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Abstract: The grassland in the Hindu Kush Himalayan (HKH) region is one of the largest and most biodiverse mountain grassland types
in the world, and its ecosystem service functions have profound impacts on the sustainable development of the HKH region. Monitoring
the spatiotemporal distribution of grassland aboveground biomass (AGB) accurately and quantifying its response to climate change are
indispensable sources of information for sustainably managing grassland ecosystems in the HKH region. In this study, a pure vegetation
index model (PVIM) was applied to estimate the long-term dynamics of grassland AGB in the HKH region during 2000–2018. We fur-
ther quantified the response of grassland AGB to climate change (temperature and precipitation) by partial correlation and variance par-
titioning analyses and then compared their differences with elevation. Our results demonstrated that the grassland AGB predicted by the
PVIM had a good linear relationship with the ground sampling data. The grassland AGB distribution pattern showed a decreasing trend
from east to west across the HKH region except in the southern Himalayas. From 2000 to 2018, the mean AGB of the HKH region in-
creased at a rate of 1.57 g/(m2·yr) and ranged from 252.9 (2000) to 307.8 g/m2 (2018). AGB had a positive correlation with precipita-
tion in more than 80% of the grassland, and temperature was positively correlated with AGB in approximately half of the region. The
change  in  grassland  AGB  was  more  responsive  to  the  cumulative  effect  of  annual  precipitation,  while  it  was  more  sensitive  to  the
change in temperature in the growing season; in addition, the influence of climate varied at different elevations. Moreover,  compared
with that of temperature, the contribution of precipitation to grassland AGB change was greater in approximately 60% of the grassland,
but the differences in the contribution for each climate factor were small between the two temporal scales at elevations over 2000 m. An
accurate assessment of the temporal and spatial distributions of grassland AGB and the quantification of its response to climate change
are of great significance for grassland management and sustainable development in the HKH region.
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1　Introduction

The  Hindu  Kush  Himalayan  (HKH)  region  is  a  unique
mountain ecosystem and is regarded as a pivotal region
in terms of ecosystem services, biodiversity, carbon and
water  cycles  and  climate  change  (Chen  et  al.,  2013;
Shrestha et al., 2016; Kandel et al., 2021). As the largest
ecosystem  type  in  the  HKH  region,  grassland  plays  an
important role in the ecosystem services and sustainabil-
ity  of  the  area  (Xu  et  al.,  2009; 2019).  However,  the
grassland ecosystem  in  the  region  is  experiencing  im-
pacts  from  global  climate  change,  land  cover  change
and  population  growth  (Wester  et  al.,  2019). For  ex-
ample, the  grassland  has  been  degraded  to  varying  de-
grees due  to  physical  and  anthropogenic  factors  in  re-
cent  decades  (Xu  et  al.,  2008; Ran  et  al.,  2019). Con-
sequently, the function of the grassland ecosystem in the
HKH region has been severely affected, endangering the
sustainable  development  of  the  region  (Wick  et  al.,
2016; Dimri et al., 2020). As two of the most direct in-
dicators of grassland ecosystem functioning, the tempor-
al dynamics and spatial distribution of grassland above-
ground biomass (AGB) in the HKH region and their re-
sponse  to  climate  change  must  be  assessed  so  that  the
regional carbon  cycle  can  be  determined  and  the  sus-
tainable utilization of grassland resources can occur.

Remote sensing has been widely applied to grassland
AGB  estimation  due  to  it  having  a  higher  efficiency
level  and better  spatiotemporal  data  continuity than the
field survey methods at a large scale (Todd et al., 1998;
Psomas et al., 2011; Jin et al., 2014; Yang et al., 2018).
Grassland AGB estimation models or methods based on
remote  sensing  can  be  divided  into  three  categories:
statistical  models  based  on  vegetation  indices  (Guerini
et  al.,  2019; Yu et  al.,  2021),  an  assimilation  of  model
and  data  approaches  (Quan  et  al.,  2017)  and  machine
learning models (Morais et al., 2021; Zeng et al., 2021).
By comparison,  establishing  relationships  between  dif-
ferent  vegetation  indices  (VIs)  and  AGB  measured  in
field plots is the most common and simple approach for
grassland AGB  estimation  over  a  large  area.  For  ex-
ample,  Ge  et  al.  (2018)  indicated  that  the  normalized
difference vegetation  index  (NDVI)  and  enhanced  ve-
getation  index  (EVI)  of  Moderate  Resolution  Imaging
Spectroradiometer  (MODIS)  predicted  grassland  AGB
well  in  the  source  region  of  the  Yellow  River.  The
NDVI also performed well in the hinterland and moun-

tainous areas of the Tibetan Plateau (Kong et al., 2019;
Wei et al., 2021). However, the estimation of grassland
AGB based on VIs might be influenced by the spectral
saturation in  dense  vegetation  areas  and  mixed  back-
ground information, such as soil (Li et al., 2016). Some
models or indices have been proposed to estimate grass-
land AGB more accurately by reducing the influence of
soil and other background factors (Xu et al., 2021). For
example, the  pure  vegetation  index  model  (PVIM)  ex-
tracted vegetation information by spectral mixed analys-
is  (SMA)  based  on  multitemporal  remote  sensing  data
and this approach was proven to be more advantageous
in estimating grassland AGB with varied fractional cov-
erage  (Li  et  al.,  2016).  Nevertheless,  limited  by
sampling data and remote sensing data, most of the cur-
rent studies  on  the  remote  sensing  estimation  of  grass-
land AGB in the HKH region were focused on the Qing-
hai-Tibet  Plateau  (Jiao  et  al.,  2017; Liu  et  al.,  2017a;
Tang et al., 2021) and the spatial and temporal distribu-
tion  and  dynamic  changes  in  grassland  AGB  in  the
HKH region were unclear.

