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Abstract: The accurate and reliable interpretation of regional land cover data is very important for natural resource monitoring and en-
vironmental assessment.  At present,  refined land cover data are mainly obtained by manual visual  interpretation,  which has the prob-
lems of heavy workload and inconsistent interpretation scales. Deep learning has greatly improved the automatic processing and analys-
is of remote sensing data. However, the accurate interpretation of feature information from massive datasets remains a difficult problem
in wide regional land cover classification. To improve the efficiency of deep learning-based remote sensing image interpretation, we se-
lected multisource remote sensing data, assessed the interpretability of the U-Net model based on surface spatial scenes with different
levels of complexity, and proposed a new method of stereoscopic accuracy verification (SAV) to evaluate the reliability of the classifica-
tion result. The results show that classification accuracy is more highly correlated with terrain and landscape than with other factors re-
lated to image data, such as platform and spatial resolution. As the complexity of surface spatial scenes increases, the accuracy of the
classification results mainly shows a fluctuating declining trend. We also find the distribution characteristics from the SAV evaluation
results of different land cover types in each surface spatial scene. Based on the results observed in this study, we consider the distinction
of interpretability and reliability in diverse ground object types and design targeted classification strategies for different surface scenes,
which can greatly improve the classification efficiency. The key achievement of this study is to provide the theoretical basis for remote
sensing  information  analysis  and  an  accuracy  evaluation  method  for  regional  land  cover  classification,  and  the  proposed  method  can
help improve the likelihood that intelligent interpretation can replace manual acquisition.
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1　Introduction

Land  cover  data  are  indispensable  basic  data  in  global
climate  change  research,  environmental  assessments,
natural  resource  monitoring,  and  the  construction  of

broad-area geographic  information  resources.  With  so-
cioeconomic development and the intensification of hu-
man  activities,  land  cover  has  undergone  significant
changes.  At  this  stage,  multiplatform,  multitemporal,
multispectral, multiangle,  and  multimode  integrated  re-
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mote  sensing  imaging  systems  have  been  developed.
However,  the  processing  capability  of  remote  sensing
information  is  insufficient  (Quartulli  and  Olaizola,
2013; Li  et  al.,  2014).  This  problem  is  particularly
prominent in regional land cover classification when us-
ing remote sensing data. Therefore, it is of vital import-
ance  to  study  the  rapid  and  accurate  acquisition  of
Earth’s surface  features  from  multisource  heterogen-
eous remote sensing data and improve the intelligent in-
terpretation efficiency.

Large-scale land  cover  classification  is  mainly  di-
vided  into  two  categories:  research  experiment-based
and  engineering  operation-based  classifications  (Weng,
2011; Yuan  et  al.,  2020).  The  United  States  and
European Union have developed global land cover data
products using remote sensing methods,  and the spatial
resolution has gradually increased from the initial 1° to
8 km, 1 km, and 300 m (De et al., 1998; Loveland et al.,
2000; Bicheron  et  al.,  2011).  To  meet  the  demand  for
high-resolution  land  cover  data  in  global  change  and
earth system research, Chen et al. (2017) developed the
first set  of  global  land  cover  datasets,  named  Glo-
beLand 30, using an organic combination of pixels, ob-
jects  and  knowledge;  the  data  have  a  spatial  resolution
of 30 m. Zhang et al. (2021) adopted multitemporal and
random forest  classification methods and developed re-
fined  30  m  resolution  global  land  cover  classification
results. Gong et al. (2019) used a global training set de-
veloped  in  2015  at  a  30  m  resolution  to  classify  10  m
resolution  images  acquired  in  2017  and  performed  the
first 10 m resolution land cover mapping tasks based on
a random  forest  classifier.  The  above  macroscopic  re-
search results have made important contributions to the
maintenance of the global environment and the realiza-
tion  of  the  United  Nations’ Sustainable  Development
Goals. However,  engineering applications  generally  fo-
cus on national-scale  natural  resource management  and
the  provision  of  accurate  geographic  information.
Moreover,  such  applications  involve  many  technical
factors and  have  extremely  high  data  quality  require-
ments.  The existing image classification algorithms are
still unable to meet the needs of large-scale, high-preci-
sion land  cover  mapping  and mainly  involve  visual  in-
terpretation methods that require the manual delineation
of the boundaries of land cover types. The existing large-
scale  land  cover  products  are  limited  by  their  coarse
grain size  and  insufficient  geometric  accuracy;  con-

sequently, to improve work efficiency, it is necessary to
incorporate  intelligent  interpretation  methods  that  are
highly compatible  with business  processes  into practic-
al applications.

Traditional  land  cover  classification  methods  based
on middle-  and  low-level  features  provide  limited  se-
mantic  support  and low classification accuracy (Guo et
al., 2018; Carranza-García et al., 2019). In recent years,
deep  learning  methods  that  support  semantics,  such  as
deep neural networks, have achieved excellent classific-
ation  results  for  remote  sensing  images  (Hinton  et  al.,
2006; Zhang et al.,  2016), and many methods based on
convolutional  neural  networks  (CNNs)  have  been  used
in  land  cover  classification  (Kussul  et  al.,  2017; Xu  et
al., 2017; Rezaee et al., 2018; Ma et al., 2020). The re-
lated research  results  showed that  CNNs,  as  deep  hier-
archical classifiers,  can be used to explore the complex
spatial  patterns  hidden  in  images,  extract  the  semantic
features  of  ground  objects,  improve  the  classification
ability  of  land  cover  compared  to  traditional  automatic
interpretation methods,  and  provide  strong  generaliza-
tion capabilities (Meng et al., 2018). At present, the net-
works  used  for  the  semantic  segmentation  of  remote
sensing images  are  extensions  of  CNNs,  and  they  in-
clude  fully  convolutional  networks  (FCNs)  (Shelhamer
et al.,  2016),  U-Net (Ronneberger et  al.,  2015),  SegNet
(Badrinarayanan  et  al.,  2017),  DeepLab  (Chen  et  al.,
2017; Chen  et  al.,  2018),  PSPNet  (Zhao  et  al.,  2017),
and DeconvNet (Noh et al., 2015). Many scholars have
focused  on  improving  and  optimizing  each  network
model.  Guo  replaced  standard  convolution  with  dilated
convolution  to  segment  high-resolution  remote  sensing
images  based  on  an  FCN.  After  enhancing  the  training
data,  they  used  a  Conditional  Random  Field  (CRF)  to
optimize  the  boundaries  of  the  segmentation  results
(Guo et al., 2018). Based on DeepLabv3, Chen segmen-
ted high-resolution remote sensing images using an im-
proved Atrous  Spatial  Pyramid  Pooling  (ASPP)  ap-
proach,  a  fully  connected  fusion  path  and  a  pretrained
encoder (Chen et al., 2019). Based on U-Net, Pan integ-
rated a  channel  attention  mechanism  and  a  confronta-
tion network  to  realize  the  extraction  of  building  in-
formation (Pan et al.,  2018). The optimized deep learn-
ing model may improve the classification accuracy in a
small lab area. However, for a large scale classification
with various land cover types, the results show little di-
versity  among  different  networks.  Therefore,  U-Net  is
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chosen because it can obtain effective classification res-
ults with a smaller sample size.  In addition. The U-Net
model  has  achieved  excellent  segmentation  results  in
various applications (Zhang et  al.,  2018; Shamsolmoali
et al., 2019; Wang et al., 2020) and has become the pre-
ferred model for various remote sensing image segment-
ation applications.

