留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils

WANG Dandan YAN Yechao LI Xinhui SHI Xuezheng ZHANG Zhongqi David C WEINDORF WANG Hongjie XU Shengxiang

WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. 中国地理科学, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
引用本文: WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. 中国地理科学, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
Citation: WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8

Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils

doi: 10.1007/s11769-017-0868-8
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41301242, 41201213), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05050509)
详细信息
    通讯作者:

    SHI Xuezheng. E-mail: xzshi@issas.ac.cn

Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils

Funds: Under the auspices of National Natural Science Foundation of China (No. 41301242, 41201213), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05050509)
More Information
    Corresponding author: SHI Xuezheng. E-mail: xzshi@issas.ac.cn
  • 摘要: Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.
  • [1] Alvarez R, Lavado R S, 1998. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma, 83: 127-141. doi:  10.1016/S0016-7061(97)00141-9
    [2] Álvaro-Fuentes J, Easter M, Paustian K, 2012. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agriculture, Ecosystems & Environment, 155: 87-94. doi:  10.1016/j.agee.2012.04.001
    [3] Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47: 151-163. doi:  10.1111/j.1365-2389.1996.tb01386.x
    [4] Bradford M A, Davies C A, Frey S D et al., 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11: 1316-1327. doi: 10.1111/j.1461-0248. 2008.01251.x
    [5] Brye K R, McMullen R L, Silveira M L et al., 2016. Environmental controls on soil respiration across a southern US climate gradient: a meta-analysis. Geoderma Regional, 7: 110-119. doi:  10.1016/j.geodrs.2016.02.005
    [6] Chen L F, He Z B, Du J et al., 2016a. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena, 137: 37-43. doi:  10.1016/j.catena.2015.08.017
    [7] Chen S, Xu C, Yan J et al., 2016b. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China. Agriculture, Ecosystems & Environment, 223: 261-269. doi:  10.1016/j.agee.2016.03.009
    [8] Dai W H, Huang Y, 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena, 65: 87-94. doi:  10.1016/j.catena.2005.10.006
    [9] Eswaran H, Berg E V D, Reich P, 1993. Organic carbon in soil of the world. Soil Science Society of America Journal, 57: 192-194.
    [10] Fantappiè M, L'Abate G, Costantini E A C, 2011. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphology, 135: 343-352. doi: 10.1016/j. geomorph.2011.02.006
    [11] FAO (Food and Agriculture Organization of the United Nations), 2008. Statistical Database of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx2008
    [12] Farina R, Seddaiu G, Orsini R et al., 2011. Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. Soil and Tillage Research, 112: 36-46. doi: 10.1016/j.still. 2010.11.002
    [13] Ganuza A, Almendros G, 2003. Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biology and Fertility of Soils, 37: 154-162. doi:  10.1007/s00374-003-0579-4
    [14] Gong Zitong. 1999. Chinese Soil Taxonomic Classification. Beijing: Science Press. (in Chinese)
    [15] Hamdi S, Chevallier T, Ben Aïssa N et al., 2011. Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures. Soil Biology and Biochemistry, 43: 1752-1758. doi: 10.1016/j. soilbio.2010.05.025
    [16] Haque M M, Kim S Y, Kim G W et al., 2015. Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agriculture, Ecosystems & Environment, 207: 119-125. doi:  10.1016/j.agee.2015.03.022
    [17] He N P, Wang R M, Zhang Y H et al., 2014. Carbon and nitrogen storage in Inner Mongolian grasslands: relationships with climate and soil texture. Pedosphere, 24: 391-398. doi:  10.1016/S1002-0160(14)60025-4
    [18] Hok L, de Moraes Sá J C, Boulakia S et al., 2015. Short-term conservation agriculture and biomass-C input impacts on soil C dynamics in a savanna ecosystem in Cambodia. Agriculture, Ecosystems & Environment, 214: 54-67. doi: 10.1016/j.agee. 2015.08.013
    [19] Homann P S, Sollins P, Chappell H N et al., 1995. Soil organic carbon in a mountainous, forested region: relation to site characteristics Soil Science Society of America Journal, 59: 1468-1475. doi:  10.2136/sssaj1995.03615995005900050037x
