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Abstract: Evapotranspiration (ET) is the key to the water cycle process and an important factor for studying near-surface water and heat
balance. Accurately estimating ET is significant for hydrology, meteorology, ecology, agriculture, etc.. This paper simulates ET in the
Madu River Basin of Three Gorges Reservoir Area of China during 2009−2018 based on the Soil and Water Assessment Tool (SWAT)
model, which was calibrated and validated using the MODIS (Moderate-resolution Imaging Spectroradiometer)/Terra Net ET 8-Day L4
Global 500 m SIN Grid (MOD16A2) dataset and measured ET. Two calibration strategies (lumped calibration (LC) and spatially distrib-
uted  calibration  (SDC))  were  used.  The  basin  was  divided  into  34  sub-basins,  and  the  coefficient  of  determination  (R2)  and  Nash-
Sutcliffe efficiency coefficient (NSE) of each sub-basin were greater than 0.6 in both the calibration and validation periods. The R2 and
NSE were higher in the validation period than those in the calibration period. Compared with the measured ET, the accuracy of the mod-
el on the daily scale is: R2= 0.704 and NSE = 0.759 (SDC results).  The model simulation accuracy of LC and SDC for the sub-basin
scale  was R2 =  0.857, R2 =  0.862  (monthly)  and R2 =  0.227, R2 = 0.404  (annually),  respectively;  for  the  whole  basin  scale  was R2 =
0.902, R2 = 0.900 (monthly) and R2 = 0.507 and R2 = 0.519 (annually),  respectively.  The model performed acceptably,  and SDC per-
formed the  best,  indicating  that  remote  sensing  data  can  be  used  for  SWAT model  calibration.  During  2009−2018,  ET  generally  in-
creased in the Madu River Basin (SDC results, 7.21 mm/yr), with a multiyear average value of 734.37 mm/yr. The annual ET change
rate  for  the  sub-basin  was  relatively  low  upstream  and  downstream.  The  linear  correlation  analysis  between  ET  and  meteorological
factors shows that on the monthly scale, precipitation, solar radiation and daily maximum and minimum temperature were significantly
correlated with ET; annually,  solar  radiation and wind speed had a moderate correlation with ET. The correlation between maximum
temperature and ET is best on the monthly scale (Pearson correlation coefficient R = 0.945), which may means that the increasing ET
originating  from increasing  temperature  (global  warming).  However,  the  sub-basins  near  Shennongjia  Nature  Reserve  that  are  in up-
stream have a negative ET change rate, which means that ET decreases in these sub-basins, indicating that the ‘Evaporation Paradox’
exists  in  these  sub-basins.  This  study  explored  the  potential  of  remote-sensing-based  ET data  for  hydrological  model  calibration  and
provides a decision-making reference for water resource management in the Madu River Basin.
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1　Introduction

The coupling of basin-scale ecological and hydrological
processes  has  attracted  the  attention  of  researchers
(Newman  et  al.,  2006), and  physically-based  hydrolo-
gical  models  use  variables  and  mathematical  equations
to model and calculate the interaction of climate-vegeta-
tion-hydrology processes to help us to understand vari-
ous  physical  processes  that  occur  in  the  real  world.
Thus,  these  models  have  become  an  important  tool  for
quantitatively  estimating  water  distribution  in  various
environmental areas (Akoko et al., 2021). It is very im-
portant to calibrate and validate hydrological models be-
fore  using  them  for  making  predictions  and  decisions,
however,  due  to  intensive  human  actions  and  climate
change, the  calibration  of  physically-based  water  bal-
ance  models  has  become  very  challenging  (Becker  et
al., 2019). Calibrations are usually performed with pro-
cess-based  variables.  One  variable  of  the  hydrological
processes  that  is  closely  related  to  water  distribution  is
evapotranspiration (ET). As an important component of
the terrestrial water cycle, ET links the terrestrial hydro-
logical, energy,  and  carbon  cycles.  Accurately  estimat-
ing regional ET is crucial for a wide range of research in
hydrology,  climate,  crop yield  forecasting,  and drought
monitoring (Zhang et  al.,2010; Wu et  al.,  2020; Jepsen
et  al.,  2021; Zhang  et  al.,  2021; Zhuang  et  al.,  2021).
However, the estimation of ET is one of the most diffi-
cult components  in  the  water  cycle  to  estimate  accur-
ately  due  to  the  heterogeneity  of  the  land  surface  and
many other factors (Mu et al., 2007). There are some in
situ  measuring  methods,  such  as  weighing  lysimeters
(Howell  et  al.,  1991),  the  Bowen  ratio  (Bowen,  1926),
eddy  covariance  (Dyer,  1961),  heat-pulse  sensors  and
sap flow gauges (Wang et al., 2021), that can obtain the
actual ET value. However, with these methods, it is in-
herently difficult to measure and predict ET at large spa-
tial scales continuously over long time periods (Zeng et
al., 2012). Eddy covariance is a relatively popular meth-
od for both actual ET measurements and ET estimation
validation and is widely applied in global water and en-
ergy  flux  research  (Zhang  et  al.,  2010; Li  et  al.,  2017;
Jepsen et al., 2021; Zhuang et al., 2021), but it is discon-
tinuous  in  the  space-time  domain  and  is  difficult  to
measure at the regional scale (Zheng et al., 2020). More
specifically, basins  in  many  parts  of  the  world  are  un-
gauged  or  poorly  gauged  (Sivapalan  et  al.,  2003).  For