When  implement  land  cover  classification  by  using
deep learning method in engineering field, various prob-
lems  are  encountered,  such  as  those  associated  with
complex and  changeable  scenes,  the  poor  generaliza-
tion of samples and training models, the amounts of data
required for  full  coverage,  and  data  differences  in  spa-
tial  resolution  and  quality.  However,  the  influence  of
various complex  factors  on  image  classification  accur-
acy and  the  best  way  to  improve  data  processing  effi-
ciency have not been fully researched, and an accuracy
evaluation method for engineering field is not currently
available.  In  order  to  provide  the  theoretical  basis  for
the complex factors of the deep learning land cover clas-
sification,  especially  the  influence  of  surface  spatial
scene, and an accuracy evaluation method for classifica-
tion  result  in  engineering  field,  we  selected  several
study areas  with  typical  topographic  features  and  sur-
face landscapes, using remote sensing data from differ-
ent  satellite  platforms with different  spatial  resolutions.
Then, the U-Net architecture was used for training clas-
sification models to analyze the interpretability and reli-
ability of  land  cover  extraction  in  remote  sensing  im-
ages  based  on  deep  learning  technology.  Additionally,
we  also  proposed  a  stereoscopic  accuracy  verification
(SAV)  method  suitable  for  operational  applications  to
evaluate  the  reliability  of  classification  results.  On  this
basis,  we  presented  an  intelligent  image  interpretation
scheme suitable for engineering applications based on a
deep learning method. The research could provide a sci-
entific  basis  for  improving  the  efficiency  of  remote
sensing image interpretation for the regional land cover
classification. 

2　Data and Methods
 

2.1　Study areas
Considering  the  distribution  of  terrain  and  landscape
that may  be  encountered  in  large-scale  engineering  ap-
plications, we select four types of surface spatial scenes
reflecting the gradual transition of terrain and landscape

from simple to complex. Two typical study areas are se-
lected for each surface spatial scene. The distribution of
the study areas is shown in Fig. 1, and detailed informa-
tion  is  shown  in Table  1.  The  topography  of  the  study
area  covers  plains,  hills,  terraces,  mountainous  terrain
and topographically heterogeneous areas. The land cov-
er types include forest, cropland, water bodies, residen-
tial land, mudflats, vegetated wetlands and other differ-
ent  surface  landscapes.  The  surface  landscape  of  the
study area exhibits a uniformly distributed and well-pro-
portioned spatial pattern, as well as a clustered and hier-
archical spatial  pattern.  Additionally,  economically  de-
veloped  areas  with  complex  and  diverse  features  are
present, as are areas with sparse human habitation and a
predominant  desert  ecosystem.  In  short,  the  selected
study  areas  cover  almost  all  surface  forms  common  in
the task of regional land cover classification. 

2.2　Data and processing
Several  remote  sensing  images  are  selected  that  cover
eight study areas from large datasets  formed in our de-
partment.  The  satellite  images  for  training  and  testing
mainly  include  ZY3,  GF1,  GF2,  WV2  and  Sentinel  2,
which are widely used in various project types. The spa-
tial  resolution  of  the  data  ranges  from  0.5  m  to  10  m.
The image phase is the growing season; the cloud cover
is less than 5%. We use images that include four bands
(blue, green,  red,  NIR) of spectrum information to per-
form  the  model  training  and  classification  task  in  all
study areas. There is no obvious banding or noise in the
images,  and  the  greyscale  image  is  generally  normally
distributed.  Detailed  information  is  shown  in Table  1.
To ensure the validity of accuracy verification, test data
usually  can  not  overlap  with  the  sample  data  used  in
model training. Therefore, a scene image is divided into
two  nonoverlapping  areas:  one  area  for  model  training
and one for testing.

To ensure the high precision of sample labelling,  we
use the manually annotated method to obtain the sample
data  since  the  reliability  of  labelled  data  can  impact
deep  learning  model  performance.  In  the  process  of
sample labelling, we select continuous or multiple inde-
pendent  areas  that  can  represent  the  landscape  form of
the whole test area based on remote sensing images, and
each pixel  in the region has corresponding category at-
tribute information. At the same time, we strictly abided
by scientific  and  reasonable  labelling  rules  for  the  best
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Fig. 1    The distribution of study areas

 
Table 1    Detailed information on the study areas and remote sensing data
 

Study area Location Terrain Dominant land cover type Sensor Spatial resolution / m

a Cherkasy, Ukraine Plain Cropland, forest, residential land, water body ZY3 2.0

b Heilongjiang, China Plain Cropland, forest, residential land, water body, grassland Sentinel 2 10.0

c Shaanxi, China Plain, mountain Cropland, residential land, forest GF1 2.0

d Assam/Nagaland, India Plain, hill Cropland, forest, grassland, residential land, water body ZY3 2.0

e Hubei, China Hill, terrace Forest, paddy field, cropland, residential land, water body WV2 0.5

f Henan, China Mountain, valley Forest, water bodies, mud flat, cropland GF1 2.0

g Jiangsu, China Plain Cropland, forest, residential land, water body GF2 0.8

h Gansu, China Plain, Gobi desert Grassland, vegetated wetland, barren land ZY3 2.0
Note: study areas a−h see Fig. 1
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semantic consistency, such as the representativeness, the
equilibrium  among  classes,  the  homogeneity  within
classes,  and  the  consistent  sample  size  in  each  study
area.  The main land cover types of the sample data are
cropland, forest,  grassland,  residential  land,  water  bod-
ies and roads, which reflect actual landscape features. 

2.3　Methodology 

2.3.1　Semantic segmentation model
We select the U-Net (Ronneberger et al., 2015) semant-
ic  segmentation  model  for  training  based  on  sample
data. Each  hidden  layer  of  the  U-Net  model  has  mul-
tiple feature dimensions, making it conducive for learn-
ing  diverse  and  comprehensive  features.  The  U-shaped
architecture of the model makes the image clipping and
mosaicking process  intuitive  and  reasonable.  The  com-
bination  of  high-level  features  and  low-level  feature
maps, as well as the repetition and continuity of convo-
lution, enables the model to combine contextual inform-
ation  and  detailed  information  to  obtain  accurate  input
feature maps.

The network architecture we used in this paper is the
traditional  U-Net  which  is  composed  of  a  contracting
path and  an  expansive  path.  The  contracting  path  con-
sists of four blocks, and each block has the repeated ap-
plication  of  two  convolutions  with  a  given  size  kernel,
followed by the Rectified Linear  Unit  (ReLU) function
and  a  2  ×  2  max  pooling  operation  for  downsampling.
The  process  of  the  expansive  path  has  two  operations:
an  upsampling  of  the  feature  map followed by  a  2  ×  2
convolution that  halves  the  number  of  feature  channels
with the correspondingly cropped feature map from the
contracting path, and two convolutions that are each fol-
lowed by a ReLU. The final layer is a one-by-one con-
volution to map each feature vector to the desired num-
ber of classes.  Instead of using the soft-max method as
the loss function, it is computed by a pixelwise soft-max
over the final  feature map combined with the cross-en-
tropy loss function.