Grassland  AGB  is  easily  influenced  by  climate
factors,  which  has  been  confirmed  by  many  previous
studies  (Sun  et  al.,  2013; Li  et  al.,  2018; Zhou  et  al.,
2021). As one of the most unique regions in the world,
climate change in the HKH region is evident, and an ex-
ample was the general increase in extreme warm events
over  the  entire  HKH region  during  1961–2015  (Sun  et
al.,  2017),  which  severely  affected  the  growth  of  the
grassland  in  this  region  (Panday  and  Ghimire  2012;
Wester  et  al.,  2019).  Several  studies  have  revealed  the
response of grassland AGB to climate change in this re-
gion.  For  example,  Dai  et  al.  (2019)  demonstrated  that
the AGB of alpine meadow was dominated by mean an-
nual  precipitation  (MAP)  during  2008–2017  at  the
Haibei National Field Research Station on the northeast-
ern  Tibetan  Plateau  of  China.  Wang  et  al.  (2018)
showed that the response of grassland AGB to temperat-
ure  and  precipitation  changes  in  different  months  was
not  consistent  in  Qinghai  Province  of  China  during
2003–2016.  However,  these  studies  focused  more  on
local  areas  or  some  specific  areas  rather  than  on  the
whole region; thus, there is still a lack of systematic re-
search  on  the  response  of  grassland  AGB  to  climate
change in the whole region. Moreover, the difference in
the  effect  of  climatic  conditions  on  grassland  AGB  at
the annual scale or in different periods is also unclear in
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this  region.  In  addition,  the  terrain  has  an  impact  on
grassland AGB as it influences hydrothermal conditions
(Duparc et  al.,  2013; Carlyle  et  al.,  2014).  Besides,  the
complex  topographic  conditions  in  the  HKH  region
cause inconsistent  response  of  grassland  AGB  to  cli-
mate change in different regions, especially at different
elevation  gradients  (Duparc  et  al.,  2013; Karimi  et  al.,
2021).  Thus,  a  quantification  of  the  effect  of  elevation
on grassland AGB response to climate change is needed
at a large scale.

Therefore, the main purpose of this paper is to evalu-
ate  the  spatial  and  temporal  distributions  of  grassland
AGB  in  the  HKH  region  and  quantify  the  response  of
grassland AGB to climate change. To achieve this goal,
we: 1) assessed the applicability of the PVIM for estim-
ating grassland AGB in the HKH region and verified its
accuracy based on the ground-measured data;  2) estim-
ated  the  spatial  distribution  of  grassland  AGB  in  the
HKH  region  from  2000  to  2018  with  the  PVIM  based
on long time series MODIS data and analyzed its inter-
annual variation  through  trend  analysis;  and  3)  quanti-
fied  the  effects  of  precipitation  and  temperature  on  the
variation in  grassland  AGB  through  variance  partition-
ing  analysis  (VPA)  and  partial  correlation  analysis  and
further compared  the  difference  in  this  effect  at  differ-
ent elevation ranges. This study of spatial and temporal
variation of  grassland AGB and its  response to  climate
change can  provide  theoretical  basis  for  strategies  ad-
justing and  management  optimizing  of  grassland  eco-

system in HKH region. 

2　Materials and Methods
 

2.1　Study area
The HKH region is in the southern of Asia (16°N–40°N,
61°E–105°E)  and  spans  over  4  million  km2,  including
all  Bhutan  and  Nepal  and  parts  of  Afghanistan,  Bang-
ladesh,  China,  India,  Myanmar  and  Pakistan  (Fig.  1).
The  HKH  region  has  the  highest  and  largest  mountain
system  in  the  world  with  an  elevation  range  from  sea
level to over 8000 m, which is referred to as the ‘Third
Pole’, and thus creates  one of  the most  diverse ecosys-
tems in the world providing various ecosystem products
and services (Singh et al., 2011; Yao et al., 2012; Xu et
al.,  2019).  Grassland  is  one  of  the  largest  ecosystem
types in the region, accounting for over 60% of the total
area  according  to  previous  studies  (Dong  et  al.,  2010;
Xu et al., 2019). The grassland in HKH region is mainly
distributed  on  the  Qinghai-Tibet  Plateau,  the  Hindu
Kush  Mountains  and  the  southern  Himalayas  (Fig.  1).
The  climate  is  mainly  dominated  by  both  the  monsoon
of South Asia and midlatitude westerlies (Schickhoff et
al., 2015). In particular, the precipitation is uneven with
a  great  spatial  difference  between  the  south  and  north,
which is caused by the complex terrain. The average an-
nual  temperature  in  the region also varies  greatly  in  its
spatial distribution and even from place to place due to
the  rapid  changes  in  elevation.  At  the  same  time,  as  a

 

Elevation / m

<1000

1000−2000
2000−3000
3000−4000
4000−5000
>5000

Non-glassland

Sample site

HKH boundary

Hindu Kush Mountains

Ngari Prefecture

North Tibet

Southern Himalayas

Three-river

Headwater Hegion

60°E

30°N

40°N

20°N

10°N

30°N

40°N

20°N

10°N

70 °E 80°E 90°E 100°E

60°E 70 °E 80°E 90°E 100°E

0 500 1000 km

Fig. 1    Location of the Hindu Kush Himalayan (HKH), sample sites and the distribution of the grassland by elevation
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vulnerable area to climate change,  the HKH region has
shown  a  significant  warming  trend  with  0.176°C  per
decade in the past 100 yr (Ren et al., 2017). 

2.2　Data source 

2.2.1　Remote sensing data
The MODIS 8-day data sets (MOD09Q1) with a 250 m
spatial resolution during the growing season (from early
April  to  late  September)  of  each  year  from  2000  to
2018,  covering  the  whole  HKH  region,  were  obtained
and  preprocessed  in  the  Google  Earth  Engine  (GEE)
platform  (Table  1).  MODIS  land  cover  type  products
(MCD12Q1) with a 500 m spatial resolution were used
in  our  study  to  extract  the  spatial  distribution  of  the
grassland in the HKH region, and the global vegetation
classification  scheme  of  the  International  Geosphere-
Biosphere Programme  (IGBP)  was  adopted  for  select-
ing  the  grassland,  which  showed  an  accuracy  of  over
70% based on an evaluation by a previous study (Yang
et  al.,  2017).  The  preprocessing  involved  data  splicing
and  clipping  and  was  completed  on  the  GEE platform.
In addition,  we  constructed  a  simple  decision  mechan-
ism in which only the pixels whose land cover type was
grassland for more than ten years during the monitoring
period  were  used  in  the  subsequent  analysis.  Then,  we
used a simple overlay analysis by IDL 8.5 to extract the
250 m MODIS data for the grassland region in the HKH
region based on the grassland mask.

