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Abstract: Vegetation is an important factor linking the atmosphere, water, soil, and biological functions, and it plays a specific role in
the climate change response and sustainable development of regional economies. However, little information is available on vegetation
vulnerability and its driving mechanism. Therefore, studying temporal and spatial change characteristics of vegetation and their corres-
ponding mechanisms is important for assessing ecosystem stability and formulating ecological policies in the Kherlen River Basin. We
used Moderate-resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing images
from 2000 to 2020 to analyse temporal changes in NDVI with the autoregressive moving average model (ARMA) and the breaks for ad-
ditive season trend (BFAST) in the basin and to assess natural, anthropogenic and topographic factors with the Geodetector model. The
results show that: 1) the long NDVI time series remained stable in the Kherlen River Basin from 2000 to 2020, with a certain significant
mutation  period  from 2013  to  2017;  2)  the  coefficient  of  variation  (CV)  in  the  analysis  of  the  spatial  NDVI  was  generally  constant,
mainly at the level of 0.01–0.07, and the spatial NDVI change was minimally impacted by external interference; and 3) temperature and
precipitation are the key factors affecting the NDVI in the basin, and changes in local hydrothermal conditions directly affect the local
NDVI. The results of this study could provide a scientific basis for the effective protection of the ecological environment and will aid in
understanding the influence of vegetation change mechanisms and the corresponding factors.
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1　Introduction

Vegetation is the main body of the terrestrial ecosystem,
plays an important role in the material and energy cycles
of  the  atmosphere,  hydrosphere  and  biosphere  (Kim  et
al.,  2011; Eisavi  et  al.,  2015).  Additionally,  vegetation
effect on  carbon  sink  in  the  carbon  cycle  and  can  im-

prove  the  ecological  environment  to  a  certain  extent
(Gottfried  et  al.,  2012; Liu  et  al.,  2017a).  A vegetation
index can accurately  reflect  information about  land ve-
getation cover  and  are  commonly  employed  as  key  in-
dicators of land vegetation change. Furthermore, vegeta-
tion  indices  are  critical  for  researching  hydrological,
ecological,  and  climate  changes  (Goward  et  al.,  2002;
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Wang et al., 2012). When studying multiyear time series
of  vegetation cover,  the  characteristics  of  temporal  and
spatial  changes  in  vegetation  are  very  important.  The
ground  survey  vegetation  data  are  relatively  accurate
(Haughian  and  Burton,  2018; Mugnani  et  al.,  2019).
However, field surveys can be limited by national polit-
ics  and  regional,  economic,  and  other  uncontrollable
factors, so performing field surveys in a large area over
multiple periods  is  difficult.  To  overcome  this  short-
coming,  Earth  observation  remote  sensing  technology,
can  be  used  to  detect  target  objects  for  long  distance
(Nigam and Bhatnagar,  2018).  Because  remote  sensing
is characteristically multiplatform, multilevel, multitem-
poral, multiband, and low price, remote sensing images
can be  used to  monitor  surface  vegetation  cover  at  mi-
crospatial scales  and  different  time  scales,  thus  enhan-
cing local vegetation assessments (Oppenheimer, 1994).
From the perspective of vegetation change research, Al-
caraz-Segura  et  al.  (Alcaraz-Segura  et  al.,  2010)  used
Advanced Very High Resolution Radiometer (AVHRR)
sensor data  to  evaluate  trends  in  the  normalized  differ-
ence  vegetation  index  (NDVI)  from  1982–1999  in  the
Iberian  Peninsula  region  (Spain  and  Portugal).  Murray
et al. (2018) used satellite remote sensing to assess spa-
tial  and functional changes in ecosystems and provided
guidance  on  the  use  of  satellite  remote  sensing  data  in
ecosystem  risk  assessments.  Other  researchers  (Liu  et
al.,  2017b; Ahmed  and  Singh,  2020; Li  et  al.,  2021)
used  Moderate-resolution  Imaging  Spectroradiometer
(MODIS)  image  data  to  study  habitat  management
based on  local  multiyear  vegetation  coverage,  agricul-
tural  regional  management  and  vegetation  restoration
change data. Therefore, MODIS NDVI imagery has be-
come  the  main  data  source  for  researchers  to  conduct
relevant  vegetation monitoring in recent  years  (Beck et
al., 2006; Lunetta et al., 2010; Yao et al., 2012).

At present, most scholars use the NDVI to assess the
status  of  vegetation,  and  this  index  can  represent  the
temporal and spatial changes in vegetation. Many meth-
ods have  been  proposed  to  monitor  changes  in  vegeta-
tion growth. The main analytical methods include poly-
nomial fitting (Xu et al., 2019), empirical mode decom-
position (EEMD) (Ren et al., 2014) and neural network
prediction (Carpenter et al., 1999). However, in the tra-
ditional  linear  trend  fitting  algorithm,  the  residual  and
standard  deviation  can  not  fully  explain  the  results  of
linear fitting. These methods can be used to quickly es-

timate  the  trend  and  amplitude  of  NDVI  changes,  and
multiyear  interannual  NDVI  trends  often  ignore  some
details and sensitivity changes, which is insufficient for
studies  of  NDVI  time  series.  Moreover,  this  approach
makes  it  difficult  to  predict  future  trends.  Therefore,
some  researchers  have  studied  multiyear  trends  using
the autoregressive moving average (ARMA) to determ-
ine  the  significance  of  multiyear  time  series.  The
ARMA  model  can  self-adapt  to  long-term  time  series,
which is  useful  in  certain  applications.  A  strong  posit-
ive  correlation  exists  between  sequence  values  at  any
adjacent point in time. Moreover, the high-frequency in-
formation in short time series can be used to reflect dy-
namic changes in vegetation.

