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Abstract: Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land
use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective re-
gional conservation policies. Taking the Pearl River Delta Urban Agglomeration (PRDUA) in China as an example, we examined the
heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical
entities. The results indicate that the primary change in land use was due to the expansion of construction land (5897.16 km2). The car-
bon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low
middle.  The  carbon  storage  loss  was  largely  attributed  to  construction  land  expansion  (55.74%),  followed  by  forest  degradation
(54.81%). Changes in carbon storage showed significant  divergences in  different  sized cities  and hierarchical  boundaries.  The coeffi-
cients of geographically weighted regression (GWR) reveal that the alteration in carbon storage in Guangzhou City was more respons-
ive to changes in construction land (−0.11) compared to other  cities,  while that  in Shenzhen was mainly affected by the dynamics of
forest land (8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent (5.05) and
the degradation of forest land in rural areas (5.82). Carbon storage changes were less sensitive to the expansion of construction land in
the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This
study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.
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1　Introduction

Climate  change  is  a  critical  and  ongoing  issue  that  has
caused significant global crises, for example, loss of sea
ice,  accelerated  sea  level  rise,  and  extreme  weather
events such as droughts and precipitation. Urgent action

is  required  to  reduce  human-caused  carbon  emissions
and promote carbon capture and storage. Terrestrial eco-
systems are essential to the global carbon cycle and car-
bon  storage  (Yang  et  al.,  2022),  and  it  was  estimated
that 31% of anthropogenic CO2 emissions has been ab-
sorbed  by  terrestrial  ecosystems  during  2010–2019
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(Friedlingstein et al., 2020). To mitigate climate change,
127 countries have proposed or plan to establish targets
for terrestrial carbon storage, which would cover 88% of
global carbon dioxide emissions. China has also pledged
to  achieve  carbon  neutrality  by 2060,  with  increasing
terrestrial  carbon  storage  being  a  crucial  step  towards
meeting this goal (http://www.cikd.org/detail?docId=153
8692320059240449).

Land-use change  is  the  second  most  significant  con-
tributor  to  the rise  in  global  atmospheric  carbon levels,
trailing  only  the  burning  of  fossil  fuels.  Between  1850
and 1998,  one-third of human-caused carbon emissions
were the result of land-use changes (IPCC, 2022). Des-
pite  this,  there  is  a  significant  opportunity  to  increase
carbon storage on land, which could make a substantial
contribution  to  achieving  carbon  neutrality  (Walker  et
al., 2022). Different land use processes have varying ef-
fects on carbon storage, and understanding the mechan-
isms behind  these  effects  is  crucial  to  making  low-car-
bon land use decisions (Landman, 2010). Urban expan-
sion, a  typical  land  use  process,  significantly  alters  re-
gional  carbon  storage  by  influencing  the  land  surface
and  modifying  the  structures,  processes,  and  functions
of  terrestrial  ecosystems,  as  well  as  the  material  cycles
and  energy  flows  of  ecosystems  (Lambin  et  al.,  2001;
Hutyra et al., 2011). Current studies have mainly indic-
ated a negative linear relationship between carbon stor-
age and land urbanization (Peng et al., 2017). However,
land use intensity varies across spatial gradients of urb-
an agglomerations,  and  will  also  exert  significant  spa-
tially heterogeneous impact on carbon storage (Jiang et
al.,  2017; Ouyang  et  al.,  2021).  Therefore,  a  spatially
explicit  assessment  of  carbon storage changes resulting
from urban  expansion  will  be  essential  for  making  in-
formed and effective urban land use decisions.

The relationship between carbon storage and land use
change  is  scale-dependent,  but  previous  studies  have
mostly  been  conducted  at  administrative  units,  such  as
provinces  (Wu et  al.,  2016; Piyathilake  et  al.,  2021; Li
et al., 2022b), cities and counties (He et al., 2016; Li et
al.,  2020; Wang  Zhi  et  al.,  2021), and  have  not  ad-
equately  revealed  the  spatially  heterogeneous  response
of  carbon  storage  to  land  use  at  physical  or  functional
units  of  cities  (Zhou and Shi,  1995).  Physical  units  are
typically delineated based on physical urban entities and
can deepen our understanding of urban laws (Xu et al.,
2022).  Additionally,  physical  urban  units  can  provide

globally  comparable  delineations  of  hierarchical  urban
boundaries,  which  are  a  practical  basis  for  addressing
global issues such as carbon neutrality (Xu et al., 2021).
Urban agglomerations  have  received  increased  atten-
tion due  to  their  critical  roles  in  high-quality  develop-
ment  and  urbanization  in  China  (Fang  et  al.,  2016),
which emphasizes the need to understand how land use
change in urban agglomerations affects regional carbon
storage.

To  establish  the  quantitative  relationships  between
land use change and carbon storage, many studies have
estimated carbon  density  and  storage  in  terrestrial  eco-
systems (Li et al., 2008; Wang et al., 2014; Cheng et al.,
2020; Tak  and  Kakde,  2020; Feng  et  al.,  2021).  The
field  survey  of  forest  resources  can  provide  accurate
carbon  storage  on  vegetation  and  soil  through  spatial
sampling design (Fang et al., 2001; Ni, 2001; Fan et al.,
2008), but these methods may not reveal long-term and
large-scale  responses  to  climate  change  and  human
activities  (Piao  et  al.,  2022). To  address  this,  research-
ers  have  developed  various  simulation  models  like  the
Carnegie-Ames-Stanford Approach (CASA) model (Xu
et  al.,  2011; He  et  al.,  2017),  Biogeochemical  model
(BGC-ES) (Ooba et al., 2010), and Integrated Valuation
of Ecosystem Services and Trade-offs (InVEST) model
based on Geographic Information System (GIS) techno-
logy and mathematical models to estimate regional car-
bon stocks and analyze land use impacts on carbon stor-
age. In particular, the InVEST model is widely used due
to  its  high  data  accessibility  and  spatial  explicitness
(Zhou et al., 2018), which allows for the spatially expli-
cit analysis of carbon storage response to land use activ-
ities  (He et  al.,  2016; Liang et  al.,  2017; Piyathilake  et
al., 2021; Adelisardou et al., 2022).