The  digital  elevation  model  (DEM)  was  obtained
from  the  Shuttle  Radar  Topography  Mission  (SRTM)
with an absolute  accuracy of  better  than 16 m within a
90 m spatial resolution (Jarvis et al., 2008). The SRTM
data  performed  well,  with  an  absolute  height  error  of
6.2  m  in  Asia  (Rodríguez  et  al.,  2006).  The  elevation
was then extracted from the DEM. To match the MOD-
IS data, the elevation data were resampled to 250 m. 

2.2.2　Meteorological datasets
The  monthly  meteorological  data  (precipitation  and

temperature) with  a  0.04°  spatial  resolution  were  ob-
tained  from  WorldClim  (https://www.worldclim.org),
which is a database of high spatial resolution global cli-
mate  data  (Table  1)  (Fick  and  Hijmans,  2017).  The
monthly precipitation and maximum and minimum tem-
perature  data  were  used  to  calculate  the  accumulated
precipitation  and  mean  temperature  for  each  year  from
2000–2018,  respectively.  Additionally,  we  calculated
the  accumulated  precipitation  and  mean temperature  of
the growing season for each year. 

2.2.3　Field data
Field data surveys were conducted in 2015 and 2018, in
Qinghai-Tibet  Plateau  of  China,  Nepal  and  Myanmar
(Fig. 1). At each site, five sample plots (1 m × 1 m) dis-
tributed regularly within 100 m2 were collected.  Grass-
land AGB was acquired by harvesting all  aboveground
portions of  vegetation  within  the  sample  plot.  In  addi-
tion, the  geographic  coordinates  were  accurately  recor-
ded by a Trimble GeoXH 3000 handheld GPS with cen-
timeter-level  position  accuracy.  The  mean  value  of
grassland AGB at  each site  was used for modeling and
validation. However, there were some sites where it was
difficult  to  collect  in  five  plots,  so  we  only  calculated
the  mean  value  of  AGB  for  the  plots  where  data  were
collected.  A  total  of  112  sites  with  461  sample  plots
were collected. 

2.3　Methods 

2.3.1　Pure vegetation index model
The theoretical basis of the PVIM is to enhance the ve-
getation signal while reducing the background informa-
tion of soil by spectral mixture analysis (SMA). Accord-
ing to the SMA, the pixel information was decomposed:
VR = MR− (1−FVC)×SR (1)

where VR and SR represent the  reflected  signals  of  ve-
getation  and  soil,  respectively. MR is the  reflected  sig-
nal  of  the  whole  pixel,  which  is  generally  regarded  as

 
Table 1    Description of remote sensing data and meteorological data for the Hindu Kush Himalayan (HKH) region
 

Data Spatial resolution Temporal resolution Time span Data source

MOD09Q1 250 m 8-d 2000–2018 NASA LPDAAC at the USGS EROS Center (https://lpdaac.usgs.gov/data/)

Landcover (MCD12Q1) 500 m Yearly 2000–2018 NASA LPDAAC at the USGS EROS Center (https://lpdaac.usgs.gov/data/)

Elevation 90 m – 2000 NASA/CGIAR (https://srtm.csi.cgiar.org/)

Temperature 0.04° Monthly 2000–2018 WorldClim (https://www.worldclim.org)

Precipitation 0.04° Monthly 2000–2018 WorldClim (https://www.worldclim.org)
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mixed  information; FVC represents fractional  vegeta-
tion coverage and it  is  calculated by a pixel  dichotomy
model (Adams et al., 1986).

It is generally believed that the vegetation index (VI)
reduces the  influence  of  atmospheric  and  soil  informa-
tion  on  vegetation  to  a  certain  degree  (Li  et  al.,  2016).
Therefore, VI could be used to replace the reflected sig-
nals  in  Eq.  (1)  and  ratio  vegetation  index  (RVI) per-
formed better for the grassland AGB estimation (Eq. (2)
and Eq. (3)), which was verified in a previous study (Li
et al., 2016).

RVI =
NIR

R
(2)

PRVI = RVIvs− (1−FVC)×RVIsoil (3)

where  near-infrared  (NIR)  and  red  (R) are  the  reflect-
ance of  the  near-infrared  band  and  red  band,  respect-
ively. PRVI is  the  pure  vegetation  index  of  each  pixel;
RVIvs is the RVI value of the vegetation-soil mixed pixel
and RVIsoil is the value of each pixel at the beginning of
the growth season, which is early April in our study.

After  filtering  the  background  signal  or  non-vegeta-
tion  signal,  the  common simple  linear  model  was  used
to estimate the AGB of the grassland as followed:
AGB = a×PRVI+b (4)

where a and b are the parameters of the common linear
model calculated based on sample data.

Because  the PRVI was  the  result  of  soil  filtering,  a
simpler functional form was expressed as:
AGB = M×PRVI (5)

where M is a single conversion factor relating the PRVI
to AGB, which was measured in g/m2.

The  coefficient  of  determination  (R2)  and  root  mean
squared  error  (RMSE) were  used  to  evaluate  the  per-
formance of the PVIM and were calculated as:

R2 =

∑
(ŷi− y)2∑
(yi− y)2

(6)

RMSE =

√√√√√√√ n∑
i=1

(ŷi− yi)
2

n
(7)

ŷi −
y

where  and yi are the predicted values of the AGB and
measured  values  of  AGB,  respectively;  is  the  mean
value of measured AGB and n is the number of sample
plots. 