    [20] Hontoria C, Rodríguez-Murillo J C, Saa A, 1999. Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Science Society of America Journal, 63: 614-621. doi:  10.2136/sssaj1999.03615995006300030026x
    [21] IPCC. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge, UK: Cambridge University Press.
    [22] IUSS Working Group WRB, 2007. World reference base for soil resources 2006, First update 2007. Soil Resources Reports No. 103. Rome: FAO.
    [23] Kibet L C, Blanco-Canqui H, Jasa P, 2016. Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll. Soil and Tillage Research, 155: 78-84. doi:  10.1016/j.still.2015.05.006
    [24] Kirschbaum M U F, 2006. The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biology and Biochemistry, 38: 2510-2518. doi: 10.1016/j. soilbio.2006.01.030
    [25] Kruse J, Simon J, Rennenberg H, 2013. Chapter 7 - Soil respiration and soil organic matter decomposition in response to climate change. In: Matyssek R et al. (eds.). Developments in Environmental Science. Elsevier, 131-149.
    [26] Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1-22. doi:  10.1016/j.geoderma.2004.01.032
    [27] Lal R, Kimble J M, Levine E et al., 1995. World soils and greenhouse effect: An overview. In: Lal R et al. (eds.). Soils and Global Change. Boca Raton, FL: CRC Press, 1-8.
    [28] Lassaletta L, Aguilera E, 2015. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014). Journal of Environmental Management, 153: 48-49. doi:  10.1016/j.jenvman.2015.01.038
    [29] Li Qingqui. 1992. Paddy Soil of China. Beijing: Science Press. (in Chinese)
    [30] Liu Q H, Shi X Z, Weindorf D C et al., 2006. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration. Global Biogeochemical Cycles, 20: GB3024. doi: 10.1029/2006GB 002731
    [31] Longbottom T L, Townsend-Small A, Owen L A et al., 2014. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle-climate change feedbacks. Catena, 119: 125-135. doi:  10.1016/j.catena.2014.03.002
    [32] Martin D, Lal T, Sachdev C et al., 2010. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agriculture, Ecosystems & Environment, 138: 64-73. doi:  10.1016/j.agee.2010.04.001
    [33] Melillo J M, McGuire A D, Kicklighter D W et al., 1993. Global climate change and terrestrial net primary production. Nature, 363: 234-240. doi:  10.1038/363234a0
    [34] Muñoz-Rojas M, Doro L, Ledda L et al., 2015. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agriculture, Ecosystems & Environment, 202: 8-16. doi:  10.1016/j.agee.2014.12.014
    [35] National Soil Survey Office, 1996. Soil Species of ChinaⅠ-Ⅵ. Beijing: China Agriculture Press. (in Chinese)
    [36] Office for the Second National Soil Survey of China. 1995. Soil Map of People's Republic of China. Beijing: Mapping Press. (in Chinese)
    [37] Olsson A, Campana P E, Lind M et al., 2014. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands. Applied Energy, 136: 1145-1154. doi: 10.1016/j. apenergy.2014.08.025
    [38] Page A L, Miller R H, Keeney D R, 1982. Methods of Soil Analysis Part 2-Chemical and Microbiological Properties. 2nd edn. ASA, Madison.
    [39] Pan G X, Li L Q, Wu L S et al., 2003. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 10: 79-92. doi: 10.1111/j.1365-2486. 2003.00717.x
    [40] Pinheiro É F M, de Campos D V B, de Carvalho Balieiro F et al., 2015. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems, 132: 35-39. doi:  10.1016/j.agsy.2014.08.008
    [41] Qin Falyu, Shi Xuezheng, Xu Shengxiang et al., 2016. Zonal differences in correlation patterns between soil organic carbon and climate factors at multi-extent. Chinese Geographical Science, 26(5): 670-678. doi:  10.1007/s11769-015-0736-3
    [42] Routh J, Hugelius G, Kuhry P et al., 2014. Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chemical Geology, 368: 104-117. doi: 10.1016/j. chemgeo.2013.12.022
    [43] Shi X Z, Yang R W, Weindorf D C et al., 2010a. Simulation of organic carbon dynamics at regional scale for paddy soils in China. Climatic Change, 102: 579-593. doi: 10.1007/s10584- 009-9704-1
    [44] Shi X Z, Yu D S, Warner E D et al., 2006a. Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Science Society of American Journal, 70: 78-83. doi:  10.2136/sssaj2004.0318
    [45] Shi X Z, Yu D S, Xu S X et al., 2010b. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma, 155: 344-350. doi: 10.1016/j.geoderma. 2009.12.017
    [46] Shi X Z, Yu D S, Yang G X et al., 2006b. Cross-reference benchmarks for translating the Genetic Soil Classification of China into the Chinese Soil Taxonomy. Pedosphere, 16: 147-153. doi:  10.1016/S1002-0160(06)60037-4