Currently,  some  researchers  use  Sen’s  slope  method
(Sen,  1968)  to  study  the  overall  trend  of  NDVI  time
series. However, this method can only be used to estim-
ate  the  NDVI,  and  it  is  not  sensitive  to  outliers  and
skewed  distributions;  moreover,  the  significance  of  the
slope is not considered. As a result, the results lack stat-
istical  significance.  Therefore,  some  researchers  have
combined  the  Mann-Kendall  test  (Shourov  and  Ishtiak,
2019)  and  Sen’s slope  method  to  evaluate  the  signific-
ance of the trends of interannual NDVI data (Gocic and
Trajkovic,  2013; da  Silva  et  al.,  2015).  This  approach
generates  more  information  than  the  traditional  trend
method.  However,  the  Mann-Kendall  test  and  Sen’s
slope  method  ignore  other  characteristics  and  sensitive
features  of  NDVI  time  series.  High-frequency  NDVI
time  series  can  reflect  the  entire  process  of  vegetation
change in a short  time interval  due to the diversity and
uncertainty of the data (Friedl et al., 1995; de Jong et al.,
2011; Ben  Abbes  et  al.,  2018).  Some  researchers  have
proposed novel approaches to vegetation change assess-
ment. For example, breaks for additive season and trend
(BFAST)  (Verbesselt  et  al.,  2010a)  and  vegetation
change  trackers  (Huang  et  al.,  2010)  can  be  used  to
monitor  long-term  time  series  of  vegetation  changes
(Forkel  et  al.,  2013).  The  BFAST  method  can  detect
seasonal  changes  in  the  vegetation  cycle  and  monitor
long-term NDVI trends (Eastman et al., 2013; Forkel et
al., 2015; Guo et al., 2021). Therefore, the internal cycle
change in NDVI time series can be effectively revealed
by comprehensively analysing the available detailed in-
formation.

In recent  years,  remote  sensing  research  on  vegeta-
tion changes and the corresponding influential factors in
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cross-border areas between China and Mongolia  at  dif-
ferent time scales. In particular, little is known about the
contribution  of  anthropogenic  activities  to  vegetation
changes  in  the  Kherlen  River  Basin;  such  information
plays  an  important  role  in  local  vegetation assessments
and economic development related to animal husbandry.
The  growth  and  degradation  of  vegetation  are  affected
by  both  natural  and  anthropogenic  factors  (Song  et  al.,
2020; Xu et al., 2020; Kang et al., 2021). Many studies
have  shown  that  the  relationship  between  a  vegetation
index  and  meteorological  factors  is  mainly  related  to
temperature and precipitation, that the selection of influ-
ential factors  is  inadequate,  and  that  changes  in  the  re-
sponses  of  different  types  of  vegetation  cover  can  lead
to deviations in the conclusions (Ren et al., 2016; Chen
et al., 2020). Furthermore, research on the impact of an-
thropogenic activities on vegetation is very limited. Re-
searchers  have  used  the  residual  analysis  method  to
quantify the impact of anthropogenic activities on over-
all vegetation  characteristics,  but  the  theoretical  for-
mula is relatively simple, and it is difficult to obtain ac-
curate results.  Moreover,  the  factors  that  influence  ve-
getation  are  complex  and  variable,  and  using  a  simple
nonlinear correlation fitting is inadequate. To obtain the
relative  driving  factors  of  NDVI  from  a  multivariable
perspective combined with climate, anthropogenic, land
type and  local  terrain  factor  data,  the  geodetector  ap-
proach  (Qiao  et  al.,  2019; Wang  et  al.,  2019)  can  be
used. With  continuous  changes  in  the  ecological  envir-
onment and land degradation, we selected the gross do-
mestic product  (GDP),  land  use  type,  number  of  live-
stock  and  population  data  as  important  indicators  to
measure  anthropogenic  activities  (Crook  et  al.,  2020;
Caiyun et al., 2021).

Although  some  researchers  have  performed  research
on the NDVI and its  related factors  and considered the
role  of  natural  factors,  information  on  the  joint  role  of
natural and anthropogenic factors is  lacking,  and relev-
ant quantitative research is limited. Therefore, this study
focused on the Kherlen River Basin from 2000–2020 as
follows: 1) ARMA and BFAST were used to explore the
stationarity  of  and  detect  the  breakpoints  in  monthly
NDVI data;  2)  the  spatial  coefficient  of  variation  (CV)
was  used  to  determine  the  trend  and  stability  level  of
long-term NDVI time series in the entire study area; and
3) the effects of single and combined natural, anthropo-
genic and topographic factors on the NDVI were quanti-

fied  using  Geodetector.  The  results  of  this  study  could
provide a  strong  theoretical  reference  for  further  im-
proving grassland  ecological  restoration  and  manage-
ment. 