Considering various  research  needs,  this  paper  seg-
ments  the  cropland,  forest,  water  body,  residential  land
and other  ground  object  categories  from  satellite  im-
ages, and each set of interpretation experiments uses the
same amount of sample data. This research is based on
the TensorFlow framework. After fine-tuning of this U-
Net architecture, the corresponding classification model
is trained for every sample data; ultimately, the test data

are used to obtain the final classification result. 

2.3.2　Stereoscopic accuracy verification
We  propose  the  stereoscopic  accuracy  verification
(SAV)  method  to  evaluate  the  reliability  of  land  cover
classification results based on the overall attribution ac-
curacy (OAA) and edge localization accuracy (ELA) of
land cover types obtained from remote sensing images.
This method is highly compatible with most application
requirements and can comprehensively evaluate the ac-
curacy of land cover classification in multiple scenarios
from multiple dimensions (Ronneberger et al., 2015).

A  confusion  matrix  is  used  to  evaluate  the  OAA  of
the  classification results.  According to  previous  studies
(Congalton,  1988; 1991; Pugh  and  Congalton,  2001),
random sampling or stratified random sampling of suffi-
cient points is a suitable sampling strategy for the accur-
acy  assessment  of  image  classification  considering  the
spatial  autocorrelation  of  errors.  Considering  this,  the
random  sampling  points  are  generated  uniformly  in  a
grid of 8 × 8 pixels in a scene from a prediction image
in our study. According to the actual landscape, we en-
sure  that  there  are  no  less  than  200  sampling  points  in
each  scene,  and  the  true  attribute  value  is  obtained  by
manual annotation based on high-resolution images.

To  meet  the  application  requirement  of  land  cover
classification  accuracy  assessment,  the  ELA  method  is
used to evaluate the usability of the result. We selected
five  to  six  sampling  areas  in  each  group  of  predicted
classification  results  and  manually  labelled  the  ground
truth. The  minimum  root  mean  square  (MRMSD)  dis-
tance  between  each  prediction  edge  pixel  and  labelled
edge pixels was calculated. Based on the standard edge
accuracy  of  two  pixels,  ELA  is  the  percentage  of  the
number of predicted edge pixels for which the MRMSD
is smaller than two, as shown in Equation (1).

ELA =

np∑
i=1

Di

np

Di =


1, min

(√(
pi (x)−gt j (x)

)2
+

(
pi (y)−gt j (y)

)2
)
≤ 2,

j = 1,2, . . . ,ngt, i = 1,2, . . . ,np

0, else
(1)

where pi(x)  and pi(y) denote  the  column and  row posi-
tion  of  the ith  point pi (x, y) from  prediction  edge,  re-
spectively. gtj(x)  and gtj(y)  denote  the  column and  row
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position of  the  jth  point gtj(x, y)  from labelled  edge. np

and ngt represent the number of edge points  of  the pre-
diction edge and labelled edge,  respectively.  The range
of ELA is from 0 to 1. The ELA reaches its best value at
1 and worst at 0.

The  low  OAA  can  infer  that  ELA  must  be  low.
However, the high OAA result can not represent a good
ELA  result.  Therefore,  a  comprehensive  index  from
OAA and ELA was proposed to evaluate the result. The
SAV was obtained by a weighted average of OAA and
ELA,  as  shown in  Eq.  (2).  Considering  the  importance
of  usability  of  the  results,  the  ELA  was  given  a  larger
weight of 0.7. Therefore, the range of SAV is the same
as those of OAA and ELA, from 0 to 1. SAV reaches its
best value at 1 and worst at 0.

SAV = 0.7×ELA+0.3×OAA (2)
 

2.3.3　Overview research route
Land cover  complexity  varies  noticeably  across  coun-
tries  of  the  world.  This  paper  divides  surface  spatial
scenes into four types based on the actual complexity of
the Earth’s surface and selects eight typical study areas
as cases.  Based  on  these  cases,  a  systematic  classifica-
tion  tests  are  implied  to  figure  out  the  relationship
between landscape and deep learning classification abil-
ity.  The  complexity  is  defined  based  on  based  on  the
four principles of topography conditions, compositional
complexity,  configurational  complexity  and  temporal
complexity.  Specifically,  from  scene  1  to  scene  4,  the
number of land cover categories on a landscape is more
abundant,  the  patches  of  the  landscape  are  increasing,

and  the  attribute  diversity  of  land  cover  types  is  more
flexible. In  each  set  of  tests,  the  U-Net  semantic  seg-
mentation  model  is  used  to  train  and  predict  images.
And the interpretability and reliability of the classifica-
tion  results  are  analyzed  based  on  the  SAV  method.
Through  comparing  the  deep  learning  interpretation
ability of remote sensing images for different terrain and
landscape conditions and classification reliability of the
model  from  different  satellite  platforms  and  different
spatial  resolutions,  we  assess  the  performance  of  the
deep learning  model  in  interpreting  land  cover  in  re-
mote  sensing  images  and  further  explore  the  efficient
application of  this  model  in  large-scale  land  cover  re-
mote sensing image scene classification. The overall re-
search framework is shown in Fig. 2.

For  each  test,  the  method  mainly  consists  of  three
steps,  preprocessing the  images  and labels,  training the
classification model  by  U-Net  and  testing  the  inter-
pretability and reliability of the trained model. Since the
limitation  of  GPU (Graphic  Processing  Unit),  the  large
size remote sensing images can not process in one pass.
Therefore, first, images and labels are split into smaller
patches  of  512  ×  512  × n (n  represents  the  number  of
image channels)  pixels  and  512  ×  512  pixels,  respect-
ively,  with  a  sliding  window  method.  The  patches  are
the  inputs  to  train  and  test  the  model.  To  increase  the
number of training samples, a stride of 128 is given. The
total number of samples is different for different images
but at least ten thousand for each test. We use the same
model architecture for each test. The kernel size of cal-
culating features is important to the accuracy of the res-
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Fig. 2    Overall framework for the interpretability and reliability analysis of land cover classification on different complexity scene
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ult,  especially  in  remote  sensing  image  processing.  To
provide  a  reasonable  trade-off  between  the  receptive
field and the computation, a constant kernel size of 5 ×
5 over all the layers is chosen. According to the memory
of the GPU, we set  the batch size and epoch to 10 and
30, respectively. The stochastic gradient descent (SGD)
method is  used for  training,  and the learning rate is  set
to 0.01.  To  smooth  the  results  and  remove  the  discon-
tinuities  along  the  boundary,  the  stride  of  the  sliding
window must  be smaller  than the patch size when test-
ing an image. In the test, the stride is 128, and the result
is obtained by averaging the predictions of overlapping
pixels. 

