留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols

SUI Yueyu JIAO Xiaoguang CHEN Wenting LIU Xiaobing ZHANG Xingyi DING Guangwei

SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. 中国地理科学, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
引用本文: SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. 中国地理科学, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. Chinese Geographical Science, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
Citation: SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. Chinese Geographical Science, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0

Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols

doi: 10.1007/s11769-013-0639-0
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41271313, 41172229, 41071171), Harbin Bureau of Science and Technology for Outstanding Scientist (No. 2010FXYN044)
详细信息
    通讯作者:

    LIU Xiaobing. E-mail: liuxb@neigae.ac.cn

Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols

Funds: Under the auspices of National Natural Science Foundation of China (No. 41271313, 41172229, 41071171), Harbin Bureau of Science and Technology for Outstanding Scientist (No. 2010FXYN044)
More Information
    Corresponding author: LIU Xiaobing. E-mail: liuxb@neigae.ac.cn
  • 摘要: Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20-and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents decreased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27%-57%, 37%-47%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p < 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.
  • [1] Anderson J P E, Domsch K H, 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10(3): 215-221. doi:  10.1016/0038-0717(78)90099-8
    [2] Besnard E, Chenu C, Balesdent J et al., 1996. Fate of particulate organic matter in soil aggregates during cultivation. European Journal of Soil Science, 47(4): 495-503. doi:  10.1111/j.1365-2389.1996.tb01849.x
    [3] Blair G J, Lefroy R D B, Lisle L, 1995. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7): 1459-1466. doi:  10.1071/AR9951459
    [4] Camberdella C A, Elliott E T, 1992. Particulate soil organic matter across a grassland cultivation sequence. Soil Science Society of America Journal, 56(3): 777-783. doi: 10.2136/sssaj 1992.03615995005600030017x
    [5] Cambardella C A, Elliott E T, 1993. Methods for physical separa-tion and characterization of soil organic matter fractions. Geoderma, 56(1-4): 449-457. doi:  10.1016/0016-7061(93)90126-6
    [6] Chen H Q, Billen N, Stahr K et al., 2007. Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types. Soil and Tillage Research, 96(1-2): 114-123. doi: 10.1016/j.still. 2007.04.004
    [7] Christensen H, Christensen S, 1995. 3H thymidine incorporation technique to determine soil bacterial growth rate. In: Alef K et al. (eds.). Methods in Applied Soil Microbiology and Bio-chemistry. London: Academic Press, 258-261.
    [8] Collins H P, Paul E A, Paustian K et al., 1997. Characterization of soil organic carbon relative to its stability and turnover. In: Paul E A et al. (eds.). Soil Organic Matter in Temperate Agro-ecosystems, Long-term Experiments in North America. Boca Raton, FL: CRC Press, 51-72.
    [9] Ding G, Liu X B, Herbert S et al., 2006. Effect of cover crop management on soil organic matter. Geoderma, 130(3-4): 229-239. doi:  10.1016/j.geoderma.2005.01.019
    [10] Fang Huajun, Yang Xueming, Zhang Xiaoping et al., 2005. Profile distribution of organic carbon and δ13C in a black soil at a sloping field. Acta Pedologica Sinica, 42(6): 957-964. (in Chinese)
    [11] Feller C, Beare M H, 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma, 79(1-4): 69-116. doi:  10.1016/S0016-7061(97)00039-6
    [12] Franzluebbers A J, Stuedemann J A, 2002. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont. Environmental Pollution, 116(Supp. 1): 53-62. doi:  10.1016/S0269-7491(01)00247-0
    [13] Ghani A, Dexter M, Perrott K W, 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining im-pacts of fertilization, grazing and cultivation. Soil Biology and Biochemistry, 35(9): 1231-1243. doi: 10.1016/S0038-0717(03) 00186-X
    [14] Gregorich E G, Ellert B H, 1993. Light fraction and macroorganic matter in mineral soils. In: Carter M R. (ed.). Soil Sampling and Methods of Analysis. Boca Raton: Canadian Society of Soil Science, 397-407.