2　Materials and Methods
 

2.1　Study area
The  boundary  of  the  Kherlen  River  Basin  is  located  at
the southeastern end of Eurasia. The Kherlen River origin-
ates in the eastern part of Kent, Mongolia, flows through
Mongolia from west to east,  and then flows into Hulun
Lake  in  Inner  Mongolia,  China.  We  divided  the  upper
reaches, middle reaches, lower reaches and boundary of
the Kherlen River Basin according to the administrative
boundaries. As shown in Fig. 1, the main longitude and
latitude  are  107.5°E–117.5°E  and  46.5°N–49.5°N,  the
altitude ranges from 483–2524 m, the topographic slope
mainly fluctuations in the range of 5°–25°, the terrain is
high in the west and low in the east, and the area is main-
ly  composed  of  low  mountains,  hills,  and  grasslands.
The  climate  is  a  typical  temperate  continental  climate,
with an annual average temperature of 0–3.2°C and av-
erage  annual  precipitation  totalling  156.2–270.6  mm.
The  weather  is  variable,  with  four  distinct  seasons  and
periods of rain and high temperatures annually (Tsujim-
ura  et  al.,  2007).  The  total  length  of  the  river  is 1264
km, and the drainage area is approximately 129 600 km2

(including the drainage area of its tributaries and Hulun
Lake).  The total  length in  China is  206.44 km, and the
drainage area is approximately 5486 km2. The main ve-
getation  community  types  are Achnatherum  splendens,
Elymus dahuricus, Leymus chinensis and Hordeum bre-
vibulatum (Li et al., 2007). 

2.2　Data and processing
The  NDVI  data  were  obtained  from  the  MOD13A1
product with a 500 m spatial resolution, a 16-d tempor-
al  resolution  and  a  monthly  scale  (https://lpdaacsvc.
cr.usgs.gov/appeears/task/area).  A  year  was  defined  as
the  period  from  January  to  December.  The  image  data
were preprocessed by Savitzky-Golay (S-G) filtering to
eliminate  noise,  obtain  long-term  trends  to  the  greatest
extent  and  highlight  local  mutation  information  (Li  et
al.,  2015; Nikonov  et  al.,  2017; Zhu  et  al.,  2017).  The
MODIS NDVI  data  that  were  S-G  filtered  were  com-
bined  with  the  maximum  values  after  using  a  mixed-
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pixel dichotomy  model  to  effectively  reduce  the  im-
pacts of atmospheric, cloud and background parameters
and to further obtain the interannual vegetation coverage.

The meteorological data were obtained from the offi-
cial  Copernicus  climate  data  website  (https://www.co-
pernicus.eu/en).  The  reanalysis  dataset  ERA5  (spatial
resolution: 0.1°) and the mean temperature and cumulat-
ive  precipitation  data  were  extracted  from  NetCDF
format each  month  for  the  projection  grid  and  res-
ampled to obtain temperature and precipitation grid data
with  a  projection  and  pixel  size  that  were  unified  with
those of the NDVI data.

Anthropogenic  data  were  from  the  China-Mongolia
Statistical Yearbook, including the quantity of livestock,
the human population (People),  and the gross  domestic
product (GDP) from 2000 to 2020 (http://tj.nmg.gov.cn/
tjyw/jpsj/and  http://www.1212.mn/).  Considering  that
the  relevant  livestock  population  and  GDP data  have  a
certain joint, radiation effect on space, they are spatially
interpolated by the inverse distance weighted (IDW) in-
terpolation method, a portion of the data locations from
each area are used as the test set, and the parameters are
optimized by estimating the value of each location in the
test  set  using  the  remainder  locations.  As  the  distance
increases, the value of the prediction point becomes less
affected by the discrete point (Myers, 1994). The sensit-
ivity of  the  results  to  parameter  values  varies  substan-

tially, depending  on  local  areas.  According  to  the  ad-
ministrative division unit,  we create 400 random points
in the whole study area from which to extract the corres-
ponding grid data.

The  topographic  data  were  obtained  from  ASTER-
GDEM  V1  imagery  (https://www.gscloud.cn). An  im-
age  mosaic  was  created  to  obtain  a  digital  elevation
model  (DEM)  with  a  spatial  resolution  of  30  m  in  the
study  area,  and  the  terrain  slope  data  were  extracted
from the DEM.

The data  were  preprocessed  to  meet  the  relevant  ac-
curacy  requirements  for  this  study. Table  1 shows  the
sources of data. 

2.3　Methods 

2.3.1　ARMA model
If  a  time  series  is  stable,  the  mean  and  variance  of  the
series  will  not  change,  and  the  ARMA  model  can  be
used for prediction. The ARMA model is a hybrid mod-
el  that  combines  an  autoregressive  (AR)  model  and  a
moving  average  (MA)  model  (Hassan  2014; Shadab  et
al.  2019).  The  general  form  of  the  ARMA  model  is
ARMA(p, q),  where p and q represent  the  numbers  of
autoregressive  AR  terms  and  moving  average  MA
terms,  respectively.  The  ARMA modelling  process  can
be summarized  as  selecting  a  model,  estimating  para-
meters  and  verifying  the  model.  These  three  steps  are
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repeated,  and  the  autocorrelation  function  (ACF)  and
partial autocorrelation function (PACF) are  used to  de-
termine the parameter values until the optimal model is
obtained. Durdu (2010) described this method in detail.
The model form is defined as follows:
Yt = φ1Yt−1+φ2Yt−2+φpYt−p+ θ1et−1+ θ2et−2+ θqet−q (1)

φ1Yt−1+ϕ2Yt−2+φpYt−p

θ1et−1+ θ2et−2+ θqet−q

where  represents the AR model,
the observation value of t is a linear combination of the
previous p observation  values, 
represents the MA model, and the observation value of t
is a linear combination of the previous q residual values. 