instance,  the  area  examined  in  this  study  is  located  in
the  Three  Gorges  Reservoir  area  of  China,  which  is  a
poorly  gauged  catchment  (Bosshard  and  Zappa,  2008).
In this case, remote sensing seems to have great poten-
tial  for  estimating ET. Many ET estimation approaches
are  driven  by  remote  sensing  data,  such  as  the  water
mass  balance  equation  (Zeng  et  al.,  2012), energy  bal-
ance  model  (Cui  et  al.,  2021),  machine  learning  model
(Cui  et  al.,  2021; Douna  et  al.,  2021),  surface  energy
balance algorithm (Bastiaanssen et al., 1998), and phys-
ically-based  models  (Immerzeel  and  Droogers,  2008;
Wu  et  al.,  2020; Jepsen  et  al.,  2021).  Moreover,  there
are  some  products  of  remotely  sensed  ET  estimation,
such  as  the  MOD16  (MODIS  (Moderate  Resolution
Imaging  Spectroradiometer)  Global  Evapotranspiration
Project) ET dataset (Mu et al., 2011) and GLEAM (The
Global  Land  Evaporation  Amsterdam  Model)  product
(Xu et al., 2019). These ET products are currently avail-
able at a much finer spatial resolution than the effective
spatial resolution of most stream gauges, the alternative
and  prevalent  source  of  calibration  data  (Jepsen  et  al.,
2021). Some studies have integrated remote sensing ET
into  hydrological  model  calibration  (Gui  et  al.,  2019;
Herman  et  al.,  2020; Jiang  et  al.,  2020; Jin  and  Jin,
2020; Zhang  et  al.,  2020c),  and  the  SWAT  (Soil  and
Water  Assessment  Tool)  model,  Xinanjiang  model,
SIMHYD (the  Simple  Lumped  Conceptual  Daily  rain-
fall-runoff model)  model,  and  VIC  (Variable  Infiltra-
tion  Capacity)  model  are  used  in  these  studies.
However,  they  all  paid  more  attention  to  runoff  and
used  runoff  data  in  the  calibration  process,  but  many
areas  lack  runoff  data,  so  it  is  meaningful  to  explore
how  to  use  these  models  in  these  areas.  The  SWAT
model is a process-oriented and physically-based model
and is widely recognized as one of the top hydrological
models  (Alemayehu  et  al.,  2017; Akoko  et  al.,  2021).
There  are  many studies  on modelling watersheds  using
the SWAT model, and remote sensing data are also used
to verify the accuracy of the model (Zhang et al., 2021),
but there is less research on calibrating the SWAT mod-
el using remote sensing data to study ET. Therefore, it is
of  great  significance  to  study  how  to  make  full  use  of
the advantages  of  remote  sensing  data  and  build  a  hy-
drological model for ungauged areas to manage region-
al water resource management. The area studied in this
work, the Madu River Basin, is located in the core area
of the Three Gorges Reservoir area of China and is adja-
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cent to  the  Shennongjia  National  Nature  Reserve.  Wa-
ter  resource  monitoring  in  this  region  is  important  for
the water ecological security of Shennongjia Nature Re-
serve and the Three Gorges. The main objectives of this
study  were:  1)  to  use  a  remote  sensing  ET  product  to
calibrate the SWAT model, 2) to assess the ability of the
calibrated  SWAT  model  to  simulate  ET  in  the  Madu
River Basin, and 3) to reveal the spatiotemporal change
in  ET in  the  Madu  River  Basin.  In  addition,  this  study
explored the potential  of remote-sensing-based ET data
for  hydrological  model  calibration,  which  can  provide
reference for related studies. 

2　Materials and Methods
 

2.1　Study area
The  Madu  River  Basin  is  in  the  eastern  Chongqing  in
Central  China,  which  is  the  core  area  of  the  Three
Gorges  Project  (Fig.  1). The  region  has  abundant  rain-
fall and numerous streams and is  adjacent  to  the Shen-
nongjia  National  Nature  Reserve,  Hubei  Province  of
China. The Madu River Basin (549.7 km2) has two main
tributaries,  the Pingding River and the Miaotang River,
which both  flow out  from Shennongjia  Nature  Reserve
and  flow  southwest  into  Wushan  County,  Chongqing
City,  where  they  meet  at  the  Lianghekou  outlet  in
Wushan County to form the Madu River. The river con-
tinues  to  flow  westward  to  the  Sancheng  Gorge  in

Wushan County, joins the Daning River, flows into the
Yangtze  River  in  Wushan  County,  and  passes  through
the  Three  Gorges  Dam.  The  basin  is  located  between
31°11′53″N−31°31′30″N and 109°50′45″E−110°9′25″E,
which is  a  well-protected  scenic  spot  with  little  influ-
ence  from  human  activities  and  is  known  as  the  small
Three Gorges. The upstream of the basin is a subalpine
basin, where distributed some wetland areas with many
peats, which  has  attracted  the  attention  of  many  re-
searchers. The topography of the area is undulating. The
elevation range is 141−2797 m, which is high in the east
and  low  in  the  west  and  is  high  in  upstream,  low  in
downstream  and  low  near  the  river.  The  average  slope
of the basin is 31.03°. The basin has a subtropical mon-
soon climate with the same periods of rain and heat, and
the precipitation  and  temperature  in  the  vertical  direc-
tion change significantly and have a significant vertical
distribution climate characteristic. The upstream basin is
a  critical  zone  (Dajiuhu  peatland,  Shennongjia  Nature
Reserve)  in  which  a  comprehensive  monitoring  system
has been deployed (Huang et al., 2017). An eddy covari-
ance (EC) tower was set up here (sub-basin No. 1) and
provides  us  with  ET  measurement  data  (Weng  et  al.,
2020). 

