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Abstract: Ecological risk assessment (ERA) is an indispensable method for systematic monitoring of World Heritage Sites (WHSs) ex-
posed  to  various  anthropogenic  factors  and  natural  disasters.  Remote  sensing  (RS)  and  geographical  information  systems  (GIS)  can
eliminate many limitations in traditional ERA methods. In this study, changes in ecological risk at Huangshan Mountain, the first mixed
WHS in China, over the period of 1984–2019 were explored using remote sensing images and products by considering both natural dis-
asters and human disturbance. Results show that of the four land cover types in Huangshan Mountain, namely water, forest, building and
farmland, the main land cover type is forest. During the 35 yr, lands categorised at low or relatively low ecological risk levels are dom-
inant in Huangshan Mountain, with the lowest and highest ERIs (ecological risk index) in 1990 and 2010, respectively. The areas at the
five ecological risk levels have declined as follows: relatively low > low > medium > relatively high > high. Changes in ecological risks
are closely related to changes in land cover and natural disasters. Even though major natural disasters may affect the ecological risk level
in the whole region, changes in land cover caused by human activities will shift the ecological risk level in some areas. Our attempts can
be modified and applied to other sites, and offer policy implications for protection and preservation of WHSs.
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1　Introduction

World Heritage Sites (WHSs) designated by the United
Nations Educational  Scientific  and  Culture  Organiza-
tion (UNESCO) are aimed at conserving the sites of out-
standing cultural  or  natural  heritage  for  future  genera-
tions  (UNESCO,  2019).  To  be  selected  as  a  WHS,  a
landmark must be unique to some extent,  which means
it  must  be  identified  geographically  or  historically  and

has  special  cultural  or  material  significance.  There  are
three  types  of  sites:  cultural,  natural,  and  mixed,  with
mixed meaning containing elements of both natural and
cultural significance. As of January 2021, there are 1121
WHSs (869 cultural, 213 natural, and 39 mixed) in 167
countries.  China  has  55  WHS  (37  cultural,  14  natural,
and  4  mixed),  making  it  one  of  the  countries  with  the
most WHSs. Unfortunately, WHSs are vulnerable to di-
verse  anthropogenic  factors  and  natural  disasters,  such
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as urbanisation, erosion, and landslides (Alexakis et al.,
2013; Agapiou et al.,  2015; Agapiou et al.,  2016; Mur-
ray et al., 2018). For example, the Buddhas of Bamiyan
in  Afghanistan  were  blown  up  and  destroyed  by  the
Taliban in March 2001 (Crippa et al., 2013); many cave
temple  heritages  were  severely  damaged  in  the  2008
Wenchuan  Earthquake  in  China  (Isceah  et  al.,  2010);
and  the  Hiraizumi  cultural  heritages  of  the  Ogasawara
Islands and Iwate Prefecture were destroyed in the 2011
Japanese  tsunami  (Sugio,  2015).  To  ensure  the  long-
term sustainability of WHSs and encourage remedial ac-
tion, the Convention of World Heritage has constructed
a ‘List of World Heritage in Danger’ to identify the sites
that are at risk of serious and specific dangers (Ryan and
Silvanto,  2009).  To  preserve  WHSs,  risk  preparedness
and prevention are regarded as the best measures (Aga-
piou et  al.,  2015; Levin  et  al.,  2019).  The ‘Convention
for the Protection of World Cultural and Natural Herit-
age’ states that  WHSs entail  periodical  professional  in-
spections,  reviews  and  evaluations.  The  recognition  of
these issues  has  boosted  studies  on  WHS risk  manage-
ment (Accardo et al., 2003; Mecocci et al., 2014; Hong
et al., 2015).