2.3.2　BFAST method
BFAST  can  be  used  to  decompose  the  seasonal  terms,
trend terms, and residual terms of multiyear time series
into trends  and  breakpoints  to  capture  the  sensitive  de-
tails of long-term time series (Verbesselt et al.,  2010b).
This BFAST method can be extended to mark the detec-
ted changes according to the parameter  information for
fitted piecewise linear models. This method is a flexible
method  that  can  deal  with  data  gaps  without  requiring
interpolation. The BFAST formulas are as follows:
Yt = Tt+St+ et (2)

Tt = αi+βit (3)

St =
k∑

j=1

γisin
(

2π jt
f
+δj

)
(4)

Tt αi

βi

αi βi βi

where Yt represents the NDVI time series from 2000 to
2020,  represents the trend analysis,  represents the
intercept,  and  represents  the slope of  the trend.  This
equation uses ordinary least squares regression to estim-
ate the parameters  and , where  is the slope of the
time  series  segment.  A t test  was  used  to  estimate  the

βi

St γi

δj

f
et

significance of each part of the trend for the time series
segments,  and  represents  the  interaction  parameters
of the regression.  represents the seasonal analysis, 
represents  the  amplitude,  represents the  phase  har-
monic term of the trend,  represents the number of ob-
servations per year, and  represents the other compon-
ents. 

2.3.3　Coefficient of variation (CV) method
As an important index of the degree of variation in mul-
tiyear  spatiotemporal  series,  the CV can  effectively
measure the stability of multiyear interannual spatiotem-
poral  vegetation  changes  (Chanda  et  al.,  2018).  The
lower the CV is, the stronger the stability of interannual
spatiotemporal vegetation changes is. The formula is

CV =
1

NDVI

√√√√√√√ n∑
i=1

(
NDVIi−NDVI

)2

n−1
(5)

where NDVI represents  the  interannual  average NDVI
from  February  2000  to  December  2020.  In  this  study,
the CV was used to  represent  the degree of  interannual
NDVI variation over many years. The calculated CV res-
ults  reflect  the  stability  of  the NDVI per  pixel  in  the
study area from 2000 to 2020. 

2.3.4　Geodetector model
Geodetector is a set of statistical methods used to detect
spatial heterogeneity and reveal driving forces (Wang et
al., 2019; Zhao et al., 2020; Jia et al., 2021). Geodetect-
or detects the interactions between two factors based on
dependent variables. The general method used to identi-
fy  these  interactions  involves  adding  the  product  terms
of two factors to a regression model to test for statistic-
al  significance.  By  calculating  and  comparing  the qgeo

 
Table 1    Sources of data
 

Data Time scale Spatial scale Data source
NDVI 2000–2020 500 m MOD13A1

(https://lpdaacsvc.cr.usgs.gov/appeears/task/area)

Meteorological data 2000–2020 0.1° Temperature, precipitation (https://www.copernicus.eu/en)

DEM 2009 30 m ASTER-GDEM V1 (https://www.gscloud.cn)

Slope 2009 30 m Extracted by DEM

Number of livestock 2000–2020 National China-Mongolia Statistical Yearbook
(http://tj.nmg.gov.cn/tjyw/jpsj/ and http://www.1212.mn/)

Human population (People) 2000–2020 National China-Mongolia Statistical Yearbook
(http://tj.nmg.gov.cn/tjyw/jpsj/ and http://www.1212.mn/)

Gross domestic product (GDP) 2000–2020 National China-Mongolia Statistical Yearbook
(http://tj.nmg.gov.cn/tjyw/jpsj/ and http://www.1212.mn/)
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values  of  all  individual  factors,  Geodetector  can  assess
the interactions between the two selected factors.

qgeo = 1−

L∑
h=1

Nhσ
2
h

Nσ2 = 1− SSW
SST

(6)

SSW =
L∑

h=1

Nhσ
2
h, SST = Nσ2 (7)

Nh N
σ2

h σ2

where qgeo represents  the  measurement  factor  with  the
value  ranges  from  0  to  1.  Specifically,  the  larger  the
value of qgeo is, the greater the impact on the spatial dis-
tribution of the NDVI is. In addition, h represents the di-
vision of  the  entire  study area  into  several  independent
subareas,  and  represent the number of pixels in a
subregion and the entire region, respectively,  and 
represent the  variance  in  a  subregion and the  entire  re-
gion,  respectively,  and SSW and SST represent  the sum
of squares and the total sum of squares for the entire re-
gion, respectively.

F statistics  can  be  used  to  determine  the  significant
differences between the effects of two driving factors on
the spatial distribution of dependent variables.

F =
Nx1× (Nx2−1)SSW x1

Nx2× (Nx1−1)SSW x2
(8)

Nx1 Nx2

SSW x1 SSW x2

where  and  represent the sample size of the two
factors  and  and  represent  the  within-sum
of squares originating from the two factors.

A t test  was  used to  detect  the  influence of  different
factors that  influence vegetation within a certain range.
The formula is defined as follows:

t =
Yh=1−Yh=2(

Var(Yh=1)
nh=1

+
Var(Yh=2)

nh=2

)2 (9)

Yh

nh

where  represents  the  average NDVI pixel  value  for
each  subregion h,  represents the  number  of  subre-

gions, and Var represents the variance. 