2.3.2　Trend analysis  of  grassland  aboveground  bio-
mass
Trend analysis is a method used to predict the change in
grassland  AGB  by  linear  regression  analysis  over  the
monitoring period and the change was calculated as fol-
lows:

S lope =

n×
n∑

i=1

i×AGBi−
 n∑

i=1

i


 n∑

i=1

AGBi


n×

n∑
i=1

i2−
 n∑

i=1

i

2
(8)

where Slope is  the  slope  of  the  regression  equation  of
each  pixel  and i represents  1,  2,  3,  …, n,  for  the  year
from 2000 to 2018 and n is the time span, which is 19 in
our  study. AGBi is  the  mean  value  of  AGB  in  year i.
When Slope is greater than 0, it indicates that the grass-
land  AGB  of  this  pixel  is  increasing.  When Slope is
equal to  0,  it  indicates  that  the  AGB  is  basically  un-
changed; When Slope is less than 0, it indicates that the
grassland AGB of the pixel is decreasing.

To  detect  the  significance  of  the  change  trend  in
grassland  AGB,  a  nonparametric  Mann-Kendall  (M-K)
method  was  applied.  The  M-K method  did  not  assume
that the samples followed a certain distribution and was
not affected by a few outliers, and it is more suitable for
time-series variables. The calculation process of the M-
K method can be described as follows:

sgn
(
q j−qi

)
=


1, if q j−qi > 0
0, if q j−qi = 0
−1, if q j−qi < 0

(9)

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
q j −qi

)
(10)

var (S ) =

n (n−1)(2n+5)−
m∑

i=1

ti(ti−1)(2ti+5)

18
(11)

Z =



S −1
√

var (S )
if S > 0

0 if S = 0
S +1
√

var (S )
if S < 0

(12)

where qi and qj are  the grassland AGB in years i and j
(j > i), respectively. sgn is a symbolic function. n is the
time span. ti represents the number of tied groups in ex-
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tent i and a tied group represents a sample data set with
the same AGB value. S is a statistic that follows a nor-
mal distribution and var(S) is variance. Z represents the
statistic of the M-K test. If |Z| ≥ Z1–α/2 for a given signi-
ficance  level α (α = 0.05  in  our  study),  then  the  grass-
land AGB time-series data would show a significant in-
creasing or decreasing trend. 

2.3.3　Partial correlation analysis
Partial correlation analysis is usually used to analyze the
linear correlation  between  two  variables  while  con-
trolling  for  the  linear  influence  of  other  variables.  This
method could be used to analyze the response of vegeta-
tion to  a  single  climatic  factor,  and we used the  partial
correlation coefficient to measure the degree of correla-
tion between two variables,  which can be calculated as
follows:

rxy(z) =
rxy− rxzryz√

1− r2
xz

√
1− r2

yz

(13)

rxy(z)where  is the partial correlation coefficient of vari-
able x and  variable y after  excluding  the  influence  of
variable z. rxy, ryz and rxz represent the  simple  correla-
tion coefficients between pairs of three variables (AGB,
temperature and precipitation, respectively). The simple
correlation coefficient  is  generally  the  Pearson  correla-
tion coefficient, which can be calculated by:

rxy =

n∑
i=1

(xi− x)(yi− y)√√ n∑
i=1

(xi− x)2

√√ n∑
i=1

(yi− y)2

(14)

x y

where x and y are the pairs of three variables; xi and yi
are the values of variables x and y in year i, respectively;
and  and  represent  the  mean  values  of  variables x
and y from 2000 to 2018.

A  bilateral t test  (Eq.  (15))  was  applied  to  infer  the
significance  of  the  partial  correlation  coefficient  at  a
significance level of 0.05.

t =
r
√

m− k−2
√

1− r2
(15)

where r is the partial correlation coefficient, and k is the
number of controllable variables. 

2.3.4　Variance partitioning analysis
VPA is  a  contribution  decomposition  method  based  on
the regression equation,  which can calculate the contri-

bution of each variable for a regression equation with J
independent  variables.  After  estimating  the  combined
effects of  temperature  and  precipitation  on  the  interan-
nual variation in grassland AGB based on multiple lin-
ear  regression,  we  used  VPA  to  quantitatively  analyze
the  respective  contributions  of  the  two  climate  factors.
The  contribution  decomposition  formulas  are  listed  as
follows:

y = a+
J∑

j=1

b jx j+ e (16)

1 =
J∑

j=1

b j
cov(xi,y)

var (y)
+

cov(e,y)
var (y)

(17)

x j b j

b j
cov(xi,y)

var (y)

J∑
j=1

b j
cov(xi,y)

var (y)

where  and  are  the  independent  variable j and  its

coefficient of linear regression, respectively; 
is  the  contribution  of  the  independent  variable j to  the

variation in y; and  is the fit of the regres-

sion  equation. cov(xi, y)  and  var(y)  are  the  covariance
and variance, respectively. 

3　Results
 

3.1　Performance of the PVIM
Both the  linear  relationship  and  proportional  relation-
ship between the grassland AGB and PRVI were estab-
lished in our study (Fig. 2a). The result showed that the
linear  relationship  (R2 =  0.81, RMSE =  109.8, n =  78)
performed better than the proportional relationship (R2 =
0.79, RMSE =  117.4, n =  78).  Then,  we  evaluated  the
accuracy  of  the  linear  relationship  for  the  grassland
AGB estimation  in  the  whole  HKH region  by  compar-
ing  the  predicted  AGB  with  the  measurements  of  the
ground sample plots shown in Fig. 2b. Our results indic-
ated  a  reliable  performance  of  the  PVIM  in  estimating
grassland  AGB,  with R2 values  of  0.60  (P <  0.01, n =
66)  and  0.51  (P <  0.01, n =  46)  verified  by  ground
sample points collected in 2015 and 2018, respectively. 

3.2　Spatial  distribution  of  grassland  AGB  and  its
change along elevation
There was obvious spatial heterogeneity in the mean an-
nual  grassland  AGB  in  the  HKH  region  from  2000  to
2018  (Fig.  3). Overall,  grassland  AGB  showed  a  de-
creasing trend from east to the west throughout this re-
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gion,  except  in  the  southern  Himalayas,  where  AGB
was relatively high. According to our statistical  results,
the mean annual grassland AGB in the whole HKH re-
gion  was  274.7  g/m2 during  2000–2018. At  the  subre-
gional  scale,  both  the  eastern  part  of  the  Qinghai-Tibet
Plateau and the southern side of the Himalayas showed
high grassland AGB values of over 400 g/m2,  covering
approximately  20.4%  of  the  area.  Low  grassland  AGB
values (< 50 g/m2) were mainly distributed in the cent-
ral  part  of  the  Qinghai-Tibet  Plateau  and  the  western
part  of  the  HKH  region,  accounting  for  approximately
25.8% of the grassland area.