2.2　SWAT model description
A SWAT model was built in this study. The model was
described  in  the  literature  (Arnold  et  al.,  1998).  The
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Fig. 1    Geographical and the eddy covariance (EC) tower site locations of the Madu River Basin, central China
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SWAT model is a comprehensive and distributed mod-
el system.  Data  about  meteorology,  soil  properties,  to-
pography, land-use  type,  and  land  management  prac-
tices in the watershed are necessary to simulate physic-
al processes associated with water movement, sediment
movement,  crop  growth,  nutrient  cycling, etc.  (Ale-
mayehu et al., 2017). Based on the powerful spatial pro-
cessing function  of  the  model,  a  basin  can  be  parti-
tioned  into  sub-basins  using  topographic  information
and stream networks (Ouessar et al., 2009). Then, these
sub-basins  are  divided  into  hydrological  response  units
(HRUs),  which  represent  a  combination  of  different
land uses, soil types and slope classes. A total of 34 sub-
basins  and  188  HRUs  were  delineated  in  the  Madu
River  Basin.  HRUs  are  the  main  calculation  units  of
SWAT, where the simulations are controlled by the wa-
ter balance equation (Neitsch et al., 2009; Sirisena et al.,
2020). The water balance is  expressed with the follow-
ing Equation (1):

SWt = SW0+

t∑
i=1

(Rday−Qsurf −Ea−Wseep−Qgw) (1)

where SWt and SW0 represent  the  final  and  initial  soil
water contents, respectively, t is the final day, Rday is the
amount of precipitation on day i, Qsurf is the amount of
surface  runoff  on  day i, Ea, Wseep,  and Qgw are  the  ET,
the amount of  water  entering the vadose zone from the
soil profile, and the return flow on day i. All parameters
are expressed in mm (Neitsch et al., 2009).

We utilize the actual ET as the fitting variable. Actu-
al ET is calculated in SWAT as the sum of the potential
evaporation from  the  intercept,  actual  plant  transpira-
tion  and  actual  soil  water  evaporation  (Becker  et  al.,
2019).  The Penman-Monteith  method (Monteith,  1965)
was used in SWAT to calculate potential plant transpira-
tion and potential soil water evaporation (Immerzeel and
Droogers, 2008; Becker et al.,  2019). SWAT calculates
reference ET  with  fixed  resistance  factors  for  a  refer-
ence  alfalfa  crop  and  plant  type-specific  potential  ET
(ETp) with varying plant-specific parameters, which are
determined  by  leaf  area  indices  and  crop  heights.  The
actual plant  transpiration  indicates  the  actual  plant  wa-
ter uptake, which is estimated by adjusting ETp.  Actual
soil  water  evaporation  is  calculated  using  a  soil  cover
index  and  available  water  storage  capacity  in  the  soil.
All the physical hydrologic processes were computed on
a  monthly  time  step  during  2008−2018.  A  daily  time

step simulation was also carried out during 2017−2018. 

2.3　Input data
There are two types of data used for the model. The data
and their sources are listed in Table 1. The first type of
data includes basic geographic data as follows. 1) Digit-
al elevation model (DEM): a 30 m resolution DEM from
the Advanced  Spaceborne  Thermal  Emission  and  Re-
flection  Radiometer  Global  Digital  Elevation  Model
Version 2 (ASTER GDEMV2) for the generation of the
river network and the sub-basin. 2) Land use: 10 m res-
olution land  cover  data  from  the  Finer  Resolution  Ob-
servation  and  Monitoring  of  Global  Land  Cover  with
10m  resolution  (FROM-GLC10)  (Gong  et  al.,  2019).
3) Soil  database:  The soil  raster  and soil  attribute data-
bases  were  obtained  from  the  Harmonized  World  Soil
Database version 1.1 (HWSD V1.1) (FAO et al., 2009).
4) Slope data: Slope data are calculated from DEM data
in ArcGIS. 5) Meteorological data: The China Meteoro-
logical  Assimilation  Driving  Datasets  for  the  SWAT
model  (Version  1.2)  (CMADS  V1.2)  (Meng  et  al.,
2018), which has been widely used in hydrological stud-
ies  (especially  the  SWAT model)  (Zhang et  al.,  2020a;
Dao et al., 2021; Gao et al., 2021; Zhuang et al., 2021),
is used in this study. Its precipitation data were stitched
using  Climate  Prediction  Center  Morphing  Technique
(CMORPH)’s global precipitation products and the Na-
tional  Meteorological  Information  Centre’s  data  of
China (which is based on CMORPH’s integrated precip-
itation products).  The latter  contains  daily  precipitation
records  observed  at 2400 national meteorological  sta-
tions  and  the  CMORPH  satellite’s inversion  precipita-
tion products.  All  these  basic  geographic  data  are  ex-
tracted at  the  watershed scale.  The second type of  data
includes the following. 1) Remote sensing ET data: the
MODIS/Terra Net Evapotranspiration 8-Day L4 Global
500 m SIN Grid (MOD16A2) dataset. This product has
released  the  global  evapotranspiration  data  since  2001,
and many basic research or methodological studies have
used  these  data  (Zheng  et  al.,  2020; 2021; Ji  et  al.,
2021). 2) Measured ET data derived from the EC tower
site.  The  model  behind  the  MOD16A2  product  uses  a
modified  Penman-Monteith  approach,  which  is  similar
to the method used in the SWAT model, to predict evap-
oration  from  wet  and  dry  soil,  evaporation  from  wet
canopies, and transpiration from dry canopies (Zhang et
al.,  2010; Jepsen  et  al.,  2021).  The  ET  in  individual
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MODIS  cells  was  aggregated  to  monthly  values  using
time-weighted  averaging.  Then,  the  average  value  of
cells in the range is calculated according to the range of
each sub-basin. 