Ecological  risk  assessment  (ERA)  is  an  evaluation
process to assess the likelihood of adverse environment-
al  impacts  from  one  or  more  external  factors,  through
which preventive  conservation  measures  can  be  adop-
ted to reduce risks and promote the sustainable develop-
ment of WHSs (Norton et al., 1992; Alexakis and Sarris,
2010). Nowadays,  risk  maps  are  regarded  as  an  essen-
tial part  of  the  ERA  process  because  they  contain  in-
formation on the spatial distribution of natural phenom-
ena, environmental elements and certain human activit-
ies  (Bathrellos  et  al.,  2017; Lyu  et  al.,  2018; Skilo-
dimou  et  al.,  2019).  Traditionally,  an  ERA  requires
large  amounts  of  data  and  information,  including  from
field  surveys,  some  of  which  are  time-consuming  and
costly  and  sometimes  even  impossible  to  collect,  as
there is often not enough suitable equipment and tools to
carry out the necessary collections. As a result, many at-
tempts to quantify the ecological risk have been limited
due to a lack of data (Joppa et  al.,  2016).  Over the last
two decades,  remote  sensing (RS)  has  shown great  po-
tentials as an essential tool for ERA to provide ecologic-
ally relevant long-term datasets. With robust spatial ana-
lysis and  information  integration  capabilities,  GIS  sup-
ports  the  straightforward  exploration  of  various  data

types,  especially  in  assessing  diverse  natural  disasters
and land cover planning (Murray et al., 2018). By com-
bining RS with GIS, ERA has been successfully imple-
mented in a reliable, repetitive, rapid and cost-effective
way based mainly on spatial information of WHSs (Al-
exakis and Sarris, 2010; Agapiou et al., 2015; Liu et al.,
2019). Furthermore, multi-period data can facilitate dy-
namic  monitoring  (Liu  and  Li,  2018; Zhang  et  al.,
2018). However, most existing research has focused on
the detailed  examination  of  a  single  hazard  phenomen-
on. In fact, in most cases, an area is not affected by only
one natural hazard but by two or more natural ones. As
a result,  using one hazard map for  each type of  natural
hazard  becomes  challenging  to  manage.  Therefore,
multi-hazard  analyses  should  be  conducted  (Alexakis
and  Sarris,  2010; Agapiou  et  al.,  2016; Skilodimou  et
al., 2019).

Various  approaches  have  been  developed  for  natural
hazard  estimation,  such  as  heuristic  approaches  based
on  expert  judgment  (Aleotti  and  Chowdhury,  1999),
statistical  techniques  (Papadopoulou-Vrynioti  et  al.,
2013),  and  fuzzy  logic  approaches  (Assimakopoulos  et
al.,  2003). Significantly,  the  analytical  hierarchy  pro-
cess (AHP),  one  of  the  most  popular  techniques  pro-
posed by Satty in the 1970s, is a multi-criteria decision-
making  method  based  on  the  pairwise  comparison,
which  is  constructed  by  combining  qualitative  and
quantitative factors to rank the alternatives. In addition,
combined  with  GIS,  this  method  has  been  successfully
implemented in single hazard assessments (Siddayao et
al.,  2014; Ghosh  and  Kar,  2018) and  multi-hazard  as-
sessments (Agapiou et al., 2016; Bathrellos et al., 2017).
For  example,  Bathrellos  et  al.  (2017)  have  integrated
GIS and AHP to pinpoint suitable areas for urban devel-
opment.

However, with  the  increasingly  heavy  impact  of  hu-
man  activities  on  the  ecological  environment,  previous
studies on natural hazards are no longer appropriate, es-
pecially  for  WHSs.  Although  some  researchers  have
considered  human  activities  (Yan  and  Morrison,  2008;
Agapiou  et  al.,  2015),  the  indicators  presented  in  their
studies usually  rely  on  questionnaire  data  and  govern-
ment statistics.  Later,  a  type of  ERA focusing on land-
scape  ecology  has  emerged  as  an  essential  branch  of
ERA. Firstly proposed by Turner et al. (2001), the land-
scape is defined as a scale of human economic activity,
and landscape ecology highlights the interaction among
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spatial patterns, ecological processes, and scales. So far,
the landscape  has  become  an  appropriate  scale  to  ex-
plore the ways and degrees of ecological impacts of hu-
man  activities.  Based  on  landscape  patterns,  ERA  can
comprehensively  evaluate  numerous  possible  human
impacts  and  their  cumulative  consequences,  and  many
studies  have  been  carried  out  in  this  field  (Zhang  and
Xie,  2015; Li  et  al.,  2017; Liu  and  Li,  2018; Zhang  et
al., 2018; Zhang et al., 2020). This study will adopt the
landscape  index  to  measure  a  specific  area’s  landscape
patterns and human disturbances.