To fill  up  above-mentioned  research  gaps,  we  pro-
pose  an  integrated  analysis  framework  to  estimate  the
changes in carbon storage in the Pearl River Delta Urb-
an  Agglomeration  (PRDUA)  in  China  from  1990  to
2018, and evaluate the influence of land use changes on
carbon  storage  in  terrestrial  ecosystems.  The  PRDUA
has experienced the extremely rapid economic develop-
ment  since  China’s Reforming  and  Opening  Up,  lead-
ing to  high-density  land  aggregation  and  urban  expan-
sion that pose a threat to terrestrial ecosystems (Feng et
al., 2022; Li et al., 2022a). Meanwhile, the PRDUA at-
taches  great  significance  to  the  realization  of  carbon
neutrality  as  the  first  ‘National  Demonstration  Area  of

272 Chinese Geographical Science 2023 Vol. 33 No. 2

http://www.cikd.org/detail?docId=1538692320059240449
http://www.cikd.org/detail?docId=1538692320059240449


Forest Urban Agglomeration’ in China. Our framework
examines  spatially  heterogeneous  changes  in  carbon
storage  across  urban  gradients  based  on  hierarchical
urban  boundaries,  and  can  assist  in  policy-making  for
promoting carbon storage and mitigating climate change
in urban agglomerations. 

2　Material and Methods
 

2.1　Study area
The Pearl  River  Delta  Urban Agglomeration (PRDUA)
is located in the southern coast and the Pearl River Basin
in  Guangdong  Province  of  China  (Fig.  1).  Considering
unavailable  data  of  Hong  Kong  and  Macao,  this  study
includes nine mainland cities within the PRDUA, namely
Guangzhou, Shenzhen, Zhuhai, Zhongshan, Huizhou, Fo-
shan, Dongguan, Jiangmen, and Zhaoqing (Ning, 2011),
covering a total area of 41 698 km2. These cities fall un-
der  four  categories  of  urban classification based on the
Chinese  Criteria  of  Urban  Classification  (https://www.
gov.cn): mega-cities (with a resident population of over
10  million),  super-cities  (with  a  resident  population  of
5  million  to  10  million),  major-cities  of  type  I  (with  a
resident population of 3 million to 5 million) and major-
cities of type II (with a resident population of 1 million
to 3 million). Specifically, Guangzhou and Shenzhen are
mega-cities,  Dongguan  and  Foshan  are  super-cities,
Zhongshan is a major-city of type I, and Zhuhai, Huizhou,
Zhaoqing, and Jiangmen are major-cities of type II.

The  PRDUA  boasts  a  subtropical  monsoon  climate,
thriving tropical vegetation, and a dense water network.
With a  plain in  the central  region and hills,  mountains,
and islands in the marginal areas, the region has unique
geographic advantages  that  have  facilitated  rapid  eco-
nomic  development  and  urbanization,  making  it  one  of
the developed  regions  in  China  and  one  of  the  demon-
stration  areas  for  high-quality  development  in  the
Chinese  14th  Five-Year  Plan.  Meanwhile,  the  PRDUA
is the  first  national  forest  city  cluster  with  the  signific-
ant  ecological  values  and  abundant  carbon  storage  in
China  (Yu et  al.,  2018; Li  et  al.,  2022a).  Thus,  it  is  of
great  significance  to  examine  the  spatial  and  temporal
patterns  of  carbon  storage  in  response  to  land  use
changes for high-quality development and realization of
the dual carbon goals.

Based on the study of Xu et al. (2021), the hierarchic-
al urban boundaries of the PRDUA can be identified as
urban extent (UE), urban built-up area (UB), and urban
dense  center  (UC)  (Fig.  1).  Besides,  urban  open  space
(UOS),  urban  water  (UW),  and  ex-urban  built-up  area
(EB) were also extracted. Specifically, UE refers to the
maximum  area  of  an  independent  urban  settlement,
which  is  composed  of  urbanized  patches  (impervious
surface above  a  certain  local  density)  and  their  sur-
rounding or  adjacent  open  spaces.  UB  denotes  the  ag-
glomeration  of  all  artificial  impervious  surfaces  with
UE. UC  is  the  high-density  center  of  impervious  sur-
face  that  needs  to  exceed  a  certain  area  (more  than
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50  km2 or  10% of  UB’s  area).  EB refers  to  urban  pat-
ches  that  are  far  from  other  urban  settlements  and  are
too small to constitute a separate urban settlement. UOS
denotes to land surface in the city completely or  basic-
ally not covered by artificial structures, including green
areas  and  bare  ground  and  so  on.  UW  refers  to  water
areas in the city (Xu et  al.,  2021).  And then,  rural  area
(RA) was  defined  as  the  non-urban  areas  to  further  in-
vestigate  the  urban-rural  differences  in  carbon  storage
changes,  referring  to  the  area  within  the  administrative
boundary and outside the UE. 