3　Results and Analyses
 

3.1　NDVI time series fitting and prediction analysis
With Statistical Product and Service Software Automat-
ically  (https://spssau.com/indexs.html),  AR(5),  ARMA
(3,1), ARMA(2,2)  and  ARMA(3,1)  corresponding  for-
mulas with the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) (the lower the
value  is,  the  better  it  is)  were  used  to  obtain  UB,  MB,
LB and BB results, respectively.

The corresponding formulas for the models are given
as follows:

yUB (t) =0.215+1.227× y (t−1)−0.203× y (t−2)−0.088×
y (t−3)+0.014× y (t−4)−0.143× y (t−5)

(10)

yMB (t) =0.201+1.981× y (t−1)−1.17× y (t−2)+
0.123× y (t−3)−0.826×ε (t−1)

(11)

yLB (t) =0.149+1.822× y (t−1)−0.896× y (t−2)−0.68×
ε (t−1)−0.125×ε (t−2)

(12)

yBB (t) =0.2+2.036× y (t−1)−1.265× y (t−2)+
0.167× y (t−3)−0.835×ε (t−1)

(13)

yUB (t) yMB (t) yLB (t) yBB (t)where , ,  and  represent  the
ARMA time series results for UB, MB, LB and BB, re-
spectively.

yUB (t) yMB (t) yLB (t) yBB (t)
Through comprehensive analysis, it is concluded that

the fitting values of the , ,  and 
models  in Table  2 and Fig.  2 are  close  to  the  actual
NDVI values, and long-term NDVI values can be estab-
lished using the ARMA model. To evaluate the predic-
tion performance of the model, the NDVI dataset is di-
vided into a training set (Feb. 1, 2000 to Dec. 31, 2019)
and a test set (Jan. 1, 2020 to Jun. 30, 2020). In Table 2,
during  the  NDVI  prediction  period,  the  NDVI  time

 
Table 2    Predicted NDVI time series in Jan.–Jun., 2020 by ARMA model for upper reaches, middle reaches, lower reaches and Kher-
len River Basin
 

Forecast Lag time1 Lag time 2 Lag time 3 Lag time 4 Lag time 5 Lag time 6 Lag time 7 Lag time 8 Lag time 9 Lag time 10 Lag time 11 Lag time 12

yUB (t)value 0.035 0.042 0.080 0.122 0.168 0.211 0.250 0.281 0.302 0.312 0.312 0.303
yMB (t)value 0.007 0.006 0.018 0.044 0.079 0.121 0.166 0.210 0.250 0.283 0.308 0.322

yLB (t)value 0.009 0.003 0.009 0.025 0.048 0.077 0.107 0.138 0.166 0.190 0.209 0.221
yBB (t)value 0.422 0.416 0.394 0.357 0.312 0.260 0.208 0.159 0.116 0.082 0.060 0.050

Notes: yUB (t) value, yMB (t) value, yLB (t) value and yBB (t) value represent predicted NDVI time series by ARMA model for upper reaches, middle reaches, lower
reaches and Kherlen River Basin, respectively. Lag time 1–12 represent 12 periods of NDVI forecasting data
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yUB (t) yMB (t) yLB (t) yBB (t)

series  showed  a  decreasing  trend.  The  ARMA  model
was used to obtain predictions over a period of 6 months,
with a total of 12 periods of forecasting data. As shown
in Figs.  2a–2d,  the , ,  and 
models  passed  the  white  noise  test,  and  the  prediction
results  of  all  models  were  consistent  with  the  actual
NDVI values.  It  is  worth  noting  that  the  evaluation  in-
dex produced by the  ARMA model  is  the  best,  but  the
predicted  values  exhibit  little  change.  As  shown  in
Figs.  2a–2d, the  predicted  values  for  the  next  12  peri-
ods  generally  agree  with  the  actual  NDVI  values,  and
the ARMA model yields an R2 value of 0.76–0.90 (P <
0.01).  Thus,  the  ARMA  model  can  effectively  predict
the NDVI time series. Based on the above analysis, we
conclude  that  although  the  NDVI fitting  formulas  used
in  the  ARMA  model  vary  for  different  regions,  the
NDVI prediction effects of the ARMA model in differ-
ent regions are relatively similar. 

3.2　NDVI time series decomposition analysis
Natural  and anthropogenic factors can cause vegetation
mutations  at  certain  times.  Therefore,  we  used  BFAST
to  assess  the  monthly  NDVI  time  series  in  different
reaches of the Kherlen River Basin. As shown in Fig. 3,