3　Results
 

3.1　Qualitative description of classification results
The results of land cover classification based on remote
sensing  data  and  U-Net  model  are  shown  in Fig.  3.
Scene 1 (Figs. 3a–3b) is dominated by plains, with low
topographic  relief,  low  ground  feature  patch  frag-
mentation,  regular  land  cover  types,  distinct  gradation,
and  clear  object  outlines.  The  land  cover  types  mainly
include cropland,  forest  and  residential  land,  and  satis-
factory  classification  results  are  obtained.  In  scene  2

(Figs. 3c–3d ), there are plains, mountains and hills, the
distribution  of  ground objects  is  relatively  regular.  The
classification results for cropland, forest and residential
land are generally good, but the classification results for
grassland and roads are relatively poor due to the lack of
samples,  which  results  in  imbalanced  model  training.
Scene 3 (Figs. 3e–3f ) is a complex area with intercon-
nected  hills,  terraces,  mountains  and  river  valleys  and
large  terrain  undulations.  Each  land  cover  type  is
present in fragmented patches, which are often misclas-
sified. However, the mudflats distributed along the river
valley  display  clear  differences  in  colour  and  texture
from other land cover types. Therefore, a good classific-
ation  result  is  achieved.  Scene  4  (Figs.  3g–3h )  is  the
most complex surface landscape in land cover classific-
ation based on remote sensing images in this study. This
region includes economically developed suburban areas,
where the  distribution  of  land  cover  types  is  complic-
ated and  land  use  patches  are  fragmented.  The  phe-
nomenon of the same objects but with different spectra
is serious  in  remote  sensing images,  and the  classifica-
tion results for ground objects are relatively poor; there-
fore, the accuracy requirements for land cover classific-
ation  in  the  engineering  field  are  not  met.  A  natural
landscape that has not been disturbed by humans, in this
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Fig. 3    Land cover classification results on different complexity scene: Cherkasy based on ZY3 (a) and Heilongjiang based on Sentinel
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WANG Xinshuang et al. Improving the Interpretability and Reliability of Regional Land Cover Classification by... 985



case, the Gobi Desert, is also considered; this landscape
includes desert vegetation belts, vegetated wetlands, and
other  features.  The  boundaries  of  ground  objects  are
blurred,  and  it  is  difficult  to  manually  label  samples.
Therefore,  the  accuracy  of  the  automatic  classification
results is relatively poor for this scene.

Figs. 3a–3b show the satisfactory classification result
in scene 1, both in test area Cherkasy covered with a 2
m spatial resolution image and in Heilongjiang covered
with  a  10  m  spatial  resolution  image,  and  almost  all
forest, water body and cropland are correctly classified.
However, as shown in Figs. 3e–3f, the classification res-
ults  of  water  bodies,  forests  and  residential  areas  are
better  in  the  2  m  spatial  resolution  images  than  in  the
0.5  m  spatial  resolution  images.  This  is  because  the
abundance of categories in test area Hubei is higher than
that in Henan. The classification results for a more cat-
egories are  vulnerable  to  the  complex  scene  with  un-
clear boundaries and fragmented land types, such as bar-
ren  land,  paddy  fields  and  roads.  Through  comparing
the  classification  results  obtained  based  on  commonly
used data sources of different resolutions (0.5 m, 0.8 m,
2  m,  10  m)  and  satellite  platforms  (WV2,  GF1,  GF2,
ZY3,  Sentinel  2)  from Figs.  3a–3h,  the  classification
result  is  mainly  affected  by  land  cover  categories  and
landscape composition. 

3.2　Quantitative accuracy  assessment  of  classifica-
tion results
The SAV method is used to evaluate the accuracy of the
classification  results  for  eight  study  areas  with  four
types of  surface spatial  scenes (Table 2).  In general,  as
landscape  diversity  increases  from  scene  1  to  scene  4,
the complexity of the surface spatial scene increases, the
degree  of  fragmentation  of  classes  also  increases,  and
the phenomenon  of  ‘same  spectrum  but  different  ob-
jects and same objects but different spectra’ appears fre-
quently.  Therefore,  the  accuracy  of  the  classification
results mainly shows a fluctuating declining trend.

Table  2 shows  that  high  SAV  accuracy  is  achieved
for water bodies in all  scenes, most OAA and ELA are
larger  than  0.85  and  the  SAV  accuracy  is  larger  than
0.900 in every scene. This means that most of the water
body  classification  results  can  be  used  in  applications
directly. However, as in the case that many water-filled
pits and  ponds  with  different  shapes  and  spectral  in-
formation  are  distributed  in  residential  parts  of  study

area Assam  and  Nagaland,  the  OAA  of  the  classifica-
tion  result  for  water  bodies  is  relatively  poor,  with  a
value of 0.831. This is because most ponds are surroun-
ded by  dense  vegetation  that  produce  shadows  that  in-
fluence the accuracy of water  body classification.  High
SAV  classification  accuracy  is  achieved  for  cropland
and  forest  in  the  two  study  areas  in  scene  1,  and  the
automatic classification results can be used in engineer-
ing  applications  to  improve  the  work  efficiency.  How-
ever, the corresponding classification accuracy in scene
2  and  3  is  relatively  low.  The  cropland  in  study  area
Henan  is  mostly  distributed  on  both  sides  of  valleys
with  obvious  topographical  undulations,  and  the  shape
of  these  areas  is  complex  and  variable.  Therefore,  the
SAV  classification  accuracy  is  the  lowest  among  all
scenes, and the SAV is only 0.737. Similarly, the OAA
and ELA  of  the  cropland  and  forest  classification  res-
ults in scene 4 can not meet the requirements of engin-
eering  practice.  The  classification  results  of  residential
land  are  fairly  good  among  all  scenes  in  which  the
SAVs  are  all  higher  than  0.800.  This  land  cover  type
can be extracted using deep learning methods according
to specific situational requirements. Grassland areas dis-
play the same spectrum but  contain either  different  ob-
jects or the same objects. However, they display differ-
ent spectra in most scenes; thus, the classification accur-
acy  for  most  scenes  is  low,  and  it  is  difficult  to  obtain
accurate extraction results.  Due to the large differences
in  the  distribution  of  roads  in  various  regions  in  large-
scale scenarios, the road samples are heterogeneous, and
roads  are  easily  obscured  by  the  tree  canopy  along
streets. Therefore, the classification accuracy of roads in
all scenes is relatively low. Although the spatial scene in
study  area  Henan  is  complex,  the  classification  results
of mudflats are relatively ideal (SAV is 0.904) because
of  the  consistent  spectral  characteristics  of  mudflats,
which  are  quite  different  from  other  ground  object
types.

On the other  hand,  the  results  of  land cover  types  in
Heilongjiang  show  higher  classification  accuracy;
however, the  spatial  resolution  of  remote  sensing  im-
ages  covering this  area  is  10 m,  which is  the  lowest  in
this study.  Further  analysis  in  detail  shows that  the  ac-
curacies  for  forest  and  residential  land  are  higher  than
those  in  study  area  Shaanxi  to  Gansu,  and  the  spatial
resolutions  of  the  images  covering  these  areas  include
0.5 m, 0.8 m and 2 m, all of which are lower than 10 m.
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Cropland  and  grassland  also  show  good  classification
accuracy. Since the road is  narrow and will  be blocked
by vegetation,  it  is  easy to  lose  information in  the  pro-
cess  of  dimensionality  reduction,  and there  are  missing
and inaccurate points in the classification results; there-
fore, low spatial resolution will have a certain impact on
the  classification  accuracy,  although  the  scene  has  the
most significant impact on the classification results. We
then  analyze  the  classification  accuracy  of  land  cover
types at different resolution scales in the same scene. As
shown in Figs. 3e–3f for scene 3, the SAV accuracy of
water  bodies  is  0.926  in  area  Henan  and  0.904  in  area
Hubei. Other accuracy verification results show that the
higher  the spatial  resolution of  the image is,  the higher
the classification  accuracy in  the  same scene.  The  ana-
lysis  results  show  that  under  certain  conditions  of  the
scene, most of the classification results are proportional
to the spatial resolution, and some have no relationship
with  the  resolution,  such  as  water  bodies,  which  are
mainly  affected  by  shadows  that  are  easily  confused
with water  bodies  in  different  test  areas.  We  also  ana-
lyze  the  classification  accuracy  of  land  cover  types  in
different scenes at the same spatial resolution scale of 2
m. From  the  accuracy  evaluation  results  of  area  Cher-
kasy,  area  Shaanxi,  area  Henan  and  area  Gansu,  it  can
be  found  that  with  the  increase  in  landscape  diversity,
the SAV  classification  accuracy  of  each  land  type  de-
creases, such as barren land, cropland, forest, grassland,
residential land and water body. 