2.2　Data source
The data used in this work included land use maps and
hierarchical  urban  boundary  data.  The  land  use  maps
were obtained from the Resource and Environment Sci-
ence and  Data  Center  of  the  Chinese  Academy of  Sci-
ences  (https://www.resdc.cn).  To  analyze  land  use
change  and  estimate  carbon  storage,  a  time  series  of
land  use  maps  at  1990,  2000,  2005,  2010,  2015  and
2018  with  a  spatial  resolution  of  30  m  ×  30  m  were
downloaded  and  recategorized  into  six  land  use  types:
arable  land,  forest,  grassland,  water,  construction  land,
and  unused  land.  The  overall  accuracy  of  the  land-use
data classification  assessed  via  field  survey  was  repor-
ted to be higher than 94.30% (Yang and Huang, 2021).

The  hierarchical  urban  boundary  data  at  2018  were
collected from the study of Xu et al. (2021), and used to
examine  the  heterogeneous  response  of  carbon  storage
to land use changes. The boundary data were generated
using  the  Landsat  Thematic  Mapper  (TM)  images  at  a
spatial  resolution  of  30  m  according  to  the  concept  of
physical urban entity. The overall accuracy and compat-
ibility  to  various  urban  experiments  of  these  data  have
been thoroughly examined in the existing studies (Xu et
al., 2021; 2022). 

2.3　Methods
To analyze heterogeneous response of carbon storage to
land use  changes  within  urban  agglomeration,  we  pro-
posed an analysis framework based on the integration of
land  use  dynamic  degree  analysis,  InVEST model,  and
geographically  weighted  regression  (GWR)  approach.
The framework consists of three steps. At the first step,
we  calculate  land  use  dynamic  degree  based  on  a  time
series  of  land  use  maps.  The  second  step  estimates  the
carbon storage  of  terrestrial  ecosystem  in  PRDUA  us-

ing the  InVEST model.  At  the  final  step,  spatially  het-
erogeneous effects  of  land use  changes  on carbon stor-
age are examined using GWR approach, and a compar-
ative  analysis  is  performed  between  the  outcomes  of
GWR and those of ordinary least squares (OLS). 

2.3.1　Calculating land use dynamic degree
Land  use  dynamic  degree  depicts  the  rate  of  land  use
change  over  a  time  period  (Liu  et  al.,  2003).  In  this
study,  land  use  dynamic  degree  (K) was  used  to  indic-
ate the changes of a certain land use type, which can be
calculated as follows:

K =
Ub−Ua

Ua
× 1

T
×100% (1)

where Ua, Ub represents  the  area  of  a  certain  land  use
type  at  the  beginning  and  the  ending  of  a  time  period,
respectively, and T denotes the time interval of a certain
period. 

2.3.2　Estimating carbon storage using InVEST model
The carbon storage in the PRDUA was estimated using
the InVEST model, which has been proven effective to
link  carbon storage  to  land  use  data  at  large  scale  (Po-
lasky et al.,  2011). In this model,  the carbon storage of
each land use type was determined by above ground car-
bon  density  (AGCD),  below  ground  carbon  density
(BGCD), soil organic carbon density (SOCD), and dead
organic  carbon  density  (DOCD)  (Turner  et  al.,  1995).
Based on the land use maps and the parameters of car-
bon density,  the  regional  carbon  storage  can  be  estim-
ated as follows:

Ci,l = A×
(
Dl

AGC+Dl
BGC+Dl

SOC+Dl
DOC

)
(2)

Ci,l

Dl
AGC, Dl

BGC, Dl
SOC, Dl

DOC

where,  represents  the  carbon  storage  of  cell i with
land  use  type l. A represents  the  area  of  grid  cell.

 represent  the  aboveground
carbon density, belowground carbon density, soil organ-
ic  carbon  density  and  dead  organic  carbon  density  for
land use type l, respectively.

∆CThen, the total change of carbon storage ( ) for the
whole region can be calculated as:

∆C =
∑

(Ct1
i,l−Ct2

i,m) (3)

Ct1
i,l,C

t2
i,m

t1 t2

where  represent the carbon storage in grid cell i
with land use type l and m at the time  and , respect-
ively.

The carbon density for each land use type is  the key
parameter  of  the  InVEST  model,  and  was  estimated
based  on  the  existing  literatures  (Table  S1).  Carbon
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densities in these studies were obtained from direct field
measurements  or  estimation  using  a  common  carbon
density  method  for  vegetation  and  soils  relating  to  the
vegetation  types  (Fang et  al.,  2001; Ni,  2001; Wang et
al.,  2001; Chuai  et  al.,  2013), which  have  been  valid-
ated and applied in numerous studies in China. 

2.3.3　Analyzing  response  of  carbon  storage  to  land
use changes
The  influencing  factors  of  carbon  storage  vary  across
space  and  over  time  (Sun  et  al.,  2022).  Geographically
weighted regression (GWR) is an effective model to ex-
plain the spatially heterogeneous relationship of carbon
storage and its  influencing factors (Lin et  al.,  2018).  In
GWR, the  heterogeneous  relationship  can  be  represen-
ted as the varying regression coefficients determined by
locations  (Brunsdon  et  al.,  1996), which  can  be  ex-
pressed in the following:

yi = β0 (ui,vi)+
p∑

k=1

βk (ui,vi) xik+εi (4)

(ui,vi) xik

βk (ui,vi)

εi

where  is the coordinate of the ith grid cell.  rep-
resents the kth independent variable (k = 1, 2, 3, …, p)
(i.e.,  a  certain  influencing  factor)  of  carbon  storage  at
the ith grid cell.
β0 is  regression  constant.  is  the kth  regression
parameter at the ith grid cell, which is a function of geo-
graphic  location;  is  the  random  error  of  the ith  cell,

which satisfies the basic assumptions of null hypothesis,
homoskedasticity, and mutual independence.

k0
k1

k2 k3
k4

k5

In  GWR,  the  carbon  storage  change  was  considered
as  the  dependent  variable,  land  use  dynamic  degree  of
each land use type, i.e., construction land, forest, grass-
land, arable land,  water  area,  and unused land were re-
garded  as  the  explanatory  variables.  Among  them,  the
dynamic  degree  of  unused  land  was  excluded from the
regression  analysis  due  to  that  its  Koenker  (BP)  is  not
statistically  significant.  Specifically,  is  the  intercept,

 denotes  the  regression  coefficient  of  construction
land,  represents  the  coefficient  of  forest,  signifies
the coefficient of grassland,  represents the coefficient
of arable land,  refers to the coefficient of water areas.
The  GWR  utilizes  the  locally  weighted  least  square
method to estimate the regression parameters.