the  NDVI  fluctuated  significantly  from  2000  to  2020.
Three break points in the monthly NDVI were observed
in  the  upper  reaches,  middle  reaches,  and  the  entire
boundary region of the basin, and no statistically signi-
ficant increases  in  the  NDVI were  observed  from 2000
to 2013 or from 2017 to 2020. These results suggest that
the changes in  the local  NDVI were stable  and minim-
ally  influenced  by  natural  and  anthropogenic  factors.
Furthermore, a  significant  decreasing  trend  was  ob-
served from 2013 to 2017. This result indicates that due
to the  joint  influence  of  climate  change  and  anthropo-
genic activities, the local vegetation degraded over these
four  years.  As  shown in Fig.  3c,  complex  and  variable
natural and anthropogenic factors led to a change in the
number of NDVI breaks from 2000 to 2020. The NDVI
exhibited  five  breakpoints  in  the  lower  reaches  and  a
significant slowly decreasing trend from 2000–2004 and
from  2013–2017.  Notably,  the  ecological  environment
has been degraded, and the population has been increas-
ing for a long time in the lower reaches. In other years,
no significant decreasing trend was observed. As shown
in Fig.  4,  the  long-term  NDVI  in  the  entire  basin  was
calculated  based  on  the  BFAST algorithm.  We divided
2013 and 2017 into  two mutation points  to  explore  the
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corresponding trend and the significance of the changes
before and after mutations. We divided the NDVI trend
from 2000 to 2020 into three classes: ‘increase’, ‘stable’
and ‘decrease’.
 

3.3　NDVI spatial stability analysis
We further  explored the trend and stability  level  of  the
long-term NDVI time series in the entire study area. As
shown  in Fig.  5a–5b,  from  2000  to  2020,  the  spatial
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NDVI  CV  was  relatively  stable,  mainly  at  the  level  of
0.01–0.07,  with  45.14%  of  values  between  0.04  and
0.05.  Overall,  the  degree  of  variation  in  the  spatial
NDVI CV  is  highly  variable  and  heterogeneously  dis-
tributed throughout the study area. In the upper reaches
of the Kherlen River Basin, the spatial CV remained at
0.01–0.05,  which  was  slightly  less  than  the  CV  of
0.05–0.07  in  the  middle  reaches  of  the  Kherlen  River
Basin. This result in the upper reaches, which may have
been due to the reduced human impacts and no signific-
ant vegetation changes for many years, indicates that the

local ecological environment is relatively stable and less
affected by external interferences.
 

3.4　NDVI driving factor analysis
The  factor  detector  results  indicate  the  impact  of  each
factor on  the  NDVI in  the  Kherlen  River  Basin,  as  ex-
pressed by the qgeo value (Fig. 6). The importance of the
qgeo value varied in the basin, with a high qgeo value in-
dicating an important impact on the NDVI. To determ-
ine the annual mean value from 2000 to 2020, we judge
the abnormal value areas with 0 and negative values of
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MOD13A1  NDVI  and  exclude  non-vegetation  areas
such as  rocks,  bare  soil  and  waters.  These  correspond-
ing  grid  data  were  considered  outlier  values  and  were
removed. In the upper reaches, the qgeo value of precipit-
ation was the highest,  reaching 0.71, followed by those
for temperature and the DEM. In the middle reaches, the
qgeo value  of  the  DEM  was  the  highest,  reaching  0.36,
followed  by  those  of  livestock  and  temperature.  In  the
lower  reaches,  the qgeo value  of  the  DEM  was  the
highest, reaching  0.51,  followed  by  those  of  temperat-
ure and precipitation.  In the entire basin,  the qgeo value
of temperature was the highest, reaching 0.43, followed
by those  of  precipitation,  GDP,  the  DEM,  slope,  live-
stock and human impact. Precipitation had an important
impact of 0.35 on the NDVI, while GDP and the DEM
had  important  impacts  of  0.15  and  0.14  on  the  NDVI,
respectively.  Overall,  the  importance  of  local  natural

factors  is  greater  than that  of  human factors.  The other
factors  had qgeo values  of  less  than  0.1,  indicating  that
they had no important impacts on the NDVI.

The  spatial  pattern  of  NDVI  change  in  the  Kherlen
River  Basin  is  affected  by  multiple  driving  factors.
Therefore, the  interaction  detector  was  used  to  determ-
ine  the  relationships  among  different  driving  factors
(Fig.  7).  The  results  show  that  the  interactions  among
factors  exhibited  bilinear  and  nonlinear  enhancement,
with most interactions being nonlinear. Fig. 7b shows a
weakening of unilinear variables. NDVI driving factors
do not exist in isolation. The interaction between natur-
al factors  and  human  activities  has  an  important  com-
posite effect  on  the  growth  of  vegetation.  The  interac-
tion  detector  results  also  reflect  the  interactions  among
components.  The  spatial  distribution  of  the  NDVI  was
affected differently by these interactions in the different
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reaches  of  the  basin.  In  the  upper  and  middle  reaches,
NDVI  was  influenced  the  most  by  the  interaction
between  the  DEM  and  precipitation,  as  shown  in
Figs. 7a, 7b. In the lower reaches, the NDVI was influ-
enced the most by the interaction between the DEM and
livestock,  as  shown  in Fig.  7c.  In  the  entire  basin,  the
NDVI  was  influenced  the  most  by  the  interaction
between  the  DEM  and  temperature,  with  an  effective
factor of 0.56, as shown in Fig. 7d. Therefore, in the dif-
ferent  reaches  of  the  basin,  the  DEM  displayed  strong
interactions with  other  factors.  Natural  factors,  particu-
larly temperature and precipitation, had a significant im-
pact  on  the  NDVI.  Human  factors,  such  as  the  GDP,
quantity of  livestock,  and  population,  had  minor  im-
pacts on the NDVI in the different reaches of the basin.