    [15] Gregorich E G, Monreal C M, Schnitzer M et al., 1996. Trans-formation of plant residues into soil organic matter: Chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Science, 161(10): 680-693.
    [16] Harris D, Paul E A, 1994. Measurement of microbial growth rates in soil. Applied Soil Ecology, 1(4): 227-290. doi:  10.1016/0929-1393(94)90005-1
    [17] Haynes R J, Francis G S, 1993. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field con-ditions. Journal of Soil Science, 44(4): 665-675. doi:  10.1111/j.1365-2389.1993.tb02331.x
    [18] Janzen H H, Campbell C A, Brandt S A et al., 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56(6): 1799-1806. doi:  10.2136/sssaj1992.03615995005600060025x
    [19] Jenkinson D S, Powlson D S, 1976. The effects of biocidal treat-ment on metabolism in soil-V. A method for measuring soil biomass. Soil Biology & Biochemistry, 8(3): 209-213. doi:  10.1016/0038-0717(76)90005-5
    [20] Liang Aizhen, Zhang Xiaoping, Yang Xueming et al., 2010. Dy-namics of soil particulate organic carbon and mineral-incor-porated organic carbon in black soil in Northeast China. Acta Pedologica Sinica, 47(1):153-158. (in Chinese)
    [21] Marriott E E, Wander M M, 2006. Total and labile soil organic matter in organic and conventional faming systems. Soil Science Society of America Journal, 70(3): 950-959. doi:  10.2136/sssaj2005.0241
    [22] Mtambanengwe F, Mapfumo P, 2008. Smallholder farmer man-agement impacts on particulate and labile carbon fractions of granitic sandy soils in Zimbabwe. Nutrient Cycling in Agroe-cosystems, 81(1): 1-15. doi:  10.1007/s10705-007-9136-0
    [23] Parton W J, Schimel D S, Cole C V et al., 1987. Analysis of fac-tors controlling soil organic matter levels in the Great Plains grasslands. Soil Science Society of America Journal, 51(5): 1173-1179. doi:  10.2136/sssaj1987.03615995005100050015x
    [24] Paul E A, Follett R F, Leavitt S W et al., 1997. Radiocarbon dating for determination of soil organic matter pool sizes and dy-namics. Soil Science Society of America Journal, 61(4): 1058-1067. doi:  10.2136/sssaj1997.03615995006100040011x
    [25] Powlson D S, Brooks P C, Christensen B T, 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19(2): 159-164.
    [26] Saggar S, Hedley C B, Giddens K M et al., 2000. Influence of soil phosphorus status and nitrogen addition on carbon mine-ralisation from 14C-labelled glucose in pasture soils. Biology and Fertility of Soils, 32(3): 209-216. doi: 10.1007/s0037 40000237
    [27] Saviozzi A, Levi-Minzi R, Cardelli R et al., 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and Soil, 233(2): 251-259. doi: 10.1023/A: 1010526209076
    [28] Sollins P, Homman P, Caldwell B A, 1996. Stabilization and des-tabilization of soil organic matter: Mechanisms and controls. Geoderma, 74(1-2): 65-105. doi: 10.1016/s0016-7061(96) 00036-5
    [29] Stevenson F J, 1994. Humus Chemistry: Genesis, Composition, Reaction (2nd ed.). New York: Wiley, 496.
    [30] Sui Y Y, Liu X B, Jin J et al., 2009. Differentiating the early im-pacts of topsoil removal and soil amendments on crop perfor-mance/productivity of corn and soybean in eroded farmland of Chinese Mollisols. Field Crops Research, 111(3): 276-283. doi:  10.1016/j.fcr.2009.01.005
    [31] Tan Z, Lal R, Owens L et al., 2007. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil & Tillage Research, 92(1-2): 53-59. doi:  10.1016/j.still.2006.01.003
    [32] Vance E D, Brooks P C, Jenkinson D S, 1987. An extraction me-thod for measure soil microbial biomass C. Soil Biology & Biochemistry, 19(6): 703-707. doi: 10.1016/0038-0717(87) 90052-6
    [33] Wander M M, Traina S J, 1996. Organic matter fractions from organically and conventionally managed soils. 1. Carbon and nitrogen distribution. Soil Science Society of America Journal, 60(4): 1081-1087. doi: 10.2136/sssaj1996.036159950060000 40017x
    [34] Whalen J K, Bottomley P J, Myrold D D, 2000. Carbon and ni-trogen mineralization from light-and heavy fraction additions to soil. Soil Biology and Biochemistry, 32(10): 1345-1352. doi:  10.1016/S0038-0717(00)00040-7
    [35] Wu Jianguo, Zhang Xiaoquan, Xu Deying, 2004. The minera-lization of soil organic carbon under different land uses in the Liupan mountain forest zone. Acta Phytoecologica Sinica, 28(4): 530-538. (in Chinese)
    [36] Xu Minggang, Yu Rong, Sun Xiaofeng et al., 2006. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 12(4): 459-465. (in Chinese)