In this study, the GWR was performed in ArcGIS10.2,
Gaussian kernel function was used to construct the spa-
tial weight matrix, and the optimal bandwidth was selec-
ted using the Corrected Akaike information criterion in-
dex (AICc). Then, GWR was compared with the Ordin-
ary least squares (OLS). 

3　Results and Analyses
 

3.1　Land use changes
Fig. 2 and Table 1 show that forest land was the largest
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Fig. 2    Land use patterns of the PRDUA, China from 1990 to 2018
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land use type, accounting for over 50% of the total area
of  the  PRDUA from 1990  to  2018,  followed  by  arable
land  and  construction  land,  which  accounted  for  over
32% in  total.  During  this  period,  construction  land  in-
creased by 5897.16 km2, with the greatest  land use dy-
namic degree  of  6.01%.  The  dynamic  degree  of  con-
struction  land  reached  up  to  8.85% from 2000  to  2005
and slowed down significantly from 2005 to 2018 as the
urbanization process  became  less  land-dependent.  Ar-
able  land  decreased  by 4099.28 km2 (–0.78%)  from
1990 to 2018, reaching its peak decline during 2000–2005
(–1.84%). Forest land decreased by 1442.81 km2 (–0.14%)
in  northern  Shenzhen  and  northeastern  Dongguan,
mainly  converted  into  arable  land  (2231.51 km2)  and
construction land (1348.43 km2). Water area and grass-
land showed similar trends of rising and then falling, de-
creased by 83.73 km2 and 26.14 km2, respectively, dur-
ing the same period.

As  shown  in Fig.  3,  land  use  changes  varied  among
nine cities in the PRDUA from 1990 to 2018. The mega-
city Guangzhou, super-cities Dongguan and Foshan, and
Zhongshan  (major-city  of  type  I)  had  similar  trends,
with  the  highest  dynamic  degree  of  construction  land
during  2000–2005. During  this  time,  the  dynamic  de-
gree  of  construction  land  in  Zhongshan  was  19.23%,
while that in Dongguan (14.17%) and Foshan (12.54%)
followed.  Among  them,  forest  land  in  Guangzhou  was
better  protected,  decreasing  only  by  2.12%,  while  the
dynamic degree of  grassland in  Dongguan,  Foshan and
Zhongshan  from  2010  to  2018  was  even  positive.  In
contrast, Shenzhen, another mega-city, has been rapidly
expanding  its  construction  land  area,  with  evident  land
use  dynamics  from  2015  to  2018  (1.35%).  Zhuhai,  a
major-city  of  type  II,  had the  highest  construction land
expansion rate of 18.07% between 1990 and 2000, with
negative degrees for all other land use types. Other ma-

jor-cities of type II, e.g., Huizhou, Jiangmen and Zhao-
qing, had relatively stable land use change, with a slow
expansion rate of construction land and a decreased area
of arable land between 1990 and 2018. Huizhou showed
a  high  rate  of  construction  land  expansion  (7.26%)  in
2000–2005.

The land use changes exhibited considerable diversity
within  different  types  of  urban  boundaries  (Table  2).
From 1990 to 2018, the land use dynamic degree of con-
struction land within UOS was the highest (9.49), which
was over  three  times  that  of  RA  (3.01).  Ecological  re-
gions  within  UC,  such  as  arable  land,  forest  land  and
grasslands,  suffered  a  greater  loss  compared  to  those
within other  boundaries  such  as  UB  and  UE.  Con-
versely, the grassland within RA increased from 1990 to
2018  (0.87),  and  most  of  the  converted  construction
land was from unused land. 

3.2　Carbon storage changes
The carbon storage  estimated  by  the  InVEST model  in
this  study  was  validated  by  field  samples  proposed  in
the existing studies (Wang et al., 2008; Yang and Guan,
2008; Zhou et al., 2019). The relative error (RE) of car-
bon storage was less than 15%, indicating the applicab-
ility of our results (Table 3).

The carbon storage in the PRDUA exhibited a spatial
pattern of high wings and the low middle from 1990 to
2018 (Fig. 4). However, the areas with low carbon stor-
age in the PRDUA showed a constant expansion trend.
Based on the calculations of this study, the total carbon
storage significantly declined from 767.34 to 725.42 Tg
C  at  a  rate  of  5.46%  during  the  period  of  1990–2018,
along  with  the  annual  loss  of  carbon  storage  slowed
down from 0.41% to 0.03% (Fig. 5).