Ecological detectors  can  reflect  the  effects  of  differ-

ent  variables  on  the  geographical  distribution  of  the
NDVI.  The  ecological  detector  results  confirmed  the
most important  influential  factors  and  were  used  to  as-
sess the variabilities in their mechanisms. The ecologic-
al detector results (Fig. 8) show that natural factors, hu-
man  factors,  the  DEM,  and  slope  all  had  significantly
different  effects,  demonstrating that  while  these  factors
all  influenced  the  NDVI,  the  mechanisms  that  affected
the development of vegetation in the different reaches of
the basin varied. Notably, the impacts of natural and hu-
man factors  on  the  NDVI  showed  significant  differ-
ences. This  finding  demonstrates  that  natural  and  hu-
man factors had a major impact on the NDVI and inter-
acted  to  modify  the  spatiotemporal  distribution  of  the
local  NDVI.  The  effects  of  slope  and  livestock  did  not
have a major influence on the spatiotemporal changes in
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the NDVI. 

4　Discussion

As a typical grassland cross-border river between China
and Mongolia in eastern Asia, the Kherlen River origin-
ates  in  Kent,  Mongolia.  Due  to  the  limited  vegetation
types, high vegetation stability and low river flow in the
study area, spatial changes in the NDVI were not partic-
ularly  obvious;  notably,  several  inflection  points  were
identified,  and  the  NDVI  was  not  easily  affected  by
changes in the external conditions. However, the middle
reaches  of  the  Kherlen  River  Basin  were  shown  to  be
vulnerable  to  changes  in  external  conditions  due  to  the
joint  actions  of  natural  and  human  factors.  Therefore,
this part of the basin is the main area where the vegeta-
tion has rapidly changed and is not stable.

As  part  of  the  China-Russia-Mongolia  Economic
Corridor,  the  Kherlen  River  Basin  provides  Mongolia
and neighbouring countries with high biodiversity value
and  plays  an  important  role  in  maintaining  the  balance
of  local  ecosystems,  even  though  it  is  small  compared
with  the  main  river  basins  in  Russia  and  China.  The
overall joint management of cross-border river basins to
maintain the natural resilience of the local ecosystems is
the key to adapting to the rapidly changing climate. This
study  combined  temperature  and  precipitation  data  and
revealed  the  spatiotemporal  changes  in  the  vegetation
coverage in the Kherlen River Basin from 2000 to 2020.
The annual  average  vegetation  coverage  was  main-
tained at 40%, with a relatively uniform spatial distribu-
tion and consistent stability. These findings are consist-
ent  with  the  conclusions  of  other  scholars  who  have
studied  the  spatial  trends  in  the  interannual  vegetation
coverage  in  China  and  performed  spatial  correlation
analyses  of  temperature  and  precipitation  (Guo  et  al.,
2021). Some  scholars  have  proposed  that  the  stress  ef-
fect of extreme weather conditions has an impact on the
phenology of  vegetation.  In  the  future,  we will  explore
the effects of extreme weather conditions on vegetation
coverage.

Since  ancient  times,  as  a  region  of  nomads  in  the
north with heavy grazing and often continuous drought,
the  Kherlen  River  Basin  has  gradually  become an  area
that  is  sensitive  to  global  climate  change  (Kamimera
and  Lu,  2007).  In  recent  years,  China  and  Mongolia
have formulated relevant vegetation restoration policies,

and people have strengthened their  awareness of  envir-
onmental  protection,  which has  gradually  increased the
local  vegetation  coverage.  On  the  Chinese  side,  the
Chinese government  has  vigorously  promoted  the  re-
turn of farmland to forests and grassland and implemen-
ted the  Three  North  Shelterbelt  Systems  project  to  re-
cover the local environment. These measures have pro-
moted the development of local grassland vegetation to
a  certain  extent.  At  present,  the  general  office  of  the
State Council has issued several strategies to strengthen
the  protection  and  restoration  of  grasslands.  On  the
Mongolian side, a small part of the floodplain in the Kh-
erlen River Basin is protected by law. The prohibition of
exploration  and  mining  in  river  headwaters,  watershed
protected areas,  and forest  areas,  which began in 2009,
protects the most valuable landscape features of Mongo-
lia,  including river valleys,  lake banks,  forests,  springs,
important  water  flow  accumulation  areas,  and  other
areas  of  mineral  mining  activities.  From 2010 to  2012,
the boundary of the nature reserve was redrawn with the
participation of local communities. As a result, the rap-
id  growth  of  Mongolia’s  GDP  slowed.  However,  from
2000 to 2010, the establishment of the China-Mongolia-
Russia  Economic  Corridor  provided  an  unprecedented
opportunity for Mongolia.  As a pillar  industry of Mon-
golia, animal husbandry needs to expand rapidly, and an
increase  in  grazing  will  lead  to  a  reduction  in  local
grassland vegetation.

Vegetation  is  sensitive  to  changes  in  natural  factors,
which affect changes in the mutation years of the NDVI
and  the  corresponding  breakpoints.  The qgeo value  of
natural  factors  is  higher  than  that  of  human  factors,
mainly because in the Kherlen River Basin, temperature
and precipitation are the main reasons for the changes in
the  NDVI.  When  the  temperature  and  precipitation
change  abnormally,  sudden  changes  in  the  local  NDVI
can occur.  In  different  parts  of  the basin,  the effects  of
various  natural,  human  and  topographic  factors  on  the
local NDVI also vary. In the upper reaches, changes in
the hydrothermal conditions have had a considerable im-
pact on local vegetation. In the middle and lower reaches,
the varying altitude highly influences the local NDVI.

