Approximate Solution for Mechanism of Thermally and Wind-driven Ocean Circulation

Approximate Solution for Mechanism of Thermally and Wind-driven Ocean Circulation

  • 摘要: The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.

     

    Abstract: The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.

     

/

返回文章
返回