2.4　Model calibration and validation
Arc-SWAT (Version 2012) was used to set up the mod-
el.  After  the  initial  SWAT model  setup  and  simulation
according to  the default  parameters,  to  improve the ac-
curacy  of  the  model,  the  simulated  ET  was  used  as  a
calibration target in this optimization process. To verify
the simulation ability of the model, two core calibration

strategies  were  adopted.  The  first  strategy  was  lumped
calibration (LC),  and  the  second  was  spatially  distrib-
uted  calibration  (SDC).  Fourteen  parameters  related  to
ET were selected for calibration (Table 2). In LC, to be
more representative, we selected seven sub-basins (No. 1,
No. 8, No. 12, No. 16, No. 21, No. 24 and No. 25) that
are symmetrically distributed along the northeast-south-
west  direction,  occupying the upper,  middle,  and lower
reaches. At the same time,  in terms of geographical  at-
tributes,  this  combination  includes  all  land  use  types,
soil types and slope classifications within the study area.
Their  remote  sensing  ET  was  taken  as  the  observation

 
Table 1    Data used in the study
 

Input data Format Details Source

DEM Raster ASTER GDEMV2 GS Cloud

Land use Raster FROM-GLC10 THU

Soil Raster and Microsoft Database HWSD v1.1 TPDC

Meteorological Txt CMADS V1.2 TPDC

ET Raster MOD16A2 LAADS DAAC

ET Txt EC Tower SESCUG
Notes: DEM: Digital Elevation Model; ET: evapotranspiration; ASTER GDEMV2: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model Version 2; FROM-GLC10: Finer Resolution Observation and Monitoring of Global Land Cover with 10 m resolution; HWSD v1.1:
Harmonized World Soil Database version 1.1; CMADS V1.2: The China Meteorological Assimilation Driving Datasets for the SWAT model (Version 1.2);
MOD16A2: MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid; EC Tower: Eddy Covariance Tower; GS Cloud: Geospatial Data Cloud,
http://www.gscloud.cn/home (Accessed 12 June 2021); THU: Tsinghua University, http://data.ess.tsinghua.edu.cn/fromglc10_2017v01.html (Accessed 12 June
2021); TPDC: National Tibetan Plateau Data Center, http://www.tpdc.ac.cn/zh-hans/. (Accessed 12 June 2021); LAADS DAAC: Level-1 and Atmosphere Archive
& Distribution System Distributed Active Archive Center, https://ladsweb.modaps.eosdis.nasa.gov/ (Accessed 12 June 2021); SESCUG: School of Environmental
Studies, China University of Geosciences, Wuhan, https://ses.cug.edu.cn/ (Accessed 12 June 2021)

 
Table 2    Parameters used in the study
 

Parameter Meaning

ALPHA_BF Baseflow alpha factor / d

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur / mm

SOL_AWC (1) Available water capacity of the first soil layer

GW_REVAP Groundwater ‘revap’ coefficient

SOL_BD (1) Moist bulk density of the first soil layer

GW_DELAY Groundwater delay / d

CH_N2 Manning’s ‘n’ value for the main channel

CH_K2 Effective hydraulic conductivity in main channel alluvium

ALPHA_BNK Baseflow alpha factor for bank storage

ESCO Soil evaporation compensation factor

EPCO Plant uptake compensation factor

HRU_SLP Average slope steepness

SOL_ALB (1) Moist soil albedo of the first soil layer

BIOMIX Biological mixing efficiency
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value  of  the  calibration  process,  and  all  sub-basins
shared  the  calibrated  parameters  of  the  selected  sub-
basins. In  SDC,  all  sub-basins  were  calibrated  separ-
ately. SWAT-CUP  (Version  2019,  Swiss  Federal  insti-
tute  of  Aquatic  Science  and  Technology,  Swizerland)
was used for the calibration. The Sequential uncertainty
fitting  Version  2  (Sufi-2)  algorithm  (Abbaspour  et  al.,
2004) was adopted for calibration. The number of simu-
lations for a single calibration was set as 500 times, and
multiple iterations were carried out  until  the best  result
was  achieved.  We  considered  2008  as  the  year  for  the
warm-up period, 2009−2014 as the year of model calib-
ration,  and 2015−2018 as the year of  model validation.
Furthermore, the  model  was verified with  remote sens-
ing data during 2015−2016 and verified with measured
data  from  the  EC  tower  site  during  2017−2018.  The
coefficient  of determination (R2) and Nash-Sutcliffe ef-
ficiency  coefficient  (NSE)  (maximization)  (Krause  et
al., 2005) were used as the objective functions. We also
give Root Mean Square Error (RMSE) and relative error
as part of the accuracy evaluation. The entire flowchart
of this optimization process is summarized in Fig. 2. 

3　Results
 

3.1　Comparison of the validation results
The simulated monthly ET was compared to the ET data
derived from the MOD16A2 and EC tower sites. Fig. 3
shows  the  simulation  accuracy  after  the  LC  and  the
SDC. Fig.  3a shows  the  calculated  values  of NSE,  and
the values of all 34 sub-basins are greater than 0.6. Fig. 3b
shows  the  calculated  value  of R2,  and  the  values  of  all
34  sub-basins  are  greater  than  0.7.  It  is  believed  that
when R2 > 0.6 and NSE > 0.5, the model simulation res-
ults are acceptable (Moriasi et al., 2007). Moreover, the
values of NSE and R2 in the validation period are gener-
ally higher than those in the calibration period, which is
contrary  to  the  general  situation.  The  possible  reasons
for this unusual result are the distribution of datasets and
the  basic  input  data.  Overall,  the  simulation  results  of
the  two  strategies  reasonably  met  our  expectations.  In
addition,  the  difference  between  the R2 of  the  two
strategies is very small, and the NSE of the SDC strategy
is  significantly  higher  than  that  of  the  LC  strategy  in
both the calibration and validation periods. Fig. 4 shows
the relationship between simulated ET and measured ET
from 21 October 2017 to 31 August 2018. The accuracy