The changes  in  carbon storage  of  different  sized  cit-
ies  showed significant  diversity (Fig.  6).  The mega-cit-

 
Table 1    Land use area and dynamic degrees in the Pearl River Delta Urban Agglomeration (PRDUA), China from 1990 to 2018
 

Types
Land use area / km2 Land use dynamic degrees / %

1990 2000 2005 2010 2015 2018 1990–2000 2000–2005 2005–2010 2010–2015 2015–2018

Arable land 18675.30 16969.98 15407.05 14840.56 14765.13 14576.02 –0.91 –1.84 –0.74 –0.10 –0.43

Forest land 35840.74 35507.86 35060.62 34827.73 34453.71 34397.93 0.09 –0.25 –0.13 –0.21 –0.05

Grassland 1318.96 1265.15 1180.98 1125.37 1291.43 1292.82 –0.41 –1.33 –0.94 2.95 0.04

Water area 4594.81 5180.25 5042.26 4929.90 4531.47 4511.08 1.27 –0.53 –0.45 –1.62 –0.15

Construction land 3502.14 5055.60 7293.26 8431.06 9127.29 9399.30 4.44 8.85 3.12 1.65 0.99

Unused land 28.84 28.30 22.93 13.80 13.09 10.02 –0.19 –3.80 –7.96 –1.03 –7.82
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ies experienced a continuous decrease in carbon storage.
Guangzhou  has  the  largest  carbon  storage  loss  from
97.08 Tg C in 1990 to 88.63 Tg C in 2018, while Shen-

zhen decreased  by  4.71  Tg  C.  Unlikely,  different  pat-
terns  of  carbon  storage  loss  can  be  observed  in  super-
cities.  Compared  with  the  two  mega-cities,  Dongguan
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Fig. 3    Land use dynamics degrees of different cities in the PRDUA, China from 1990 to 2018
 
Table 2    Land use dynamics degrees within different types of urban boundaries in the PRDUA, China from 1990 to 2018 / %
 

Areas Arable land Forest land Grassland Water area Construction land Unused land

UE –1.68 –1.38 –1.80 –1.38 7.25 –2.54

UB –2.22 –2.31 –2.56 –2.24 6.95 –2.80

UC –3.45 –3.40 –3.57 –2.95 3.26 –3.57

EB –1.38 –2.00 –1.10 0.10 4.04 –0.39

UOS –0.71 –0.50 –0.73 –1.26 9.49 –2.04

UW –0.81 –1.00 –1.34 –0.12 6.24 –1.93

RA –0.30 –0.04 0.27 0.87 3.01 –2.26
Notes: UE represents urban extent, UB represents urban built-up area, UC represents urban dense center, UOS represents urban open space, UW represents urban
water, EB represents ex-urban built-up area, and RA represents rural area
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presented a similar trend but a larger loss rate of 28.19%.
From 2000 to 2010, the loss of carbon storage (5.23 Tg
C) accounted for 63.23% of the total loss in Dongguan.
In  contrast,  Foshan  exhibited  an  evident  fluctuation  of
carbon storage.  The carbon storage firstly  continuously

decreased by 5.57 Tg C from 1990 to 2005 and then in-
creased  by  3.98  Tg  C  from  2005  to  2018.  The  carbon
storage  of  major-cities  of  type  I  showed  a  U-shaped
trend, with a minimum value in 2010, and the total car-
bon loss in the entire study period was 2.15 Tg C. Major-
cities  of  type  II  exhibited  a  steady  decrease  in  carbon
storage, especially during the period of 2000–2010. Spe-
cifically, Zhuhai had a trend of carbon storage similar to
Zhongshan;  Zhaoqing and Huizhou experienced a  slow
decline of carbon storage from 2000 to 2015 and a fast
decline then  after.  Jiangmen  showed  a  continuous  de-
crease  in  carbon  storage  by  5.35  Tg  C  with  a  similar
trend to mega-cities.

The PRDUA presents a significantly spatial heterogen-
eity of carbon storage in different areas covered by hier-
archical  urban  boundaries  (Fig.  7).  During  1990–2018,
the decrease in carbon storage within UE reached up to
29.98  Tg C,  accounting  for  71.52% of  the  total  carbon
loss  in  the  PRDUA,  and  that  in  RA  occupied  28.48%

 
Table 3    Comparison of carbon storage estimation
 

Area
Carbon storage / Tg C

Relative error / % References
Our results Previous study

PRDUA Forest 526.28 (1990) 485.70 (1989) 8.35 (Yang and Guan, 2008)

PRDUA AGC + BGC + SOC 622.42 (2015) 714.14 (2015) 14.74 (Zhou et al., 2019)

Guangzhou Forest 5.46 (1990) 5.92 (1990) 7.77 (Wang et al., 2008)

Note: The values in parentheses indicate the year of which the carbon storage was measured
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Fig. 4    Spatial distribution of carbon storage in the PRDUA, China from 1990 to 2018
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(–11.94 Tg  C).  Specifically,  UB  experienced  the  max-
imum loss  of  carbon  storage  within  UE  (–22.80  Tg  C,
54.40%),  followed  by  UOS  (–4.04  Tg  C,  9.65%)  and
UC (–2.57 Tg C, 6.12%). 

3.3　 Heterogeneous  response  of  carbon  storage  to
land use changes
The results  demonstrated  a  negative  correlation  of  car-
bon  storage  changes  with  the  land  use  dynamic  degree
of  construction  land  and  water  areas,  while  a  positive
correlation  with  the  land  use  dynamic  degree  of  arable
land, forest land and grassland. As shown in Table 4, the
loss of carbon storage in the PRDUA was mainly due to
the  expansion  of  construction  land,  accounting  for

55.74%  of  the  total  carbon  loss  caused  by  land  use
change.  Most  increase  of  construction  land  (96.63%)
were from the occupation of arable land, forest and wa-
ter areas. Forest degradation caused 54.81% decrease of
carbon storage,  second only  to  the  influence  of  the  ex-
pansion of  construction  land.  As  a  result,  carbon  stor-
age experienced a significant  loss.  Almost  a  half  of  ar-
able  land  (5122.36 km2,  49.48%)  was  converted  into
construction  land,  which  caused  173.92  Pg  C  loss  of
carbon storage.  Notably,  a  small  portion  of  arable  land
was converted  into  water  area,  which  caused  remark-
able carbon storage loss of 105. 41 Pg C. Those land use
conversions  to  forest  and  grassland  with  higher  carbon
density  have  promoted  carbon  storage  of  52.68  Pg  C
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Fig. 6    Carbon storage changes in different cities of PRDUA, China from 1990 to 2018
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and 1.33 Pg C, which reminds us to highlight the veget-
ation  conservation  while  implementing  the  stringent
protection of arable land.