4　Discussion

Land cover  classification  based  on  remote  sensing  im-
ages is an important research direction, and it is of prac-
tical  application  value  to  further  improve  the  accuracy
of  automatic  classification  results.  He  proposed  a
multispectral land cover classification method based on
a deep learning model and effectively improved the ac-
curacy  of  multispectral  image  classification  (He  and
Wang,  2021).  In  the  refined  classification  of  complex
surface  scenes  that  include  diverse  information,  single-
modality-dominated deep  networks  are  inevitably  lim-
ited  in  classification  tasks.  Hong  provided  a  baseline
solution  to  the  aforementioned  issue  by  developing  a
general  multimodal  deep  learning  (MDL)  framework,
evaluated different  fusion  strategies,  trained  deep  net-
works and built a new network architecture (Hong et al.,

2020). At  this  stage,  most  research  has  focused  on  im-
proving  the  classification  accuracy  of  land  cover  types
in areas with complex surfaces through model modifica-
tion. However, the original objective of our study was to
simplify  the  representation  of  earth’s  complex  surface
and  the  related  classification  problems.  We  conducted
an  in-depth  analysis  of  surface  spatial  scenes  and  land
cover types and explored how to combine deep learning
with manual visual inspection to improve the efficiency
of engineering  work  while  ensuring  a  high  interpreta-
tion accuracy.  Therefore,  from  the  perspective  of  im-
proving  the  accuracy  of  land  cover  classification,  our
work is  a  complement  to  other  methods.  To  demon-
strate the validity of our research results, we further ex-
plored application cases involving engineering projects. 

4.1　The effect of image quality on classification res-
ults
We use sharpness as an evaluation metric to further as-
sess the interpretability  of  images with different  qualit-
ies.  Many  satellite  images  are  required  to  cover  the
working  area  in  regional  land  cover  classification  at  a
large scale. Generally, cloud cover is less than 5%, there
is no obvious  band or  noise  interference,  and the  grey-
scale range is normally distributed. However, in reality,
poor-quality  images  are  generally  present  in  datasets.
Therefore, it is necessary to conduct an in-depth analys-
is of image interpretability and reliability to better guide
engineering  operations.  It  is  difficult  to  quantitatively
evaluate remote sensing images of poor quality (Guo et
al.,  2020),  although  scholars  have  investigated  many
evaluation  indicators  related  to  image  quality,  such  as
the ground sampling distance, signal-to-noise ratio, and
information  entropy  (Wang  et  al.,  2004; Yuan  et  al.,
2014).  These  indicators  can  only  describe  some  of  the
characteristics of an image, and currently, no indicators
can be used to fully evaluate the information in remote
sensing  images.  Therefore,  this  paper  adopts  a  visual
subjective evaluation  method  to  intuitively  assess  im-
age  quality  based  on  image  sharpness  (Gastaldo  et  al.,
2005).

With  the  data  and  classification  results  for  Henan
study  area,  we  select  GF1  scene  data  from an  adjacent
orbit with the same spatial resolution and time phase for
a comparative  analysis.  One of  the  scenes  is  character-
ized  by  good  sharpness,  and  the  ground  features  are
highly distinguishable. The other scene is characterized
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by relatively poor image quality. In the overlapping area
of  the  two  images,  the  same  samples  and  methods  are
used  for  model  training  and  classification,  and  SAV
evaluation  is  performed  to  assess  the  impact  of  image
quality on  deep  learning  classification.  The  classifica-
tion results are shown in Fig. 4, and the accuracy statist-
ics  are  shown in Table  3. The results  show that  for  re-
mote sensing images with different qualities, the classi-
fication results  based  on  deep  learning  are  highly  vari-
able. High-quality images yield higher classification ac-
curacy than  low-quality  images,  and  low-quality  im-
ages  lead  to  comparatively  more  misclassifications  for
land cover types other than water. 

4.2　The effect of sample size on classification results
We  take  the  highest  efficiency  as  the  goal  and  discuss
the optimal sample size. Cevikalp showed that the clas-
sification accuracy improved as  the  size  of  the  training
dataset  increased  (Cevikalp  et  al.,  2020).  However,  as
the amount of data included in model training increases
indefinitely, the  robustness  of  the  model  begins  to  de-
cline  beyond  a  specific  point.  Therefore,  we  used  data
for study area Assam and Nagaland to determine the op-
timal sample size in practice. We select sample sizes of
12.5%,  25.0%,  50.0%  and  75.0%  of  the  whole  image.
To ensure that  the test  results  are  not  affected by other
factors,  mountainous  and  urban  areas  with  a  uniform
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Fig. 4    Classification results with different image quality: (a) high-quality image (R: NIR, G: Red, B: Green), (b) classification result of
image (a), (c) low-quality image (R: NIR, G: Red, B: Green), (d) classification result of image (c)
 
Table 3    Accuracy statistics for the classification of images with different qualities
 

Image qualities
Cropland Forest Water body Mudflats Other

OAA ELA SAV OAA ELA SAV OAA ELA SAV OAA ELA SAV OAA ELA SAV

High quality 0.981 0.922 0.9397 0.987 0.927 0.945 0.993 0.952 0.9643 0.885 0.882 0.8829 0.784 0.756 0.7644

Low quality 0.374 0.285 0.3117 0.374 0.306 0.3264 0.931 0.904 0.9121 0.321 0.283 0.2944 0.608 0.401 0.4631

Note: meanings of OAA, ELA and SAV see Table 2
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distribution  and  located  outside  the  sampling  area  are
selected  as  the  classification  areas;  then,  the  model
training and  classification  prediction  tasks  are  per-
formed.  The  classification  results  based  on  different
sample sizes are shown in Fig. 5, and the accuracy eval-
uation  results  are  shown  in Table  4. The  main  conclu-
sion is  that  the  classification  effect  is  significantly  im-
proved  as  the  sample  size  increases.  When  the  sample
size is small, we obtain a poor classification result with

a high degree of fragmentation. With increasing sample
size, the classification results become increasingly com-
plete, and  the  boundaries  among  land  cover  types  be-
come more accurate. However, we find that,  the classi-
fication accuracy increases only slightly, and the accur-
acy of individual land cover types may even slightly de-
crease  in  some  areas.  Therefore,  the  relationship
between the  relevant  workload  and  the  required  accur-
acy  must  be  considered  in  the  process  of  land  cover
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Fig. 5    Classification results with different sample size in the same region: (a) training and testing image (R: NIR, G: Red, B: Green),
a1–a4 are the classification results with different sample size of 12.5%, 25.0%, 50.0% and 75.0% of entire image (a), respectively

 
Table 4    Accuracy statistics for the classification of images with different sample size
 

Sample size / %
Barren land Cropland Forest Grassland Residential land Water body

OAA ELA SAV OAA ELA SAV OAA ELA SAV OAA ELA SAV OAA ELA SAV OAA ELA SAV

12.5 0.487 0.405 0.430 0.669 0.701 0.691 0.725 0.755 0.746 0.252 0.311 0.293 0.805 0.811 0.809 0.562 0.502 0.521

25.0 0.543 0.552 0.549 0.872 0.823 0.838 0.787 0.802 0.798 0.305 0.408 0.377 0.811 0.819 0.817 0.611 0.551 0.569

50.0 0.665 0.712 0.698 0.970 0.935 0.946 0.836 0.813 0.820 0.331 0.456 0.419 0.825 0.852 0.844 0.823 0.852 0.843

75.0 0.698 0.705 0.703 0.971 0.932 0.944 0.831 0.811 0.817 0.336 0.452 0.417 0.826 0.852 0.844 0.811 0.853 0.840

Notes: Sample size means the proportion of sample of an image
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classification. It  is  necessary  to  comprehensively  con-
sider  the  time  cost  and  select  the  most  appropriate
sample size to maximize efficiency. 