Furthermore, we also analyzed the variation in grass-
land AGB along altitudinal gradients (Fig. 4). The mean
annual grassland AGB showed a decreasing tendency in
the  ranges  of  0  to 3000 m  and 3000 m  to 7000 m.
Among  the  six  elevation  ranges,  the  mean  grassland
AGB was the highest (362.9 g/m2) in the range of 3000
to 4000 m,  while  the  lowest  appeared  at  elevations
above 5000 m  (101.3  g/m2).  The  total  grassland  AGB
(159.9  Tg)  presented  an  approximate  parabolic  trend
with the  change  in  elevation  range  due  to  the  discrep-

ancy  in  grassland  area  occupied  between  the  different
elevation ranges. The grassland at the elevation range of
4000–5000 m contributed the most to the regional total
AGB (84.9 Tg, 53.1%), followed by that in the range of
3000–4000 m at 31.3%. Because of the small grassland
area (< 3000 m) or low mean AGB (> 5000 m) in the re-
maining elevation ranges, these areas accounted for only
15.6% of the total grassland AGB.

Additionally, the mean annual grassland AGB within
the same elevation range showed differences in terms of
the  standard  deviation  coefficient  (Fig.  4).  The  largest
variation  in  grassland  AGB  occurred  in  the  elevation
range of 4000–5000 m, at 111%, followed by that in the
range  above 5000 m  and 3000–4000 m,  at  106%  and
98%,  respectively.  There  were  similar  differences
among the remaining three elevation ranges, with stand-
ard deviation coefficients from 62% to 70%. 

3.3　Interannual variation of grassland AGB and its
difference between different elevation ranges
The  trend  of  the  annual  regional  grassland  AGB  from
2000 to 2018 was shown in Fig. 5, and there was a sig-

 

1200

1000

800

600

400

200

0

400

300

200

100

0

G
ra

ss
la

n
d
 A

G
B

 /
 (

g
/m

2
)

P
re

d
ic

te
d
 A

G
B

 /
 (

g
/m

2
)

y = 73.96x + 55.05
R2 = 0.81, P < 0.01
RMSE = 109.8

y = 1.02x − 3.69
R2 = 0.60, P < 0.01
RMSE = 28.41
y = 0.81x + 19.32
R2 = 0.51, P < 0.01
RMSE = 36.4

y = 82.8x
R2 = 0.79, P < 0.01
RMSE = 117.4

0 2 4 6 8 0 100 200 300 40010 12

PRVI Measured AGB / (g/m2)

Sample points in 2015
Sample points in 2018

1:1 line

a b

Fig. 2    Relationships between the pure ratio vegetation index (PRVI) and grassland aboveground biomass (AGB) (a), the red and black
lines represent the different linear simulation curves, respectively; and the validation of the grassland AGB predicted by the pure vegeta-
tion index model (b)

 

<50
50−100
100−200
200−300
300−400

400−500
500−600
600−700
700−800
>800

AGB / (g/m2)

0 800 1600 km

N
30

25

20

15

10

5

0

120

100

80

60

40

20

0
0 50 100 200 300 400 500 600 700 800 1000

A
re

a 
p
er

ce
n
ta

g
e 

/ 
%

C
u
m

u
la

ti
v
e 

ar
ea

 p
er

ce
n
ta

g
e 

/ 
%

Grassland AGB / (g/m2)

a b
Area percentage

Cumulative area percentage

Fig. 3    Spatial distribution of the mean annual grassland aboveground biomass (AGB) from 2000 to 2018 in the Hindu Kush Himalay-
an (HKH) region (a) and the area percentage and cumulative area percentage of grassland AGB (b)

XU Cong et al. Remote Sensing-based Spatiotemporal Distribution of Grassland Aboveground Biomass and... 765



nificant  increasing  trend  with  a  rate  of  1.57  g/(m2·yr)
(R2 =  0.33).  Between  2000  and  2018,  the  maximum
mean AGB in the region was 307.8 g/m2 (2018),  while
the minimum mean AGB was 252.9 g/m2 (2000). Then,
we  obtained  the  trend  of  the  annual  AGB  during
2000–2018  across  the  HKH  region  by  applying  slope
trend analysis and the M-K significance test at the level
of 0.05 (Fig. 6). Our results showed that grassland AGB
in  most  areas  of  HKH had  an  increasing  or  significant
increasing  trend,  which  accounted  for  approximately

52.8% and 13.2% of the grassland area of the HKH re-
gion, respectively. The mean rate of the grassland AGB
with  a  significant  increasing  trend  was  5.9  g/m2 per
year,  and  the  increasing  trends  were  mainly  distributed
in  the  northeastern  part  of  the  Qinghai-Tibet  Plateau.
The  grassland  area  with  a  decreasing  trend  accounted
for  29.6%  of  the  HKH  grassland  area  and  was  mainly
located in the central part of the Qinghai-Tibet Plateau,
while  only  4.4% of  grassland  experienced  significantly
reduced AGB.

The  area  percentages  of  the  four  grassland  AGB
change  trends  varied  at  different  elevation  ranges
(Fig. 7). Among the elevation range of 1000 to 4000 m,
the AGB of  over  80% grassland  areas  showed increas-
ing or significant increasing trends. By comparison, the
grassland areas with an increasing or significant increas-
ing trend of AGB accounted for only 47.3% and 51.7%
of the elevation ranges below 1000 m and over 5000 m,
respectively,  which  were  approximately  equal  to  that
with a decreasing or significant decreasing trend (52.7%
and 48.3%). Moreover, the grassland AGB showed a de-
creasing or  significant  decreasing  trend  in  approxim-
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ately  40%  of  grassland  in  the  elevation  range  of
4000–5000 m. However,  the  decreasing trend of  grass-
land AGB was significant in only a few areas at all elev-
ation ranges.
 