Response of carbon storage to land use changes show-
ed  heterogeneity  among  different  cities  in  the  PRDUA
(Fig. 8). According to the calculations of this study, car-
bon storage change in  Guangzhou had more  sensitivity
to the dynamics of construction land (–0.11) than other
cities,  while  that  in  Shenzhen  was  mainly  affected  by

the dynamics of forest land (8.32). The land use dynam-
ic degree of grassland and water area mostly threatened
the  carbon  storage  changes  in  Foshan  (2.65, –2.21, re-
spectively),  but  posed  the  least  threat  in  Zhuhai  (0.07,
–0.18, respectively)  and  Zhaoqing  (0.19,  0.09  respect-
ively).  The  most  threat  to  carbon  storage  in  Jiangmen,
Zhongshan,  and  Dongguan  was  loss  of  arable  land
(6.43, 4.80,  5.70,  respectively).  The  maximum  coeffi-
cient in Huizhou was dynamics of forest land (6.38).
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Fig.  7    Carbon storage changes (a  to e),  and carbon storage and its  percentage (f)  within different  areas in the PRDUA, China from
1990 to 2018. UE represents urban extent, UB represents urban built-up area, UC represents urban dense center, UOS represents urban
open space, UW represents urban water, EB represents ex-urban built-up area, and RA represents rural area

 
Table 4    Main causes of carbon storage changes in the PRDUA, China from 1990–2018
 

Causes Types of land use change Area / km2 Carbon storage change / Pg C Percentage / %
Construction land expansion Arable land → construction land 2534.57 –173.92 55.74

Forest → construction land 1348.43 –139.40

Water → construction land 903.38 39.26

Grassland → construction land 148.28 –11.69

Forest degradation Forest → construction land 1348.43 –139.40 54.81

Forest → arable land 2231.51 –77.56

Forest → water area 363.74 –53.41

Forest → grassland 431.69 –10.58

Farmland conversion Arable land → construction land 2534.57 –173.92 43.95

Arable land → water area 940.5 –105.41

Arable land → forest 1515.51 52.68

Arable land → grassland 130.82 1.33
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As shown in Table 5, the changes in carbon storage in
UE  were  mainly  affected  by  the  dynamics  of  arable
land,  while  those  in  RA  were  mostly  caused  by  forest
land  conversions.  Within  UE,  land  use  changes  within
different types  of  urban  boundaries  had  different  im-
pacts on the loss of carbon storage. With the increase of
impervious  surface  density,  the  sensitivity  of  carbon
storage to construction land change also increased. The
land  use  dynamic  degree  of  construction  land  had  the
maximum influence  on  carbon  storage  in  UC,  with  the
GWR coefficient of almost 10 times as much as that in
EB. Similarly, the land use dynamics of arable land and

forest  mostly  threatened  the  carbon  storage  in  EB,  but
posed  the  least  threat  in  UW.  Notably,  the  changes  in
grassland  and  water  areas  had  the  maximum  influence
on carbon storage in UW but the minimum influence in
EB, which were opposite compared with other land use
types. 

4　Discussion
 

4.1　The  influences  of  land  use  changes  on  carbon
storage
Land urbanization has a direct impact on ecosystem ser-
vices  (Peng  et  al.,  2017).  We  found  that  land  use
changes  in  the  PRDUA were  dominated  by  conversion
from ecological  areas  to  construction  land,  and  the  ex-
pansion  of  construction  land  corresponded  to  regional
social and economic development,  which were  consist-
ent with the study of Lin et al. (2022). Our results indic-
ated a total decrease of the overall carbon storage in the
PRDUA by 41.92 Tg C from 1990 to 2018, and 60.45%
of which was due to land use changes (Fig. 5, Table 4).
The spatial  distribution and variation of  carbon storage
in  Guangdong Province  were  similar  to  the  findings  of
Wu et al. (2016). Considering that approximate a half of
unrealized  potential  carbon  storage  exist  in  AGB  and
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denotes the regression coefficient of construction land, forest, grassland, arable land, water areas, respectively
 
Table  5    Geographically weighted  regression  (GWR)  coeffi-
cients within different areas in the PRDUA, China from 1990 to
2018
 

Areas k0 k1 k2 k3 k4 k5

UE 1.16 –0.05 2.71 1.69 5.05 –0.81

UOS 1.12 –0.04 3.07 1.48 5.30 –0.80

UW 1.13 –0.04 1.41 2.17 4.26 –1.38

UC 1.26 –0.19 1.46 1.91 4.28 –0.62

UB 1.17 –0.04 2.78 1.72 5.05 –0.76

EB 0.95 –0.02 4.01 1.18 5.70 –0.46

RA 0.90 –0.05 5.82 0.42 4.06 –0.12

k0 k1 k2 k3 k4 k5Notes:  is the intercept, , , , ,  denotes the regression coefficient of
construction land, forest, grassland, arable land, water areas, respectively