    [47] Sollins P, Homann P, Caldwell B A, 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74: 65-105. doi:  10.1016/S0016-7061(96)00036-5
    [48] Sommer R, and Bossio D, 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management, 144: 83-87. doi: 10. 1016/j.jenvman.2014.05.017
    [49] Spain A V, 1990. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Australian Journal of Soil Research, 28: 825-839. doi:  10.1071/SR9900825
    [50] Thomson A M, Izaurralde R C, Rosenberg N J et al., 2006. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, Ecosystems & Environment, 114: 195-209. doi: 10.1016/j. agee.2005.11.001
    [51] Toriyama J, Hak M, Imaya A et al., 2015. Effects of forest type and environmental factors on the soil organic carbon pool and its density fractions in a seasonally dry tropical forest. Forest Ecology and Management, 335: 147-155. doi: 10.1016/j. foreco.2014.09.037
    [52] Wagai R, Mayer L M, Kitayama K et al., 2008. Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach. Geoderma, 147: 23-33. doi:  10.1016/j.geoderma.2008.07.010
    [53] Wan Y, Lin E, Xiong W et al., 2011. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems & Environment, 141: 23-31. doi: 10.1016/j.agee.2011.02.004
    [54] Wang D D, Shi X Z, Lu X X et al., 2010a. Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 154: 302-310. doi:  10.1016/j.geoderma.2009.10.018
    [55] Wang D D, Shi X Z, Wang H J et al., 2010b. Scale effect of climate and texture on soil organic carbon in the uplands of Northeast China. Pedosphere, 20: 525-535. doi: 10.1016/ S1002-0160(10)60042-2
    [56] Wang D D, Shi X Z, Wang H J et al., 2010c. Scale effect of Climate on soil organic carbon in the uplands of Northeast China. Journal of Soils and Sediments, 10: 1007-1017. doi: 10.1007/ s11368-009-0129-2
    [57] Wang G, Zhang L, Zhuang Q et al., 2016. Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China. Soil and Tillage Research, 155: 95-106. doi: 10.1016/ j.still.2015.08.003
    [58] Wang M Y, Shi X Z, Yu D S et al., 2013. Regional differences in the effect of climate and soil texture on soil organic carbon. Pedosphere, 23: 799-807. doi:  10.1016/S1002-0160(13)60071-5
    [59] Wang S Q, Yu G R, Zhao Q J et al., 2005. Spatial characteristics of soil organic carbon storage in China's croplands. Pedosphere, 15: 417-423.
    [60] Wang Z, Liu G B, Xu M X et al., 2012. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99: 26-33. doi:  10.1016/j.catena.2012.07.003
    [61] Wiesmeier M, Hübner R, Barthold F et al., 2013. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agriculture, Ecosystems & Environment, 176: 39-52. doi:  10.1016/j.agee.2013.05.012
    [62] Xiong X, Grunwald S, Myers D B et al., 2014. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Science of the Total Environment, 493: 974-982. doi:  10.1016/j.scitotenv.2014.06.088
    [63] Xu S, Shi X, Zhao Y et al., 2011. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980-2050. Geoderma, 166: 206-213. doi: 10.1016/j. geoderma.2011.08.002
    [64] Xu Xinwang, Pan Genxing, 2005. The progress in the carbon cycle researches in paddy soil in China. Ecology and Environment, 14: 961-966. (in Chinese)
    [65] Zeng X, Zhang W, Shen H et al., 2014. Soil respiration response in different vegetation types at Mount Taihang, China. Catena, 116: 78-85. doi:  10.1016/j.catena.2013.12.018
    [66] Zhang Jiacheng, 1991. Climate of China. Beijing: China Meteorological Press. (in Chinese)
    [67] Zhao Y, Shi X, Weindorf D C et al., 2006. Map scale effects on soil organic carbon stock estimation in North China. Soil Science Society of American Journal, 70: 1377-1386. doi: 10. 2136/sssaj2004.0165
    [68] Zheng G, Jiao C, Zhou S et al., 2016. Analysis of soil chronosequence studies using reflectance spectroscopy. International Journal of Remote Sensing, 37: 1881-1901. doi:  10.1080/01431161.2016.1163751
    [69] Zheng Z M, Yu G R, Fu Y L et al., 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biology and Biochemistry, 41: 1531-1540. doi:  10.1016/j.soilbio.2009.04.013
  • [1] HE Binbin, SHENG Yu, CAO Wei, WU Jichun.  Characteristics of Climate Change in Northern Xinjiang in 1961-2017, China . Chinese Geographical Science, 2020, 30(2): 249-265. doi: 10.1007/s11769-020-1104-5