3.4　Response of grassland AGB to climate change
To explore  the  differences  in  the  spatial  distribution  of
grassland AGB in response to climate change, we calcu-
lated  the  partial  correlation  at  the  significance  level  of

0.05 between  them  at  the  two  temporal  scales  separ-
ately. The  spatial  distribution  of  the  response  of  grass-
land  AGB  to  each  climate  factor  in  the  HKH  region
showed  some  similarity  between  the  two  temporal
scales  (Fig.  8).  Precipitation  was  positively  correlated
with  AGB  at  both  temporal  scales  over  80%  of  the
grassland  in  the  HKH  region.  In  contrast,  temperature
was  negatively  correlated  with  AGB  on  the  central
Tibetan  Plateau  and  in  the  western  HKH  region,  and
these areas  occupied  approximately  half  of  the  grass-
land. Additionally,  there  was  no  significant  spatial  dif-
ference  for  the  effect  of  climate  factors  on  grassland
AGB variation between the two temporal scales.

Further  analysis  showed  that  the  partial  correlations
between  the  climate  factors  and  grassland  AGB  varied
with elevation (Fig. 9). In terms of the annual scale, the
mean annual precipitation had a significant positive cor-
relation  with  AGB  over  70%  of  the  grassland  areas  at
elevations  below 1000 m, and  the  area  percentage  de-
creased  with  elevation  (Fig.  9a).  By  comparison,  the
area  percentage  of  grassland with  a  significant  positive
correlation  between  temperature  and  AGB  showed  a
parabolic  trend  with  elevation  and  reached  its  highest
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value in the range of 3000–4000 m (Fig. 9c). However,
the area percentage of grassland where AGB was signi-
ficantly negatively correlated with mean annual temper-
ature showed  the  opposite  trend,  and  the  area  percent-
age was highest when the elevation was below 1000 m
(43.1%).  For  the  growing  season,  there  were  similar
parabolic trends for the change in the area percentage of
grassland where  AGB  was  significantly  positively  cor-
related with precipitation or temperature. In contrast, the
largest  proportion  of  grassland  area  with  a  significant
negative  correlation  between  AGB  and  temperature  in
the growing season was found at elevations below 1000 m
(Fig. 9d). Additionally, the grassland area where precip-
itation was significantly negatively correlated with AGB
was relatively small in each elevation range for the two
temporal scales.

The combined  effects  of  precipitation  and  temperat-
ure fluctuations and their respective contributions to the
interannual  changes  in  regional  mean  grassland  AGB
from  2000  to  2018  were  further  quantified  by  VPA
(Fig.  10).  By  comparing  the  spatial  distribution  of  the
combined  effects  of  climate  change  on  the  annual  and
growing season scales, a similar spatial distribution was
found.  The  grassland  AGB was  strongly  influenced  by
the  climate  in  the  northern  part  of  the  Qinghai-Tibet
Plateau and the western part of the HKH region, with an
R2 > 0.5, and precipitation contributed more than 40% to

the  climate  in  these  two  regions.  By  comparison,  the
grassland in the central region (including northern Tibet
and  the  northern  foothills  of  the  Himalayas)  showed  a
lower  correlation  with  the  comprehensive  influence  of
climate  at  the  two temporal  scales.  Our  results  showed
that  the  temperature  in  the  growing  season  contributed
more  than  that  at  the  annual  scale,  contributing  more
than 40% on the eastern Qinghai-Tibet Plateau, while its
contribution  was  mostly  concentrated  in  the  range  of
10%–30% at  the  annual  scale.  Additionally,  the  grass-
land  area  where  precipitation  contributed  more,  which
accounted for 64.6% of the total grassland area, far ex-
ceeded the  temperature-dominated  area,  which  accoun-
ted  for  35.0% of  the  total  grassland  area,  at  the  annual
scale.  A  similar  performance  was  also  obtained  in  the
growing season (60.3% and 39.3%, respectively).

In terms of the variation in grassland area, the contri-
butions  of  each  climatic  factor  to  grassland  AGB
changes  differed greatly  at  elevations  below 2000 m at
the  two  temporal  scales,  but  their  contributions  tended
to be consistent at elevations above 2000 m (Fig. 11). In
the  whole  HKH  region,  the  grassland  area  percentage
where  temperature  contributed  more  than  precipitation
showed  an  obvious  increasing  tendency  with  elevation
at the  annual  scale,  while  a  trend  of  an  inverted  para-
bola occurred in the growing season. The changes in the
grassland area  with  a  greater  contribution  of  precipita-
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tion reversed the trend of temperature at the two tempor-
al scales. Moreover, the grassland area proportion with a

greater contribution of precipitation than of temperature
to AGB change was higher  at  each elevation range ex-

 

h N

Contribution of determination (R2)

Contribution of precipitation

<0.2

<0.1

0.2−0.3

0.1−0.2

0.3−0.4

0.2−0.3

0.4−0.5

0.3−0.4

>0.5

>0.4

Contribution of precipitation
<0.1
0.1−0.2
0.2−0.3
0.3−0.4
>0.4

0 1000 2000 km

0 1000 2000 km

Contribution of determination (R2)
<0.2
0.2−0.3
0.3−0.4

0.4−0.5
>0.5 0 1000 2000 km

0 1000 2000 km

a N e N

b N f N

c N

Contribution of temperature
<0.1
0.1−0.2
0.2−0.3
0.3−0.4
>0.4 0 1000 2000 km

0 1000 2000 km

g N

d N

Contribution of temperature
<0.1
0.1−0.2
0.2−0.3
0.3−0.4
>0.4 0 1000 2000 km

Factor with greater contribution
Temperature
Same
Precipitation

0 1000 2000 km

Factor with greater contribution
Temperature
Same
Precipitation

Annual scale Growing season scale

Fig. 10    Spatial distribution of the contribution of climate factors to the interannual change of grassland aboveground biomass (AGB)
at two temporal scales. The coefficient of determination between AGB and two climate factors (a, e), the contribution of precipitation (b,
f), the contribution of temperature (c, g) and the climate factors with greater contributions (d, h)

XU Cong et al. Remote Sensing-based Spatiotemporal Distribution of Grassland Aboveground Biomass and... 769



cept below 1000 m. 