is  good (R2 =  0.704, NSE =  0.759, RMSE =  1.97)  on a
daily  time  scale,  and  the  simulated  ET  is  generally
lower.  A possible  reason is  that  through the  process  of
model calibration,  the  fitting  degree  between the  simu-
lated ET and the remote sensing value is improved, but
remote  sensing  itself  is  an  indirect  estimation  method,
that deviates from the measured value. Overall, the per-
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formance  of  the  model  is  acceptable,  and  the  spatially
distributed calibration strategy has the best performance.
The simulated monthly ET (SDC) and observed monthly
ET are listed in Table S1. 

3.2　Comparison of the simulation results
There are several ways to evaluate and compare the sim-
ulation accuracy of the two calibration strategies. Fig. 5
shows the monthly and annual scatter plots for the com-
parison  between  the  simulation  results  of  the  two

strategies  and  the  remote  sensing  data  at  the  sub-basin
and basin levels. The figure shows that the goodness-of-
fit decreases  with  spatial  detail  but  increases  with  tem-
poral  detail.  The R2 of  the monthly basin,  for  example,
is as high as 0.900 (R2=0.902 (LC), R2 = 0.900 (SDC)),
while at the sub-basin level, the R2 is nearly 0.860 (R2 =
0.857  (LC), R2=0.862  (SDC)).  Over  time,  the  patterns
observed  are  not  similar.  The R2 at  the  monthly  sub-
basin level is higher than 0.8, while the R2 decreases be-
low 0.5 at the annual sub-basin level, and the same pat-
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tern is also observed at the basin level. Fig. 6 shows the
distribution diagram  of  the  value  obtained  by  subtract-
ing the value of remote sensing data from the annual ET
obtained  by  the  simulation  of  all  sub-basin  during
2009−2016. The LC results have more outliers, and the
median is greater than that of SDC, while the SDC res-
ults are more evenly distributed. Fig. 7a shows the com-
parison  of  the  accumulated  values  of  ET  obtained  by
simulation over the years with every sub-basin. Fig. 7b
is a clustered bar chart of the value obtained by subtract-
ing the value of  remote sensing data  from the accumu-
lated values of ET that were obtained by simulation over
the years with every sub-basin. The SDC result fits well
with  the  remote  sensing data,  while  the  result  of  LC is
only  close  to  the  remote  sensing  data  in  several  sub-
basins,  and  the  others  do  not  match  or  even  show  the
opposite trend. At the basin scale, the sum of ET of 8 yr
(2009−2016) of remote sensing data is 5945.26 mm, the
result  of  LC  is 5937.82 mm,  and  the  result  of  SDC  is
5953.07 mm. 

3.3　Spatiotemporal change in ET
Based on the simulation results, the spatial and tempor-
al  distribution  characteristics  of  ET  in  the  Madu  River
Basin were analysed. During 2009−2018, the annual av-
erage  ET  of  the  Madu  River  Basin  was  734.37  mm/yr
(SDC results), and ET showed an upwards trend during
2009−2018 (7.21 mm/yr) (Fig. 8a). On a monthly scale,
the trends of ET and precipitation with time are similar
(Fig.  8b).  They  are  high  in  summer  (June−September,

highest in July or August) and are left-right symmetric-
al  unimodal  throughout  the  year,  but  throughout  the
year,  their  highest  values  do  not  appear  in  the  same
month (except 2010 and 2012). Fig. 9 shows the spatial
distribution  of  ET  in  the  Madu  River  Basin. Fig.  9a
shows the spatial distribution (at sub-basin scale) of the
annual  average  ET  during  2009−2018.  The  No.  3,  No.
12, No. 19, and No. 26 sub-basins have the highest an-
nual  average  ET  (approximately  800  mm/yr)  while  the
No.  11,  No.  14  and  No.  34  have  the  lowest  value  (ap-
proximately  650  mm/yr),  the  No.  26  sub-basin  has  the
highest annual average ET (819.31 mm/yr), and the No.
11 sub-basin has the lowest value (625.30 mm/yr). Fig. 9b
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shows the change rate of ET during 2009–2018 (Natur-
al breaks (jenks) method is adopted for change rate clas-
sification). Most sub-basins show an upwards trend, and
the values of 2009 in all sub-basins are anomalies (they
are higher than the values in 2010). The No. 19, No. 25,
No. 26, No. 28, and No. 31 sub-basins have the highest
change  rates,  and  the  sub-basins  that  are  upstream  and
downstream have the lowest change rates. 

3.4　ET-meteorological factors relationships
Considering  the  incomplete  corresponding  relationship
between  ET  and  precipitation,  the  results  of  the  linear

correlation  analysis  between  monthly  and  annual  ET
from  SWAT  and  meteorological  factors  are  listed  in
Table 3. All meteorological factors are converted to the
scale corresponding  to  ET  during  the  calculation.  Pre-
cipitation  (PCP),  average  maximum  air  temperature
(Tmax),  average  minimum  air  temperature  (Tmin), relat-
ive humidity (RH) and solar  radiation (SOR) are posit-
ively  correlated  with  monthly  ET,  while  wind  speed
(WIND)  shows  no  correlation  with  monthly  ET.  PCP,
SOR  and  WIND  are  positively  correlated  with  annual
ET, while Tmax, Tmin,  and RH show no correlation with
annual ET.
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The  correlation  between Tmax and  ET  is  best  on  the
monthly  scale,  and  the  correlation  between  WIND and
ET  is  lowest;  however,  the  correlation  between  WIND
and ET is the best on the annual scale. In fact, when the
scale changes from month to year, the correlation of all
factors with ET decreases except wind speed, especially
for Tmax and Tmin. In summary, PCP, Tmax, Tmin and SOR
were  significantly  and  highly  correlated  with  monthly
ET,  and  SOR,  and  WIND  were  moderately  correlated
with annual ET; in other cases, there was no correlation. 