    [2] KANG Meimei, ZHAO Wenwu, JIA Lizhi, LIU Yanxu.  Balancing Carbon Emission Reductions and Social Economic Development for Sustainable Development: Experience from 24 Countries . Chinese Geographical Science, 2020, 30(3): 379-396. doi: 10.1007/s11769-020-1117-0
    [3] MUKHERJEE Nabanita, SIDDIQUE Giyasuddin, BASAK Aritra, ROY Arindam, MANDAL Mehedi Hasan.  Climate Change and Livelihood Vulnerability of the Local Population on Sagar Island, India . Chinese Geographical Science, 2019, 20(3): 417-436. doi: 10.1007/s11769-019-1042-2
    [4] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [5] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [6] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [7] WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li.  Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China . Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
    [8] QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin.  Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China . Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
    [9] ZHANG Dan, ZHENG Haifeng, REN Zhibin, ZHAI Chang, SHEN Guoqiang, MAO Zhixia, WANG Peijiang, HE Xingyuan.  Effects of Forest Type and Urbanization on Carbon Storage of Urban Forests in Changchun, Northeast China . Chinese Geographical Science, 2015, 25(2): 147-158. doi: 10.1007/s11769-015-0743-4
    [10] ZHANG Yubin, CAO Ning, XU Xiaohong, ZHANG Feng, YAN Fei, ZHANG Xinsheng, TANG Xinlong.  Relationship Between Soil and Water Conservation Practices and Soil Conditions in Low Mountain and Hilly Region of Northeast China . Chinese Geographical Science, 2014, 0(2): 147-162. doi: 10.1007/s11769-013-0620-y
    [11] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [12] GONG Huili, MENG Dan, LI Xiaojuan, ZHU Feng.  Soil Degradation and Food Security Coupled with Global Climate Change in Northeastern China . Chinese Geographical Science, 2013, 23(5): 562-573. doi: 10.1007/s11769-013-0626-5
    [13] GONG Yanming, HU Yukun, FANG Fei, et al..  Carbon Storage and Vertical Distribution in Three Shrubland Communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China . Chinese Geographical Science, 2012, 22(5): 541-549.
    [14] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [15] ZHAO Junfang YAN Xiaodong JIA Gensuo.  Simulating the net carbon budget of forest ecosystems and its response to climate change in Northeast China using the improved forest carbon budget model FORCCHN . Chinese Geographical Science, 2012, 22(1): 29-41.
    [16] FU Yao, LIN Changcun, MA Jianjun, ZHU Tingcheng.  Effects of Plant Types on Physico-chemical Properties of Reclaimed Mining Soil in Inner Mongolia, China . Chinese Geographical Science, 2010, 20(4): 309-317. doi: 10.1007/s11769-010-0403-7
    [17] XU Jianhua, CHEN Yaning, LI Weihong, JI Minhe, DONG Shan, HONG Yulian.  Wavelet Analysis and Nonparametric Test for Climate Change in Tarim River Basin of Xinjiang During 1959-2006 . Chinese Geographical Science, 2009, 19(4): 306-313. doi: 10.1007/s11769-009-0306-7
    [18] ZHANG Yuehong, WU Shaohong, DAI Erfu, LIU Dengwei, YIN Yunhe.  Identification and Categorization of Climate Change Risks . Chinese Geographical Science, 2008, 18(3): 268-275. doi: 10.1007/s11769-008-0268-1
    [19] CHENG Shu-lan, OUYANG Hua, NIU Hai-shan, WANG Lin, ZHANG Feng, GAO Jun-qin, TIAN Yu-qiang.  SPATIAL AND TEMPORAL DYNAMICS OF SOIL ORGANIC CARBON IN RESERVED DESERTIFICATION AREA——A Case Study in Yulin City, Shaanxi Province, China . Chinese Geographical Science, 2004, 14(3): 245-250.
    [20] 蔡运龙.  VULNERABILITY AND ADAPTATION OF CHINESE AGRICULTURE TO GLOBAL CLIMATE CHANGE . Chinese Geographical Science, 1997, 7(4): 289-301.
  • 加载中
计量
  • 文章访问数:  425
  • HTML全文浏览量:  10
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 修回日期:  2016-08-15
  • 刊出日期:  2017-06-27

Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils

doi: 10.1007/s11769-017-0868-8
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41301242, 41201213), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05050509)
    通讯作者: SHI Xuezheng. E-mail: xzshi@issas.ac.cn

摘要: Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.

English Abstract

WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. 中国地理科学, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
引用本文: WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. 中国地理科学, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
Citation: WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils[J]. Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
参考文献 (69)

目录

    /

    返回文章
    返回