4　Discussion
 

4.1　 Estimation  uncertainties  of  AGB  by  remote
sensing
Accurate estimation of grassland AGB is of great signi-
ficance for assessing the carbon cycle of grassland eco-
systems.  Our  results  demonstrated  that  the  PVIM  was
feasible for  estimating  grassland  AGB  in  the  HKH  re-
gion. For example, even though there were no sampling
sites  in  the  western  region,  our  grassland  AGB  results
(144.9 g/m2) were highly consistent with those of a pre-
vious study in Pakistan (150 g/m2),  which is  located in
this region (Ishaq et  al.,  2019).  The difference between
the predicted and observed AGB mainly was mainly at-
tributable to two sources. The first source was the fuzzy
distribution of grassland types, as the calibration coeffi-
cient between the vegetation indices and grassland AGB
in the PVIM usually varied between different grassland
types  because  the  AGB  of  different  grassland  types
differed  greatly  under  the  same  conditions  (Li  et  al.,
2016), and there could have been an estimation error us-
ing the same coefficient over all the grassland areas. Al-
though the grassland types in some subareas of the HKH
region have been classified, such as those on the Qing-
hai-Tibet Plateau in China (Ren et al., 2008; Wen et al.,
2010; Wu et al., 2016), different studies have had incon-
sistent definitions of the grassland types, and it was also
uncertain whether  these  grassland  classification  sys-
tems were applicable to the entire HKH region. Studies
on  grassland  type  classifications  should  be  carried  out
throughout the  HKH  region  by  analyzing  the  differ-
ences between varied grassland types in this region from
multiple perspectives, which could improve the estima-

tion  accuracy  of  AGB.  Another  source  of  error  is  the
scale  effect.  The  spatial  resolution  of  the  MODIS  data
was  250  m;  therefore,  the  complex  topography  of  the
HKH  region  could  have  led  to  a  large  slope  within  a
pixel, resulting in the underestimation of AGB (Balthaz-
ar  et  al.,  2012).  At  the  same  time,  the  inconsistency
between  the  sampling  scale  and  spatial  resolution  of
MODIS could also have caused an estimation error to a
certain  extent  due  to  location  deviation  and  grassland
habitat heterogeneity (Xu et al.,  2021), but it  might not
have  been  eliminated  completely  even  if  the  sampling
sites were representative enough as each pixel covered a
large  area.  Therefore,  satellite  data  with  higher  spatial
resolutions,  such  as  Landsat  and  Sentinel-2,  coupled
with  terrain  factors  could  be  considered  for  improving
the estimation accuracy of grassland AGB. 

4.2　 Spatial  and  temporal  variation  of  grassland
AGB
Our  results  found  that  there  was  a  decreasing  trend  of
grassland  AGB  in  the  HKH  region  from  east  to  west,
and climate factors were considered the main reason for
the obvious spatial  difference.  In terms of the Qinghai-
Tibet Plateau, the spatial distribution of grassland AGB
was  similar  to  the  previous  AGB  results  (Jia  et  al.,
2016)  and  was  consistent  with  the  change  in  grassland
types  from  alpine  meadow  to  alpine  steppe  to  desert
steppe (Wu et al., 2016). Additionally, as the South Asi-
an  monsoon  is  affected  by  topography,  there  is  more
precipitation  in  the  southern  Himalayas  than  in  the
northwestern  Hindu  Kush  (Panday  et  al.,  2015),  which
resulted in the opposite performance of grassland AGB
in the two subregions.

For the vertical  distribution of grassland AGB, some
previous studies  conducted  on  the  Qinghai-Tibet  Plat-
eau  or  in  localized  areas  of  the  Central  Himalayas
showed  a  negative  correlation  between  grassland  AGB
and  elevation  (Jiao  et  al.,  2016; Yadav  et  al.,  2019).
However, the correlation was not obvious for the whole
region  in  our  study  (Fig.  4),  which  might  have  been
caused by the difference in AGB among subregions. For
example, the grassland had both high AGB and high el-
evation in the southern Himalayas, where the humid cli-
mate  was  beneficial  to  grassland  growth  (Hossain  and
Beierkuhnlein,  2018).  In  contrast,  both  grassland  AGB
and elevation were lower near the Hindu Kush under ar-
id climatic conditions. The complex terrain in the HKH
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region  causes  the  climatic  conditions  of  the  subregions
to be diverse and further influence the vertical distribu-
tion of grassland AGB.

During 2000–2018,  we found that  the mean regional
grassland AGB showed a significant increasing trend in
the HKH  region,  which  was  similar  to  the  results  ob-
tained  in  Qinghai-Tibet  Plateau  from  2000  to  2011
(Huang  et  al.,  2016)  and  in  the  Three-river  Headwater
Region  from  2001  to  2019  (Zhou  et  al.,  2021).
Moreover, our results also demonstrated the spatial dif-
ferences in the trend of grassland AGB between the sub-
regions of  the  HKH  region.  Some  studies  have  indic-
ated  that  variation  in  climate  could  lead  to  changes  in
grassland AGB or productivity to some extent (Hossain
and  Beierkuhnlein,  2018; Hossain  and  Li,  2020)  and
that  climate  change is  inconsistent  in  the  subregions  of
the  HKH  region  (Liu  et  al.,  2008), which  partly  ex-
plained the spatial difference in the AGB trends. In ad-
dition  to  climate  factors,  human-related  activities,  such
as overgrazing, could also cause interannual changes in
AGB  (Zhang  et  al.,  2017). Moreover,  livestock  hus-
bandry is  the main industry of  the HKH region (Shang
et  al.,  2020),  which  explained  why  the  grassland  AGB
showed  a  decreasing  trend  in  several  local  regions
(Fig. 6). By comparison, due to the establishment of the
Sanjiangyuan  National  Natural  Reserve  in  2000  (Li  et
al.,  2012), the  grassland  AGB showed  a  significant  in-
creasing  trend  in  the  Three-River  Headwater  Region,
and the  conservation  of  the  grassland  ecosystem  resul-
ted in a larger grassland area with a significant increas-
ing trend of  AGB in  the  elevation range of 3000–4000
m to some extent (Fig. 7). 