4　Discussion
 

4.1　Discussion on simulation process and results
The simulation results are encouraging and indicate that
the spatially distributed hydrological model SWAT can
be successfully calibrated using remotely sensed ET de-
rived from a time series  of  MODIS images in a  poorly
gauged area or  an ungauged area through two different
calibration  strategies.  Fourteen  parameters  related  to
soil,  groundwater,  runoff,  terrain,  and  vegetation  were
optimized for a whole basin (LC) or for every sub-basin
(SDC). Using monthly remote ET during 2009–2014 as
calibration  input  data,  monthly  remote  ET  during
2015–2016  and  measured  ET  data  during  2017−2018
derived  from  the  EC  tower  site  as  validation  data.  LC
and  SDC  achieved  acceptable  simulation  results  in
every  sub-basin,  and  the  accuracy  of  SDC  was  higher
than that  of  LC.  Furthermore,  according  to  the  calib-
rated  objective  functions —the R2 and NSE—their val-
ues in the validation period are even higher than that of

the  calibration  period,  which  is  contrary  to  the  general
situation,  the  possible  causes  of  this  unusual  result  are
the uneven temporal distribution of datasets and the dif-
ference between the basic input data and the actual situ-
ation. The calibration period is one year longer than the
verification period,  and  the  verification  period  is  di-
vided into  two  parts.  That  is,  the  distribution  of  calib-
rate  set  and  verify  set  is  uneven.  In  addition,  the  land
use data used in this study is FROM-GLC10, which is a
2017 dataset  with  a  10  m spatial  resolution.  Therefore,
in the verification period, the land use type of the mod-
el is closer to the real situation and the simulation accur-
acy  of  the  model  is  better.  The  results  compared  with
the  measured  ET  also  meet  the  accuracy  requirements.
In addition, some studies have used other models or oth-
er  remote  sensing  ET  data  to  calibrate  hydrological
models, and  the  accuracy  of  the  monthly  scale  we  ob-
tained is similar to theirs (Table 4). This shows that the
model  is  applicable  in  the  Madu  River  Basin.  The  LC
results  have  more  outliers,  and  the  median  is  greater
than that of SDC. Compared with the measured ET, the
SDC simulated value is lower, but when compared with
the remote sensing data, this underestimation is not ob-
vious, which  should  be  caused  by  the  calibration  pro-
cess.  We  utilized  the  maximum  fitting  degree  with  the
remote sensing  data  as  the  calibration  goal,  but  the  re-
mote  sensing  data  deviated  from  the  real  value  as  the
hydrological  variables  were  indirectly  estimated.  The
monthly  and  annual  scatter  plots  for  the  comparison
between  the  simulation  results  of  the  two  strategies
show that the accuracy of the monthly scale simulation

 
Table 3    Pearson correlation coefficient (R) between ET and meteorological factors in the Madu River Basin, central China
 

Factor PCP WIND Tmax Tmin RH SOR

Monthly ET 0.678** 0.021 0.945** 0.930** 0.266** 0.808**

Annual ET 0.166 0.626 0.308 0.201 0.034 0.486
Notes: PCP, precipitation; WIND, wind speed; Tmax, average maximum air temperature; Tmin, average minimum air temperature; RH, relative humidity; SOR, solar
radiation. ** indicates a significance indicates a significance at 0.01; * indicates a significance indicates a significance at 0.05

 
Table 4    Comparison of monthly scale evapotranspiration (ET) simulation accuracy with studies using other remote sensing products
 

Data sources ET data Model R2 NSE

Parajuli et al., 2018 SEBAL SWAT > 0.61 > 0.60

Jin and Jin, 2020 GLEAM SWAT > 0.90 > 0.84

This study MOD16A2 SWAT > 0.85 > 0.84

Notes:  R2,  coefficient  of  determination;  NSE,  Nash-Sutcliffe  efficiency coefficient;  SEBAL, Surface Energy Balance Algorithm; GLEAM, Global  Land
Evaporation Amsterdam Model; MOD16A2, MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid; SWAT, Soil and Water Assessment Tool
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is higher than that of the annual scale simulation. Relev-
ant study show that the ‘Evaporation Paradox’ exists in
the  Dajiuhu  Basin  (approximately  composed  of  No.1
and No.2 sub-basin) (Wu et al., 2020), that is, the ET of
this area does not increase with the increase of temperat-
ure, but decreases. During 2009−2018, the annual aver-
age  ET  of  the  Madu  River  Basin  was  734.37  mm/yr
(SDC results), and ET showed an upwards trend during
2009−2018  (7.21  mm/yr). Tmax and Tmin were signific-
antly  and  highly  correlated  with  monthly  ET,  which
may means  that  the  increasing  ET originating  from in-
creasing  temperature  (global  warming).  However,  the
sub-basins near Shennongjia Nature Reserve that are up-
stream  have  a  negative  ET  change  rate,  which  means
that ET decreases in these sub-basins, indicating that the
‘Evaporation Paradox’ also exists in these sub-basins. 