LIU Wei et al. Spatially Heterogeneous Response of Carbon Storage to Land Use Changes in Pearl River Delta Urban... 281



BGB  globally  (Walker  et  al.,  2022),  the  loss  of  forest
land and arable land will exert great negative impact on
carbon  storage  (Wang  S  J  et  al.,  2021).  As  the  major
carbon  pool  in  the  PRDUA,  forest  land  played  a  key
role  in  the  carbon  storage  conservation  (Table  4).  The
conversions of  forest  land  to  construction  land  and  ar-
able land  have  caused  remarkable  loss  of  carbon  stor-
age,  which  were  mainly  concentrated  in  the  southern
Guangzhou-Dongguan and Northern Shenzhen. Besides,
the loss of arable land with high carbon density also led
to  the  reduction  of  carbon  storage,  which  were  mainly
distributed along the Pearl River. At the same time, urb-
an expansion has caused significant  decrease of  carbon
storage in Guangdong Province (Wu et al.,  2016; Zhou
et al., 2019; Lin et al., 2022). Notably, the construction
of the national forest city cluster in the PRDUA had ef-
fectively improved carbon storage. From 1990 to 2018,
Nanshan  Park,  Xiaonanshan  Park,  Lianhua  Mountain
Park, and Bijia Mountain Park in Shenzhen have supple-
mented a  large  area  of  forest  land,  which benefited  the
carbon storage  promotion  and  the  ecological  civiliza-
tion  of  the  PRDUA  (Fig.  4). Our  results  better  under-
stood  how  land  use  change  affected  regional  carbon
storage, and suggested that carbon storage could be pro-
moted through enhanced land use management (Walker
et  al.,  2022).  The  relative  error  (RE)  was  adopted  to
compare the results of InVEST model and filed sample
(Table 3), which promoted the accuracy of carbon stor-
age estimation (Houghton, 2003).

It has been pointed out that urban scale and urban ex-
pansion  modes  have  a  significant  effect  on  urban  land
use patterns. The filling model of urban expansion may
occupy a large proportion of ecological land if the urb-
an scale grows rapidly (Yu et al., 2018). Further, ecolo-
gical  response  to  urban  development  showed  notable
spatial  heterogeneity in different types of cities (Huang
et  al.,  2020; Yang  et  al.,  2020).  The  long-term  time
series evaluation of carbon storage in the PRDUA veri-
fied these conclusions to some extent and demonstrated
three  types  of  carbon  storage  changes  in  nine  cities
(Fig.  6):  1)  the  rapid  expansion  of  construction  land
mainly encroached  on  arable  land  and  forest  land,  res-
ulting  in  the  decline  of  carbon storage  in  the  mega-cit-
ies such as Guangzhou and Shenzhen, and the super-city
Dongguan;  2)  From 2000 to  2015,  medium-sized cities
adjacent  to  the  Pearl  River  system,  such  as  Foshan,
Zhongshan and Zhuhai, experienced significant conver-

sions of water areas into urban construction land and ar-
able  land (Wu et  al.,  2016).  Consequently,  the  changes
of  carbon  storage  in  the  three  cities  at  this  stage  were
evident. 3) Huizhou, Zhaoqing and Jiangmen, three ma-
jor-cities  of  type  II  located  in  the  periphery  of  the
PRDUA, experienced  different  rates  of  decline  in  car-
bon storage from 1990 to 2018. Before the year of 2000,
carbon storage had only a slight decline due to the small
urban  scales  and  slow  expansion  of  these  cities,  but
turned  to  a  significant  decline  after  2000  because  of
booming economic development (Wu et al., 2016). 

4.2　Informing land use decisions
Regional  land  use  decisions  should  incorporate  spatial
heterogeneity  of  land  use  patterns  and  its  effects
(Omernik and Griffith, 2014; Schirpke et al., 2020). The
results  of  this  study  indicated  different  magnitudes  of
linear  correlation  between  carbon  storage  changes  and
land  use  dynamic  degrees  (Fig.  8, Table  5). The  find-
ings demonstrated that the relationship between land use
change  and  carbon  storage  varied  among  cities  and
across spatial gradients of urban agglomerations. Previ-
ous studies had shown similar findings across the urban
hierarchy  (Sun  et  al.,  2022)  or  along  an  urban-rural
gradient  (Larondelle  and  Haase,  2013).  From  the
coupled view of administrative units and physical cities,
our  results  can  provide  more  accurate  information  on
carbon  storage  in  different  hierarchies  of  urban  space
and support regional planning.

From  an  administrative  perspective,  different  levels
of cities showed varying responses to land-use changes,
with  carbon  storage  differing  (Fig.  8).  Mega-cities  and
super-cities  had  significant  variation  in  carbon  storage
with land use dynamics, highlighting the need for strict
monitoring  and control  measures  of  land  use  activities.
For  example,  such  as  limiting  disorderly  expansion  of
construction land in Guangzhou, developing forest land
in Shenzhen, protecting grassland and water in Foshan,
and  increasing  arable  land  in  Dongguan  are  needed.  In
contrast,  major-cities  of  type  II,  such  as  Zhuhai  and
Huizhou,  had  relatively  stable  carbon  storage  despite
land  use  changes,  and  could  prioritize  sustainable  and
green development. Cities with sensitive carbon storage
to  land-use  changes  should  adopt  innovative  land  use
technologies to balance development requirements with
carbon storage protection (Cheng et al., 2022). Our res-
ults  also  indicated  that  rapidly  urbanizing  areas  on  the
Chinese coast exhibited significant carbon storage chan-
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ges, as also observed in Zhu et al. (2022).
From the view of physical  entities of cities,  the rela-