4.3　 Engineering demonstration  areas  for  applica-
tion
Finally, we  apply  the  research  results  in  two  engineer-
ing  demonstration  areas  (Fig.  1),  analyze  the  surface
spatial  scenes  and  determine  the  relevant  classification
rules. In demonstration area one, most of the residential
land types are covered by canopies, and roads are relat-
ively concentrated.  Therefore,  by  merging  the  residen-
tial  land with forest,  roads and adjacent  ground objects
based  on  automatic  interpretation  with  deep  learning
and manually modifying the land cover types with lower

accuracy, a final result that meets the relevant technical
specifications  can be  obtained (Fig.  6).  Compared with
that of fully manual visual interpretation, the efficiency
of the combined approach is 10% higher.

The demonstration area two is a seaside area with few
types  of  ground  objects,  but  large  numbers  of  paddy
fields and breeding ponds with high surface areas are in-
terspersed in the region; consequently, the manual inter-
pretation workload  is  very  high.  Therefore,  after  com-
prehensive  evaluation,  we  automatically  extracted  only
the  paddy  fields  and  performed  binary  classification
(Fig. 7). Notably, only a small amount of manual inter-
vention is needed to obtain the final classification result,
and  the  efficiency  of  this  approach  is  30% higher  than
that of fully manual visual interpretation.
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Fig.  6    Classification result  of  demonstration area one in Fig.  1:  (a)  deep learning classification result  based on U-Net,  (b) manually
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The insights  gained from this  study may help  to  im-
prove  the  application  of  artificial  intelligence  methods
in remote sensing interpretation in the engineering field.
The  classification  of  large-scale  land  cover  datasets
should  be  based  on  the  core  principle  of  quality  over
quantity.  It  is  necessary  to  conduct  comprehensive  and
detailed data  analyzes  of  the  surface  landscape and ex-
tract the land cover types with few limiting phenomena,
clear  distributions,  and  high  semantic  consistency  for
automatic interpretation. On this basis, manual subdivi-
sion and attribute labelling can be performed according
to  the  relevant  technical  requirements  to  minimize  the
workload of manual correction for misclassified results.
Additionally,  it  is  necessary  to  weigh  the  relationship
between work efficiency and sample size in practice to
meet the  classification  requirements  for  a  given  situ-
ation. The results can be used to minimize misclassifica-
tion issues and be efficiently integrated with the results
of  manual  visual  interpretation,  which  demonstrates  a
strong effect  of  improving  image  interpretation  effi-
ciency and reducing the workload of manual collection. 

5　Conclusions

In this study, we focused on the interpretability and reli-
ability  of  regional  land  cover  classification  performed
by U-Net  using  remote  sensing  data.  The  interpretabil-
ity  was  assessed  based  on  different  surface  spatial
scenes, and the reliability of interpretation for each land
cover type was quantitatively analyzed by the proposed
SAV method. Our results provide a theoretical and sci-
entific basis for quickly and accurately obtaining ground
feature information from multisource heterogeneous re-
mote sensing data in the engineering field,  and provide
ideas  for  the  study  of  the  private  network  model  of
ground object recognition. The main conclusions can be
drawn as follows:

(1) The  interpretation  ability  of  remote  sensing  im-
ages is  highly  related  to  terrain  and  landscape;  the  ac-
curacy  of  classification  results  is  mainly  affected  by
land  cover  categories  and  landscape  composition  and
not  highly  correlated  to  satellite  platform  and  spatial
resolution.  When  the  data  with  same  spatial  resolution
and platform, it could be found that as the landscape di-
versity  increase,  the  SAV  classification  accuracy  of
each land type decreased.

(2)  The  proposed  accuracy  verification  method  of

SAV  was  used  to  evaluate  the  classification  results  of
each surface spatial scene. We found that areas with few
ground  objects,  clear  distributions,  distinct  boundaries,
and few land use homeomorphisms are generally associ-
ated with good classification accuracy. Areas with com-
plex geographical  categories,  relatively  unclear  bound-
aries and  the  widespread  phenomenon  of  the  same  ob-
jects but with different spectra, the accuracy of the clas-
sification results is generally poor. The experiment res-
ults  also  showed  that  SAV  is  an  effective  method  to
evluate  the  remote  sensing  intelligent  interpretations
from the perspective of engineering application require-
ments of large-scale classification tasks.

(3) The interpretability and reliability of remote sens-
ing images are highly correlated with the ground object
being classified, and the correlations with satellite plat-
form  and  spatial  resolution  are  relatively  low.  Better
classification  results  can  be  obtained  for  water  bodies
with  spectral  characteristics  that  differ  from  those  of
other land cover types, such as cropland, forestland and
residential land, with regular shapes. Satisfactory classi-
fication  results  can  also  be  obtained  for  nondominant
land cover  types,  such  as  mudflats  and  vegetated  wet-
lands,  which  are  relatively  different  from other  ground
objects based on their spectral characteristics and distri-
butions. The classification accuracy is relatively low for
land cover types distributed in areas with long and nar-
row shapes; that are easily shaded by canopy vegetation
(e.g.,  roads,  canals).  Moreover,  areas  characterized  by
the same spectrum but different objects or the same ob-
jects  but  different  spectra  are  difficult  to  classify  (e.g.,
grassland, shrubs, gardens).

(4)  The  research  provides  an  effective  way  to  make
the best use of deep learning method in the large area of
the  land  cover  classification  task:  the  high  dominance
and good discrimination land cover types were retained,
and other minor types were discarded. It  is  not only an
efficient way  to  simplify  the  remote  sensing  informa-
tion model  and improving the  universality  and reliabil-
ity  of  the  deep  learning  classification  model,  but  also
optimizing the efficiency of land cover classification ap-
plication.

References
 

Adam H, Chen L C, Papandreou G et al., 2018. Encoder-decoder
with atrous separable convolution for semantic image segment-

992 Chinese Geographical Science 2022 Vol. 32 No. 6



ation. Proceedings  of  the  European  Conference  on  Computer
Vision, 801–818. doi: 10.1007-978-3-030-01234-2_49 

Badrinarayanan  V,  Kendall  A,  Cipolla  R,  2017.  Segnet:  a  deep
convolutional encoder-decoder architecture for image segment-
ation. IEEE Transactions on Pattern Analysis and Machine In-
telligence,  39(12):  2481–2495.  doi: 10.1109-TPAMI.2016.
2644615 

Bicheron P, Defourny P, Brockmann C et al., 2011. GLOBCOV-
ER:  products  description  and  validation  report. Foro  Mundial
De La Salud, 17(3): 285–287. 