4.2　Pros and cons of  the two calibration strategies
(LC and SDC)
The  SDC  has  several  advantages  over  the  LC.  First,
many  basins  can  not  establish  flux  towers  over  a  large
area  or  even  lack  flux  towers.  The  SDC  itself  is  more
detailed  and  can  effectively  use  remote  sensing  ET
products  in  a  poorly  gauged  area  or  an  ungauged  area.
Moreover,  SDC  can  achieve  better  model  performance
when  reproducing  the  spatiotemporal  change  in  ET
since the sub-basins are calibrated separately.

We also admit that there are some problems that must
be considered.  First,  compared with LC, the simulation
accuracy of  SDC  is  improved,  but  not  by  much,  espe-
cially on the monthly scale of the whole basin (LC: R2 =
0.902, NSE =  0.897;  SDC: R2 =  0.900, NSE =  0.899
(Fig.5)).  However,  although  efficiency  can  be  partially
improved through parallel computing, distributed calib-
ration occupies more computer resources and has high-
er requirements  for  computers.  Second,  from  the  per-
spective of the calibration process, we selected hydrolo-
gical  parameters  for  the  distribution  calibration  in  the
calibration process, but sub-basins with different hydro-
logical  properties  might  have  quite  different  sensitive
parameters,  which means that the calibrated parameters
may not be the optimal solution. Each sub-basin may be
able to  use  a  set  of  hydrological  parameters  independ-
ently.  This,  however,  requires  a  deep  understanding  of
hydrological processes, especially for complex hydrolo-
gical  models  with  hundreds  of  parameters  such  as
SWAT  (Zhang  et  al.,  2021).  If  this  problem  can  be

solved,  the  accuracy  of  SDC should  be  improved  from
the perspective of strategy.

We should  also  see  the  advantages  of  LC.  Its  effi-
ciency is very high, and the results that meet the accur-
acy requirements  can  be  obtained  after  fewer  calibra-
tion times. If there are enough measured values in some
sub-basins, we can also refer to LC to select some rep-
resentative  sub-basins  and  replace  the  remote  sensing
values used  in  the  calibration  process  with  the  meas-
ured values  of  these  sub-basins  to  achieve  a  more  effi-
cient and representative calibration scheme. 

4.3　Limitation
Usually, the parameter calibration of hydrological mod-
els uses the measured value of a hydrological flux (such
as  runoff)  (Zhang  et  al.,  2020a; b).  Some  studies  have
used remote sensing in the parameterization of hydrolo-
gical  models  (Boegh  et  al.,  2004; Kundu  et  al.,  2017;
Kittel et al., 2018; Han et al., 2019). Other hydrological
variables  that  can  be  obtained  by  remote  sensing,  such
as soil moisture, were not considered in this study.

In addition, the remote sensing data deviate from real
values due  to  their  hydrological  variables  being  indir-
ectly  estimated.  In  the  calibration  process,  we  assume
remote sensing  data  as  observations;  for  this  assump-
tion to make sense, the remote ET would need to be ac-
curate enough to meet the real value; otherwise, the cal-
ibration process  would only  move predictions  from the
real values  to  values  that  more  closely  match  the  re-
mote  ET  (Jepsen  et  al.,  2021). To  evaluate  the  suffi-
ciency  of  remote  ET  accuracy,  comparing  with  the
measured  value  is  the  most  reliable  method.  Such  an
evaluation was  not  carried  out  in  this  study  (we  com-
pared simulated ET with measured ET from 21 October
2017 to 31 August 2018, and we think that the amount
of measured data can only be used for verification but is
not sufficient for improving the accuracy of the model).
The  study  area  is  in  the  Three  Gorges  Reservoir  area,
and relevant studies in this region show that the MOD16
ET  has  overall  change  characteristics  that  are  highly
consistent with their results (Zheng et al., 2020). 

5　Conclusions

For spatially  distributed  hydrological  models,  using  re-
mote sensing  data  as  observations  is  of  great  signific-
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ance for  model  calibration  and  application.  We  simu-
lated  ET  in  the  Madu  River  Basin  during  2009−2018
based  on  the  SWAT model  calibrated  by  two  different
strategies with remote sensing data MOD16A2 as obser-
vations  and  used  the  measured  data  during  2017−2018
to verify the accuracy of  the model.  Our main findings
were as follows:

(1) MOD16A2  ET  data  offer  good  potential  for  hy-
drological  model  calibration  in  the  study  region  as  the
simulation  results  show  a  good  performance  for  ET
(R2 > 0.70, NSE > 0.75 on daily time series (compared
with measured ET)).

(2) The SWAT model is applicable in the Madu River
Basin,  and  SDC  based  on  remote  sensing  data  can
achieve higher accuracy than LC at  all  different  scales.
The simulated ET of SDC is lower than the measured ET.

(3)  The  annual  ET  of  the  whole  basin  increased

over  time  at  a  rate  of  7.21  mm/yr  during  2009−2018.
The  multiyear  average  (range)  ET  was  734.37  mm/yr
(653.00–819.95 mm/yr). The annual ET change rate for
the  sub-basins  showed  relatively  low  values  upstream
and downstream, indicating that the ET in the upstream
and  downstream  regions  was  more  stable.  The  Sub-
basins near  Shennongjia  Nature  Reserve  that  are  up-
stream  have  a  negative  ET  change  rate,  indicating  that
the ‘Evaporation Paradox’ also exists in these sub-basins.

(4) Based on the obtained results, the SDC has sever-
al  advantages  over  the  LC,  and  such  a  calibration
strategy could lead to  better  model  performance,  there-
fore,  when  using  the  spatially  distributed  hydrological
model  for  regional  studies  (especially  when  the  study
area  is  poorly  gauged  area),  remote  sensing  data  with
spatial distribution should be more utilized in model cal-
ibration. 

