . Chinese Geographical Science, 2015, 25(3): 283-294. doi: 10.1007/s11769-015-0740-7
    [12] Sven Grashey-Jansen, Martin Kuba, Bernd Cyffka, Ümüt Halik, Tayierjiang Aishan.  Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China . Chinese Geographical Science, 2014, 0(6): 647-657. doi: 10.1007/s11769-014-0717-y
    [13] MAO Kebiao, MA Ying, XIA Lang, SHEN Xinyi, SUN Zhiwen, HE Tianjue, ZHOU Guanhua.  A Neural Network Method for Monitoring Snowstorm:A Case Study in Southern China . Chinese Geographical Science, 2014, 0(5): 599-606. doi: 10.1007/s11769-014-0675-4
    [14] TAN Minghong, Guy M ROBINSON, LI Xiubin, XIN Liangjie.  Spatial and Temporal Variability of Farm Size in China in Context of Rapid Urbanization . Chinese Geographical Science, 2013, 23(5): 607-619. doi: 10.1007/s11769-013-0610-0
    [15] YANG Fei Zhu Yunqiang Zhang Jiahua YAO Zuofang.  Estimating Fraction of Photosynthetically Active Radiation of Corn with Vegetation Indices and Neural Network from Hyperspectral Data . Chinese Geographical Science, 2012, 22(1): 63-74.
    [16] MO Minghao, WANG Xuelei, WU Houjian, CAI Shuming, Xiaoyang ZHANG, WANG Huiliang.  Ecosystem Health Assessment of Honghu Lake Wetland of China Using Artificial Neural Network Approach . Chinese Geographical Science, 2009, 19(4): 349-356. doi: 10.1007/s11769-009-0349-9
    [17] FU Xiaoyang, P E R Dale, ZHANG Shuqing.  Evolving Neural Network Using Variable String Genetic Algorithm for Color Infrared Aerial Image Classification . Chinese Geographical Science, 2008, 18(2): 162-170. doi: 10.1007/s11769-008-0162-x
    [18] SHI Chun, Philip JAMES, GUO Zhong-yang.  APPLICATION OF ARTIFICIAL NEURAL NETWORK IN COMPLEX SYSTEMS OF REGIONAL SUSTAINABLE DEVELOPMENT . Chinese Geographical Science, 2004, 14(1): 1-8.
    [19] Hamadoun BOKAR, TANG Jie, LIN Nian-feng.  GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY,CHINA . Chinese Geographical Science, 2004, 14(1): 63-70.
    [20] 黄万华, 郭玉萧, 李宏伟.  NATURAL RESOURCES AND ECO-ENVIRONMENT MAPPING IN HENAN,CHINA . Chinese Geographical Science, 1995, 5(4): 374-382.
  • 加载中
计量
  • 文章访问数:  331
  • HTML全文浏览量:  36
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 刊出日期:  2019-04-01

Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network

doi: 10.1007/s11769-019-1027-1
    基金项目:  Under the auspices of the National Natural Science Foundation of China (No. 41571217), the National Key Research and Development Program of China (No. 2016YFD0300801)
    通讯作者: HUANG Yuanfang.E-mail:yfhuang@cau.edu.cn

摘要: Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network (OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths (0-30 and 30-50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging (OK), back-propagation network (BP) and regression kriging (RK) were used in comparison analysis; the root mean square error (RMSE), relative improvement (RI) and the decrease in estimation imprecision (DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods (i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy.

English Abstract

HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. 中国地理科学, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
引用本文: HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. 中国地理科学, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
Citation: HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network[J]. Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
参考文献 (66)

目录

    /

    返回文章
    返回