    [37] Yang X M, Zhang X P, Fang H J, 2003. Long-term effects of fer-tilization on soil organic carbon changes in continuous corn of Northeast China: Roth C model simulations. Environmental Management, 32(5): 459-465. doi:  10.1002/jpln.201000134
    [38] Yang X Y, Ren W D, Sun B H et al., 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 177-178: 49-56. doi:  10.1016/j.geoderma.2012.01.033
  • [1] Tingting YANG, Musa ALA, Dexin GUAN, Anzhi WANG.  The Effects of Groundwater Depth on the Soil Evaporation in Horqin Sandy Land, China . Chinese Geographical Science, 2021, 31(4): 727-734. doi: 10.1007/s11769-021-1220-x
    [2] Le CHEN, Meijun XI, Wanfu JIN, Ya HU.  Spatial Pattern of Long-term Residence in the Urban Floating Population of China and its Influencing Factors . Chinese Geographical Science, 2021, 31(2): 342-358. doi: 10.1007/s11769-021-1193-9
    [3] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [4] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [5] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [6] WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang.  Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils . Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
    [7] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [8] YANG Jiuchun, ZHANG Shuwen, CHANG Liping, LI Fei, LI Tianqi, GAO Yan.  Gully Erosion Regionalization of Black Soil Area in Northeastern China . Chinese Geographical Science, 2017, 27(1): 78-87. doi: 10.1007/s11769-017-0848-z
    [9] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [10] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [11] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [12] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [13] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [14] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [15] LIU Yong, WANG Cheng, YUE Wenze, HU Yanyan.  Storage and Density of Soil Organic Carbon in Urban Topsoil of Hilly Cities: A Case Study of Chongqing Municipality of China . Chinese Geographical Science, 2013, 23(1): 26-34.
    [16] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [17] DUAN Xingwu, XIE Yun, LIU Gang, GAO Xiaofei, LU Hongmei.  Field Capacity in Black Soil Region, Northeast China . Chinese Geographical Science, 2010, 20(5): 406-413. doi: 10.1007/s11769-010-0414-4
    [18] ZHANG Guilan.  Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province . Chinese Geographical Science, 2010, 20(2): 139-143. doi: 10.1007/s11769-010-0139-4
    [19] CAO Huicong, WANG Jinda, ZHANG Xuelin.  Ecotoxicity of Cadmium to Maize and Soybean Seedling in Black Soil . Chinese Geographical Science, 2007, 17(3): 270-274. doi: 10.1007/s11769-007-0270-z
    [20] CHENG Shu-lan, OUYANG Hua, NIU Hai-shan, WANG Lin, ZHANG Feng, GAO Jun-qin, TIAN Yu-qiang.  SPATIAL AND TEMPORAL DYNAMICS OF SOIL ORGANIC CARBON IN RESERVED DESERTIFICATION AREA——A Case Study in Yulin City, Shaanxi Province, China . Chinese Geographical Science, 2004, 14(3): 245-250.
  • 加载中
计量
  • 文章访问数:  278
  • HTML全文浏览量:  14
  • PDF下载量:  1079
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-07
  • 修回日期:  2013-04-11
  • 刊出日期:  2013-11-10

Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols

doi: 10.1007/s11769-013-0639-0
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41271313, 41172229, 41071171), Harbin Bureau of Science and Technology for Outstanding Scientist (No. 2010FXYN044)
    通讯作者: LIU Xiaobing. E-mail: liuxb@neigae.ac.cn

摘要: Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20-and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents decreased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27%-57%, 37%-47%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p < 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.

English Abstract

SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. 中国地理科学, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
引用本文: SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. 中国地理科学, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. Chinese Geographical Science, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
Citation: SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols[J]. Chinese Geographical Science, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
参考文献 (38)

目录

    /

    返回文章
    返回