Carranza-García  M,  García-Gutiérrez  J,  Riquelme  J  C,  2019.  A
framework for  evaluating  land  use  and  land  cover  classifica-
tion  using  convolutional  neural  networks. Remote  Sensing,
11(3): 274. doi: 10.3390-rs11030274 

Cevikalp H, Benligiray B, Gerek O N, 2020. Semi-supervised ro-
bust deep neural networks for multi-label image classification.
Pattern Recognition, 100: 107164. doi: 10.1016-j.patcog.2019.
107164 

Chen G S,  Li  C,  Wei W et  al.,  2019.  Fully convolutional  neural
network with augmented atrous spatial pyramid pool and fully
connected fusion  path  for  high  resolution  remote  sensing  im-
age segmentation. Applied Sciences,  9(9):  1816. doi: 10.3390-
app9091816 

Chen  Jun,  Liao  Anping,  Chen  Jin  et  al.,  2017.  30-Meter  global
land  cover  data  product-  globe  land30. Geomatics  World,
24(1): 1–8. (in Chinese) 

Chen L C,  Papandreou G,  Kokkinos  I  et  al.,  2017.  Deeplab:  se-
mantic image  segmentation  with  deep  convolutional  nets,  at-
rous convolution, and fully connected crfs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4): 834–848.
doi: 10.1109-TPAMI.2017.2699184 

Congalton  R  G,  1988.  Using  spatial  autocorrelation  analysis  to
explore  the  errors  in  maps  generated  from  remotely  sensed
data. Photogrammetric  Engineering  and  Remote  Sensing,
54(5): 587–592. doi: 10.1109-36.3037 

Congalton R G, 1991. A review of assessing the accuracy of clas-
sifications  of  remotely  sensed  data. Remote Sensing  of  Envir-
onment, 37(1): 35–46. doi: 10.1016-0034-4257(91)90048-B 

De Fries R S, Hansen M, Townshend J R G et al.,  1998. Global
land cover classifications at 8 km spatial resolution: the use of
training  data  derived  from  landsat  imagery  in  decision  tree
classifiers. International  Journal  of  Remote  Sensing,  19(16):
3141–3168. doi: 10.1080-014311698214235 

Gastaldo P, Zunino R, Heynderickx I et al., 2005. Objective qual-
ity  assessment  of  displayed  images  by  using  neural  networks.
Signal Processing:Image Communication, 20(7): 643–661. doi:
10.1016-j.image.2005.03.013 

Gong P, Liu H, Zhang M N et al., 2019. Stable classification with
limited sample:  transferring a  30-m resolution sample  set  col-
lected in 2015 to mapping 10-m resolution global land cover in
2017. Science Bulletin, 64: 370–373. doi: 10.1016-j.scib.2019.
03.002 

Guo  Chongzhou,  Li  Ke,  Li  He,  2020.  Deep  convolution  neural
network method  for  remote  sensing  image  quality  classifica-

tion. Geomatics and Information Science of Wuhan University,
1–9. (in Chinese) 

Guo R, Liu J B, Li N et al., 2018. Pixel-wise classification meth-
od for high resolution remote sensing imagery using deep neur-
al  networks. ISPRS International  Journal  of  Geo-Information,
7(3): 110. doi: 10.3390-ijgi7030110 

Guo Y M, Liu Y, Georgiou T et al., 2018. A review of semantic
segmentation using deep neural networks. International Journ-
al  of  Multimedia  Information  Retrieval,  7(2):  87–93.  doi: 10.
1007-s13735-017-0141-z 

He  T  D,  Wang  S  X,  2021.  Multi-spectral  remote  sensing  land-
cover  classification  based  on  deep  learning  methods. The
Journal  of  Supercomputing,  77(3):  2829–2843.  doi: 10.1007-
s11227-020-03377-w 

Hinton G  E,  Osindero  S,  Teh  Y  W,  2006.  A  fast  learning  al-
gorithm  for  deep  belief  nets. Neural  Computation,  18(7):
1527–1554. doi: 10.1162-neco.2006.18.7.1527 

Hong D F, Gao L R, Yokoya N et al., 2020. More diverse means
better: multimodal  deep  learning  meets  remote-sensing  im-
agery classification. IEEE Transactions on Geoscience and Re-
mote  Sensing,  59(5):  4340–4354.  doi: 10.1109-TGRS.2020.
3016820 

Kussul  N,  Lavreniuk  M,  Skakun  S  et  al.,  2017.  Deep  learning
classification of land cover and crop types using remote sens-
ing data. IEEE Geoscience and Remote Sensing Letters, 14(5):
778–782. doi: 10.1109-LGRS.2017.2681128 

Li Deren, Zhang Liangpei, Xia Guisong, 2014. Automatic analys-
is  and mining of  remote  sensing  big  data. Acta  Geodaetica  et
Cartographica Sinica, 43(12): 1211–1216. (in Chinese) 

Loveland T R, Reed B C, Brown J F et al., 2000. Development of
a global land cover characteristics database and IGBP DIS cov-
er  from  1  km  AVHRR  data. International  Journal  of  Remote
Sensing, 21(6−7): 1303–1330. doi: 10.1080-014311600210191 

Ma H J, Liu Y L, Ren Y H et al., 2020. Improved CNN classifica-
tion  method  for  groups  of  buildings  damaged  by  earthquake,
based on high resolution remote sensing images. Remote Sens-
ing, 12(2): 260. doi: 10.3390-rs12020260 

Meng X R, Zhang S Q, Zang S Y, 2018. Remote sensing classi-
fication of wetland communities based on convolutional neur-
al  networks  and  high  resolution  images:  a  case  study  of  the
Honghe wetland. Scientia Geographica Sinica, 38: 1914–1923.
doi: 10.13249-j.cnki.sgs.2018.11.019 

Noh H,  Hong  S,  Han  B,  2015.  Learning  deconvolution  network
for  semantic  segmentation. Proceedings of  the  IEEE  Interna-
tional  Conference  on  Computer  Vision,  1520–1528.  doi: 10.
1109-ICCV.2015.178 

Pan X R,  Gao L R,  Zhang B et  al.,  2018.  High-resolution aerial
imagery  semantic  labeling  with  dense  pyramid  network.
Sensors, 18(11): 3774. doi: 10.3390-s18113774 

Pugh S A, Congalton, 2001. Applying spatial autocorrelation ana-
lysis  to  evaluate  error  in  new England forest-cover-type maps
derived  from  landsat  thematic  mapper  data. Photogrammetric
Engineering  and  Remote  Sensing,  67(5):  613–620.  doi: 10.
1007-s001900100173 