4.3　 Influence  of  precipitation  and  temperature  to
grassland AGB variation
Several studies have demonstrated that the effect of cli-
mate change on grassland AGB mainly depends on tem-
perature and precipitation (Hu et al., 2011; Wang et al.,
2019).  According  to  our  results,  precipitation  mainly
had a positive influence on grassland AGB (Fig. 8). Guo
et  al.  (2021b) also  demonstrated  that  grassland  pro-
ductivity had a positive correlation with precipitation in
most grasslands of the HKH region. Most of the grass-
land  in  the  HKH  region  is  in  arid  and  semiarid  areas,
and it is generally believed that water shortages result in
a low leaf area index (LAI) and high root-shoot ratio in
these  regions,  which  would  severely  limit  vegetation

growth (Bai et al., 2008; Mowll et al., 2015). Therefore,
precipitation  contributes  more  than  temperature  to  the
variation of the grassland AGB (Fig. 10),  which means
that  precipitation  is  the  main  influencing  factor  for  the
grassland growth in the HKH region.

In our  study,  the  grassland  AGB in  response  to  pre-
cipitation and temperature showed spatial heterogeneity
and the  difference  is  believed  to  be  related  to  the  cli-
mate  conditions  of  the  subregions.  Zhang  et  al.  (2016)
found that precipitation became the main factor influen-
cing productivity in the Three-river Source Region after
the 21st century due to a rapid increase in precipitation
and Li et al. (2019b) showed that the AGB of the grass-
land in Tibet was dominated by temperature because of
the sustained low precipitation. The differences between
the two subregions are consistent with our results. Addi-
tionally,  the  differences  in  the  relative  contributions
between temperature and precipitation to the change of
grassland AGB at  different  elevation  ranges  further  in-
dicated that different climatic conditions affected the re-
sponse of  the  grassland  to  climate  change  to  some  ex-
tent  (Fig.  11) because the elevation could affect  hydro-
thermal  variation  (Tao  et  al.,  2015; Munson  et  al.,
2019).

The response  of  ecosystems  to  climate  change  de-
pends on not only the magnitude of the climate but also
the timing (Craine et  al.,  2012; Guo et  al.,  2021a).  Our
results  indicated  that  the  effects  of  interannual  climate
change on grassland AGB were different  from those in
the growing season. More precipitation in the nongrow-
ing  season  increased  soil  moisture  and  surface  runoff
partly,  and  the  accumulation  of  water  promoted  the
growth of the grassland in the growing season (Geruo et
al.,  2020).  The  mean  annual  precipitation  showed  a
more  significant  positive  correlation  on  grassland  than
the precipitation in the growing season (Fig. 9). In con-
trast,  the  significant  promoting  effect  of  temperature
change on  grassland  growth  was  stronger  in  the  grow-
ing  season,  and  Harris  (2010)  also  concluded  that  the
grassland  was  least  affected  by  temperature  in  the
dormant  winter  period  on  the  Qinghai-Tibet  Plateau.
Furthermore,  the  contribution of  temperature  change in
the growing season to grassland AGB was significantly
higher than that of the mean annual temperature at  low
elevation ranges  in  the  HKH  region.  Therefore,  eleva-
tion not  only  affects  the  relationships  between  grass-
land  AGB  and  climate  change  but  also  influences  the
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contributions  of  different  climate  factors  to  grassland
AGB. 

4.4　Limitations and future work
In  this  study,  we  only  focused  on  the  response  of  the
spatial-temporal distribution  of  grassland  AGB  to  tem-
perature and  precipitation.  However,  some  other  cli-
mate  factors  are  also  considered  to  affect  grassland
AGB or productivity,  such as evapotranspiration (Zarei
et  al.,  2021),  wind (Hopkins  and Del  Prado,  2007)  and
solar  radiation  (Zhang  et  al.,  2016).  Moreover,  human
activities  are  also  important  factors  affecting  grassland
AGB (Li et al., 2019a; Xiong et al., 2019; Zheng et al.,
2019) and some studies explained these influences from
several aspects, including grazing intensity (Chen et al.,
2014),  the  population  density  (Ding  et  al.,  2022)  and
distance  to  settlements  (Li  et  al.,  2019a),  which should
be considered in the future to further assess the spatial-
temporal variation  in  grassland  AGB  in  the  HKH  re-
gion.

Additionally,  vegetation  expansion  occurred  in  the
subnival HKH due to global warming (Anderson et al.,
2020),  while  grassland  degradation  and  desertification
also occurred in this region (Liu et al., 2017b; An et al.,
2021), which reduced the grassland area; however, these
factors  were  ignored  in  this  study.  We  suggest  that
grasslands  that  experience  specific  changes  should  be
analyzed  separately  in  the  future  to  evaluate  the  total
grassland AGB changes more accurately in the HKH re-
gion. 

5　Conclusions

Our study  assessed  the  spatial  distribution  and  interan-
nual changes in grassland AGB based on the PVIM and
further quantified the AGB response to temperature and
precipitation  during  2000–2018  in  the  HKH  region.
Grassland  AGB  showed  an  increasing  trend  with
1.57  g/(m2·yr) during  the  monitoring  period.  The  spa-
tial  distribution had a decreasing trend from east  to the
west throughout the whole region except  for  the south-
ern  Himalayas  and  it  showed  highest  total  AGB in  the
elevation  range  between 4000 m  and 5000 m. Com-
pared  with  temperature,  precipitation  was  regarded  as
the main  factor  affecting  the  temporal  and  spatial  vari-
ation  in  grassland  AGB in  most  grassland  of  the  HKH
region.  We  also  found  that  the  effect  of  mean  annual

precipitation on grassland AGB was greater than that of
precipitation  in  the  growing  season,  while  temperature
had  the  opposite  result.  With  the  change  of  elevation,
the  contribution  of  precipitation  and  temperature  on
grassland AGB at two temporal scales tended to be con-
sistent. This study was instructive for better understand-
ing the temporal and spatial variation in grassland AGB
and its response to climate change in the HKH region.
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