tionship  between  land  use  change  and  carbon  storage
varied across  the  spatial  gradient  of  urban  agglomera-
tions (Table 5). Within UC, the rapid expansion of con-
struction land  has  threatened  carbon  storage  and  con-
trolling its continuous growth is necessary. Additionally,
as  impervious  surface  density  decreases,  green  spaces
positively impact carbon storage in UB. Therefore, pro-
tecting  urban  green  spaces  is  key  to  promoting  carbon
storage  (Bonilla-Bedoya  et  al.,  2020; Dangulla  et  al.,
2021). The  results  also  showed  that  forest  land,  grass-
land, and water  areas  exerted a  positive  impact  on car-
bon storage within UE. However, due to the scarcity of
ecological  land  within  urban  areas,  compact  green  city
centers  with  high-density  land  use  and  efficient  green
infrastructure may contribute to more sustainable devel-
opment  than  large  ecological  land  patches  (Stott  et  al.,
2015; Tappert  et  al.,  2018).  Within  the  EB,  promoting
urbanization while  ensuring the  quantity  and quality  of
arable land is a major challenge for carbon storage con-
servation. In rural areas, large-scale forest land manage-
ment  is  crucial  for  carbon  storage  conservation  in  the
entire urban agglomeration (Sun et al., 2022). 

4.3　Limitations and future works
This  study  investigated  the  heterogeneous  response  of
carbon storage change to land use in the PRDUA from
the perspective of administrative units and physical cit-
ies.  However,  there  are  some  limitations.  Firstly,  land
use  is  an  interactive  process  between  humans  and  the
environment. We used hierarchical urban boundaries to
explore the spatial heterogeneity of carbon storage with-
in different  physical  entities  of  cities  and  further  con-
sidered the  different  effects  of  socioeconomic  develop-
ment  of  cities  on  carbon  storage  among  administrative
units. In the future, integrating both types of boundaries
may provide more spatially explicit ecosystem manage-
ment strategies; Secondly, the InVEST model was used
to evaluate  carbon storage due to  the  unavailable  long-
term and large-scaled monitoring data of carbon density
(Houghton  and  Hackler,  1999; Houghton,  2003).  The
parameters of carbon density in the InVEST were fixed
based  on  the  direct  field  measurements  (Fang  et  al.,
2001; Ni,  2001; Wang et al.,  2001; Chuai et al.,  2013).
Although these parameters have been validated in previ-

ous studies, field survey is still required to improve the
estimation  accuracy  of  carbon  storage;  Thirdly,  our
study revealed how carbon storage respond to  land use
changes  in  the  PRDUA from 1990 to  2018 at  different
sizes of cities and hierarchical boundaries within physic-
al  cities.  The scale  effect  should  be  further  explored to
deepen our understanding of the influencing mechanism. 

5　Conclusions

Based on the land use data from 1990 to 2018, we took
the  Pearl  River  Delta  as  a  case  and  used  the  InVEST
model to explore the impact of land use changes on car-
bon storage  across  spatial  gradients  of  the  urban  ag-
glomeration. Different from previous studies,  this work
analyzed the  changes  in  carbon storage and their  influ-
encing  factors  within  hierarchical  urban  boundaries
from the perspective of physical cities. Our findings are
more applicable to decision making of regional develop-
ment of urban agglomerations.

We  found  that  construction  land  expansion  was  the
main land use change in the PRDUA, with the area in-
crease of 5897.16 km2 and land use dynamic degree of
6.01%. Carbon storage in  the  PRDUA exhibited a  spa-
tial pattern  of  high  wings  and  the  low  middle  and  de-
creased  by  41.92  Tg  C  from  1990  to  2018,  which
mainly caused by construction land expansion (55.74%)
and forest degradation (54.81%). According to the coef-
ficients of GWR, we found remarkable heterogeneity of
carbon storage changes in different sized cities and hier-
archical urban  boundaries.  Among  different  cities,  car-
bon storage in mega-cities and super-cities varied great-
er with land use change, for example, construction land
in Guangzhou had a regression coefficient of –1.11 and
forest land in Shenzhen had a coefficient of 8.32. With-
in  different  types  of  urban  boundaries,  carbon  storage
was mainly affected by farmland conversion within urb-
an  extent  (5.05)  and  forest  land  degradation  in  rural
areas  (5.82).  In  addition,  coefficients  of  construction
land’s dynamic degree in UC (0.19), UB (0.04) and EB
(0.02) dropped with the decrease of impervious surface
density,  which  means  the  sensitivity  of  carbon  storage
changes to the expansion of construction land gradually
decreased. In future, the fragmentation and expansion of
construction land  should  be  controlled,  and  more  pre-
cise ecological land protection policies should be imple-
mented within the hierarchical boundaries of cities. 
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Appendix

 
 

Table S1    Carbon intensity for each land use type in the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model
 

Land use types AGCD BGCD SOCD DOCD Sources

Arable land 17.55 11.59 80.70 2.24 (Fang et al., 2001; Ni, 2001; Wang et al., 2001; Chuai et al., 2013)

Forest land 31.83 6.37 105.7 2.94 (Fang et al., 2001; Ni, 2001; Chuai et al., 2013)

Grassland 14.45 17.35 88.06 2.45 (Fan et al., 2008; Chuai et al., 2013)

Water 0 0 0 0 (Zhang et al., 2012)

Construction land 7.61 1.52 34.33 0 (Ni, 2001; Zhang et al., 2017)

Unused land 10.36 2.07 34.42 0.96 (Ni, 2001; Zhang et al., 2017)
Notes: AGCD represents above ground carbon density, BGCD represents below ground carbon density, SOCD represents soil organic carbon density, and DOCD
represents dead organic carbon density
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