WANG Xinshuang et al. Improving the Interpretability and Reliability of Regional Land Cover Classification by... 993

https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.3390-rs11030274
https://doi.org/10.3390-rs11030274
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.3390-app9091816
https://doi.org/10.3390-app9091816
https://doi.org/10.3390-app9091816
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-36.3037
https://doi.org/10.1109-36.3037
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1080-014311698214235
https://doi.org/10.1080-014311698214235
https://doi.org/10.1016-j.image.2005.03.013
https://doi.org/10.1016-j.image.2005.03.013
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.3390-ijgi7030110
https://doi.org/10.3390-ijgi7030110
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1162-neco.2006.18.7.1527
https://doi.org/10.1162-neco.2006.18.7.1527
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-LGRS.2017.2681128
https://doi.org/10.1109-LGRS.2017.2681128
https://doi.org/10.1080-014311600210191
https://doi.org/10.1080-014311600210191
https://doi.org/10.1080-014311600210191
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.13249-j.cnki.sgs.2018.11.019
https://doi.org/10.13249-j.cnki.sgs.2018.11.019
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.3390-s18113774
https://doi.org/10.3390-s18113774
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1007-978-3-030-01234-2_49
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.1109-TPAMI.2016.2644615
https://doi.org/10.3390-rs11030274
https://doi.org/10.3390-rs11030274
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.1016-j.patcog.2019.107164
https://doi.org/10.3390-app9091816
https://doi.org/10.3390-app9091816
https://doi.org/10.3390-app9091816
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-TPAMI.2017.2699184
https://doi.org/10.1109-36.3037
https://doi.org/10.1109-36.3037
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1016-0034-4257(91)90048-B
https://doi.org/10.1080-014311698214235
https://doi.org/10.1080-014311698214235
https://doi.org/10.1016-j.image.2005.03.013
https://doi.org/10.1016-j.image.2005.03.013
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.1016-j.scib.2019.03.002
https://doi.org/10.3390-ijgi7030110
https://doi.org/10.3390-ijgi7030110
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s13735-017-0141-z
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1007-s11227-020-03377-w
https://doi.org/10.1162-neco.2006.18.7.1527
https://doi.org/10.1162-neco.2006.18.7.1527
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-TGRS.2020.3016820
https://doi.org/10.1109-LGRS.2017.2681128
https://doi.org/10.1109-LGRS.2017.2681128
https://doi.org/10.1080-014311600210191
https://doi.org/10.1080-014311600210191
https://doi.org/10.1080-014311600210191
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.3390-rs12020260
https://doi.org/10.13249-j.cnki.sgs.2018.11.019
https://doi.org/10.13249-j.cnki.sgs.2018.11.019
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.1109-ICCV.2015.178
https://doi.org/10.3390-s18113774
https://doi.org/10.3390-s18113774
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173
https://doi.org/10.1007-s001900100173


Quartulli M, Olaizola I G, 2013. A review of EO image informa-
tion  mining. ISPRS  journal  of  Photogrammetry  and  Remote
Sensing, 75: 11–28. doi: 10.1016-j.isprsjprs.2012.09.010 

Ronneberger  O,  Fischer  P,  Brox  T,  2015.  U-net:  convolutional
networks  for  biomedical  image  segmentation. International
Conference  on  Medical  Image  Computing  and  Computer-As-
sisted  Intervention.  Springer,  Cham,  234–241.  doi: 10.1007-
978-3-319-24574-4_28 

Rezaee M, Mahdianpari M, Zhang Y et al., 2018. Deep convolu-
tional neural network for complex wetland classification using
optical remote sensing imagery. IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, 11(9):
3030–3039. doi: 10.1109-JSTARS.2018.2846178 

Shamsolmoali  P,  Zareapoor  M,  Wang  R  et  al.,  2019.  A  novel
deep structure U-Net for sea-land segmentation in remote sens-
ing images. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing,  12(9): 3219–3232. doi: 10.
1109-JSTARS.2019.2925841 

Shelhamer E,  Long  J,  Darrell  T,  2016.  Fully  convolutional  net-
works  for  semantic  segmentation. IEEE Transactions  on  Pat-
tern  Analysis  and  Machine  Intelligence,  39(4):  640–651.  doi:
10.1109-TPAMI.2016.2572683 

Wang Yahui, Chen Erxue, Guo Ying et al., 2020. Deep U-net op-
timization method for forest type classification with high resol-
ution  multispectral  remote  sensing  images. Forest  Research,
33(1): 11–18. (in Chinese) 

Wang Z, Bovik A C, Sheikh H R et al.,  2004. Image quality as-
sessment:  from  error  visibility  to  structural  similarity. IEEE
Transactions  on  Image  Processing,  13(4):  600–612.  doi: 10.
1109-TIP.2003.819861 

Weng  Q  H,  2011. Advances  in  Environmental  Remote  Sensing:
Sensors, Algorithms, and Applications. New York: CRC Press. 

Xu X D,  Li  W,  Ran  Q et  al.,  2017.  Multisource  remote  sensing
data  classification  based  on  convolutional  neural  network.
IEEE Transactions on Geoscience and Remote Sensing, 56(2):
937–949. doi: 10.1109-TGRS.2017.2756851 

Yuan Q Q, Shen H F, Li T W et al., 2020. Deep learning in envir-
onmental  remote  sensing:  achievements  and  challenges. Re-
mote Sensing of Environment, 241: 111716. doi: 10.1016-j.rse.
2020.111716 

Yuan T, Zheng X Q, Hu X et al., 2014. A method for the evalu-
ation of  image  quality  according  to  the  recognition  effective-
ness of objects  in the optical  remote sensing image using ma-
chine learning algorithm. PloS One, 9(1): e86528. doi: 10.1371-
journal.pone.0086528 

Zhang  L  P,  Zhang  L  P,  Du  B.,  2016.  Deep  learning  for  remote
sensing  data:  a  technical  tutorial  on  the  state  of  the  art. IEEE
Geoscience  and  Remote  Sensing  Magazine,  4(2):  22–40.  doi:
10.1109-MGRS.2016.2540798 

Zhang X,  Liu L Y,  Chen X D et  al.,  2021.  GLC_FCS30:  global
land-cover product with fine classification system at 30 m us-
ing  time-series  landsat  imagery. Earth  System  Science  Data,
13(6): 2753–2776. doi: 10.5194-essd-13-2753-2021 

Zhang Z X, Liu Q J, Wang Y H, 2018. Road extraction by deep
residual  u-net. IEEE Geoscience  and  Remote  Sensing  Letters,
15(5): 749–753. doi: 10.1109-LGRS.2018.2802944 

Zhao H S, Shi J P, Qi X J et al., 2017. Pyramid scene parsing net-
work. 2017 IEEE Conference on Computer Vision and Pattern
Recognition  (CVPR),  6230–6239.  doi: 10.1109/CVPR.2017.
660

994 Chinese Geographical Science 2022 Vol. 32 No. 6

https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1016-j.isprsjprs.2012.09.010
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1007-978-3-319-24574-4_28
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2018.2846178
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-JSTARS.2019.2925841
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TPAMI.2016.2572683
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TIP.2003.819861
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1109-TGRS.2017.2756851
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1016-j.rse.2020.111716
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1371-journal.pone.0086528
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.1109-MGRS.2016.2540798
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.5194-essd-13-2753-2021
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109-LGRS.2018.2802944
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660

	1 Introduction
	2 Data and Methods
	2.1 Study areas
	2.2 Data and processing
	2.3 Methodology
	2.3.1 Semantic segmentation model
	2.3.2 Stereoscopic accuracy verification
	2.3.3 Overview research route


	3 Results
	3.1 Qualitative description of classification results
	3.2 Quantitative accuracy assessment of classification results

	4 Discussion
	4.1 The effect of image quality on classification results
	4.2 The effect of sample size on classification results
	4.3 Engineering demonstration areas for application

	5 Conclusions
	References