The NDVI is the most extensively used vegetation in-
dex  worldwide.  The  leaf  area  index  (Davi  et  al.,  2006;
Cristiano  et  al.,  2014),  vegetation  coverage  (Wu  et  al.,
2014; Tang et al., 2020), chlorophyll content (Rulinda et
al.,  2011; Cristiano et al.,  2014), and other relevant ve-
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getation  parameters  are  widely  estimated  using  the
NDVI. However, there are some drawbacks to using the
NDVI to  estimate  the  biomass  and  productivity  of  ve-
getation.  First,  the  relationship  between  the  NDVI  and
green  biomass  is  nonlinear,  and  it  can  reach  saturation
in highly vegetated areas.  The second constraint  is  that
the NDVI  primarily  measures  the  spectral  characterist-
ics  of  vegetation and sometimes atmospheric  noise and
the  soil  background.  To  overcome the  shortcomings  of
the  NDVI,  a  new  vegetation  index  kNDVI,  which  is
based  on  machine  learning  and  the  kernel  method,  has
been  proposed.  Compared  with  other  indices,  the
kNDVI is  more  suitable  for  dealing  with  noise,  satura-
tion and complex phenology. The higher accuracy of the
kNDVI  is  mainly  associated  with  the  consideration  of
the  phenological  cycle  and  the  mitigation  of  noise  and
background effects (Camps-Valls et al., 2021).

In  some  cases,  in  the  16-day  synthetic  MOD13A1
NDVI data product, there was only one data source, and
the spatial-temporal  resolution  was  poor,  which  re-
duced  the  accuracy  of  time  series  breakpoint  results.
Data  sources  can  be  limited,  and  some time details  are
lost  during the synthesis process.  The two channels are
unable to provide the distinctive patterns required for a
well-classified image data due to a lack of compliment-
ary band information (Useya and Chen, 2019). In future
studies,  the  spatial  details  of  GF-1  data  can  be  fused
with  the  spectral  information  of  Sentinel-2  data.  The
high data  accuracy  is  more  suitable  for  crop  informa-
tion extraction in small-scale areas with complex ground
object structures and fragmented plots. The results show
that  combining  high  spatial  resolution  with  high-fre-
quency time-series  remote  sensing  data  effectively  im-
proves  the  accuracy  of  ground  object  classification
(Vasilakos et al., 2020). This process can provide large-
scale  and  high-precision  reference  data  for  agricultural
research  (Shu  et  al.,  2020) and  the  ecological  environ-
ment protection of relevant areas.  The driving mechan-
ism of  spatial  vegetation  changes  should  be  further  in-
vestigated in conjunction with climate change and eco-
logical protection. 

5　Conclusions

In view of the limited quantitative research on the ecolo-
gical  environment in the Kherlen River Basin in recent
years,  it  is  necessary  to  improve  the  understanding  of

local  vegetation  change.  We  analysed  the  MOD13A1
product with  the  ARMA  and  BFAST  models  and  ex-
plored  NDVI  time  series  data  from  the  Kherlen  River
Basin from 2000 to  2020.  Notably,  NDVI stability  and
related driving factors were investigated, and the ecolo-
gical benefits of comprehensively considering the cross-
border  Kherlen  River  Basin  were  discussed.  The  main
conclusions can be summarized as follows:

(1)  The  long-term  NDVI  research  results  show  that
NDVI  fitting  effect  of  ARMA  model  from  2000  to
2020, the correlation with R2 between 0.76–0.90. Addi-
tionally,  the  accuracy  of  the  ARMA  model  was  high,
with RMSE =  0.03.  For  a  specific  period,  the  changes
detected  by  BFAST  show  that  the  seasonal  stability
characteristics of  the  NDVI  time  series  remained  un-
changed.  A  significant  decreasing  trend  was  observed
from 2013 to 2017 in the entire study area.

(2) For the study period, the overall fluctuation in the
NDVI in  the  entire  study  area  can  be  described  as  fol-
lows: the CV mainly ranged from 0.01–0.07, and 45.14%
of  values  ranged  from  0.04–0.05.  The  results  of  this
study  show  that  the  local  ecological  environment  has
been relatively stable, with little fluctuation in vegetation
changes over time and limited external interference.

(3) Temperature  and  precipitation  are  the  main  driv-
ing factors of the NDVI in the Kherlen River Basin, and
changes  in  local  hydrothermal  conditions  will  directly
affect  changes  in  the  local  NDVI.  The  differences
among the  interaction  factors  were  mainly  character-
ized  as  being  due  to  nonlinear  enhancement.  Although
natural, human, and topographic factors have certain ef-
fects on  the  growth  of  vegetation,  significant  differ-
ences  exist  in  the  interaction  mechanisms  associated
with natural and human factors.

Our research  provides  reference  for  analyses  of  spa-
tial distribution  in  local  vegetation  and  ecological  pro-
cesses  to  the  greatest  extent  possible.  For  NDVI  time
series, the ARMA method can overcome the shortcom-
ings of  singular  models  and improve the  prediction ac-
curacy.  In  future  research,  we  will  explore  spatio-tem-
poral NDVI data analysis. In addition, relevant data pro-
cessing methods and model optimization should be con-
sidered to enhance the possibility of NDVI prediction. 
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