Appendix 
Table  S1    List  of  the  simulated  monthly  evapotranspiration  (ET)  (results  of  spatially  distributed  calibration  (SDC))  and  observed
monthly ET in the Madu River Basin, China
 

Date Observed value SDC Relative error / % RMSE / mm
2009-01 28.98 18.73 35.36 10.91

2009-02 39.84 25.81 35.22

2009-03 47.57 46.23 2.81

2009-04 54.26 73.47 35.41

2009-05 69.76 82.89 18.82

2009-06 110.29 110.82 0.48

2009-07 107.36 114.07 6.26

2009-08 105.44 102.07 3.20

2009-09 74.91 79.51 6.14

2009-10 53.66 50.81 5.32

2009-11 29.96 35.71 19.19

2009-12 19.74 21.54 9.13

2010-01 27.98 15.94 43.01

2010-02 36.18 19.93 44.91

2010-03 46.11 34.82 24.49

2010-04 50.28 39.32 21.80

2010-05 78.21 65.80 15.86

2010-06 72.84 76.08 4.45

2010-07 129.11 97.44 24.53

2010-08 105.12 107.14 1.92

2010-09 82.16 71.83 12.57

2010-10 47.62 63.40 33.13

2010-11 23.98 41.28 72.14
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Continued Table S1
Date Observed value SDC Relative error / % RMSE / mm

2010-12 19.16 24.59 28.31 10.91
2011-01 21.98 10.69 51.37

2011-02 28.10 15.72 44.06

2011-03 41.94 27.85 33.60

2011-04 43.51 44.49 2.24

2011-05 79.21 68.49 13.54

2011-06 115.17 98.25 14.69

2011-07 111.49 115.89 3.95

2011-08 123.29 110.86 10.08

2011-09 79.28 67.03 15.46

2011-10 44.72 59.01 31.95

2011-11 32.76 42.38 29.37

2011-12 16.72 22.11 32.25

2012-01 24.54 13.65 44.38

2012-02 26.91 18.40 31.63

2012-03 34.48 46.48 34.82

2012-04 50.74 71.10 40.13

2012-05 95.25 94.31 0.99

2012-06 74.47 87.40 17.36

2012-07 114.98 103.44 10.04

2012-08 115.66 99.24 14.20

2012-09 73.97 72.57 1.88

2012-10 41.82 50.69 21.19

2012-11 30.75 34.67 12.73

2012-12 12.47 18.89 51.51

2013-01 26.73 13.63 48.99

2013-02 33.04 18.86 42.92

2013-03 40.90 38.94 4.81

2013-04 55.38 45.92 17.09

2013-05 92.15 89.54 2.83

2013-06 121.18 121.18 0.00

2013-07 107.03 117.14 9.45

2013-08 118.40 113.55 4.10

2013-09 76.87 74.72 2.80

2013-10 46.78 53.01 13.32

2013-11 24.30 35.42 45.76

2013-12 18.81 22.33 18.70

2014-01 25.84 16.32 36.85

2014-02 28.64 17.97 37.27

2014-03 44.06 42.30 3.99

2014-04 50.30 65.96 31.15

2014-05 57.31 87.17 52.08

2014-06 74.19 92.79 25.07

2014-07 133.62 122.65 8.21

2014-08 109.68 94.96 13.42

2014-09 80.80 79.73 1.33

2014-10 50.91 63.71 25.14

2014-11 32.64 37.17 13.86

2014-12 20.01 28.06 40.18

2015-01 28.50 18.55 34.91
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Continued Table S1
Date Observed value SDC Relative error / % RMSE / mm

2015-02 25.09 33.58 33.82 10.91

2015-03 54.71 56.05 2.47

2015-04 64.19 79.13 23.28

2015-05 85.53 95.98 12.22

2015-06 87.63 94.36 7.68

2015-07 129.47 129.72 0.19

2015-08 110.52 110.75 0.21

2015-09 73.32 75.02 2.33

2015-10 50.08 63.04 25.87

2015-11 33.24 36.10 8.60

2015-12 23.60 27.04 14.54

2016-01 29.38 19.97 32.03

2016-02 30.51 35.98 17.93

2016-03 46.47 61.75 32.88

2016-04 67.47 84.44 25.16

2016-05 94.22 99.83 5.95

2016-06 109.97 106.14 3.49

2016-07 126.01 131.89 4.66

2016-08 116.20 106.64 8.22

2016-09 77.42 68.67 11.30

2016-10 61.29 46.22 24.58

2016-11 33.72 37.65 11.67

2016-12 22.43 28.74 28.11

2017-01 − 16.22 −

2017-02 − 23.30 −

2017-03 − 48.57 −

2017-04 − 80.45 −

2017-05 − 90.27 −

2017-06 − 90.66 −

2017-07 − 117.41 −

2017-08 − 102.85 −

2017-09 − 59.30 −

2017-10 − 40.99 −

2017-11 53.73 30.91 42.48 48.99

2017-12 36.39 18.76 48.44

2018-01 40.75 12.99 68.13

2018-02 49.09 26.75 45.51

2018-03 87.21 66.29 23.98

2018-04 136.40 85.24 37.50

2018-05 142.65 87.26 38.83

2018-06 152.14 83.47 45.14

2018-07 187.08 104.28 44.26

2018-08 163.90 109.77 33.03

2018-09 − 61.29 −

2018-10 − 34.02 −

2018-11 − 30.09 −

2018-12 − 19.62 −

Note: ‘−’ indicates a lack of data; RMSE: Root Mean Square Error
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