In this study, Huangshan Mountain, is selected as the
study  site.  As  one  of  China’s most  famous  tourist  des-
tinations,  Huangshan  Mountain  has  been  recognized  as
‘the  loveliest  mountain  of  China’, and  in  1990  UN-
ESCO  listed  it  as  a  mixed  WHS,  the  first  in  China.
Since then,  the tourism industry has developed rapidly,
and the number of tourists has significantly increased. In
1979,  the  number  of  tourists  to  Huangshan  Mountain
was only 104 292 (Huang, 1992); but in 2019, the num-
ber soared to 3 501 000 (Wang et al.,  2021). However,
along with rapid economic and social development, the
ecological environmental pressure on Huangshan Moun-
tain  goes  up  seriously.  Although  many  studies  have
been  conducted  on  tourism  resources,  water  resources
and ecological function zoning of Huangshan Mountain,
few  have  assessed  its  overall  ecological  risk  (Liang,

1993; Guan et al., 2005; Gong et al., 2009; Wang et al.,
2014; Ma et al., 2019).

Therefore,  this  study  aimed  to:  1)  develop  a  multi-
hazard model to describe its natural hazards; 2) adopt a
landscape  index  to  quantify  the  interference  of  human
activities;  and 3) assess the ecological risk and identify
the  spatiotemporal  dynamic  variations  in  Huangshan
Mountain. 

2　Materials and Methods
 

2.1　Study area
Huangshan  Mountain  is  located  in  Huangshan  City  in
the south of Anhui Province in China, with a total area
of  approximately 1200 km2,  40  km long  from north  to
south  and  30  km  wide  from  east  to  west.  In  1990,
Huangshan  Mountain  was  listed  as  a  mixed  WHS;  in
2004, it was further selected as a World Geopark; and in
2007, it was selected as a National Grade 5A tourist at-
traction.  Famous  for  its  magnificent  natural  sceneries
and  rich  plant  resources,  Huangshan  Mountain  plays  a
crucial  role  in  protecting  many  local  or  national  plant
species,  some  of  which  are  endangered.  The  present
case study covers the Scenic Area of Huangshan Moun-
tain,  with  a  total  area  of  160.6  km2,  ranging  from
30°01′N  to  30°18′N  and  from  118°01′E  to  118°17′E
(Fig. 1).
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Fig. 1    Location of Huangshan Mountain, China
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Sprawling along the middle and lower reaches of the
Yangtze  River,  Huangshan  Mountain  has  a  subtropical
monsoon climate, with an average temperature of 7.9°C.
Its local topography of high mountains and deep valleys
plays a leading role in its climates and climate changes
in the  vertical  direction.  The  average  annual  precipita-
tion  of  Huangshan  Mountain  is 2394.5 mm,  with  181
precipitation  days  annually  on  average.  Precipitation  is
generally concentrated in the spring and summer of each
year. These two seasons account for approximately 60%
of the  annual  precipitation,  making the  region prone to
flood  disasters  and  soil  erosion.  However,  the  lack  of
rains  in  the  summer  months  can  easily  cause  water
shortages  in  the  mountains,  thus  forming  ‘summer
droughts’ (Yang,  2014).  The  average  elevation  of  the
scenic  area  is  approximately 1600 m,  with  77  peaks
above 1000 m,  among  which  the  highest  is  Lianhua
Peak, reaching up to 1864.8 m. 

2.2　Data sources and processing
The satellite images used in this study are obtained from
the United States Geological Survey (http://earthexplrer.
usgs.gov/).  According  to  the  availability  of  cloudless
datasets  during  the  vegetation  growth  periods,  images
mainly  during  summer  months  are  retrieved.  In  this
study, Landsat 5 Thematic Mapper (TM) images (30 m)
at Oct. 30, 1984, Aug. 28, 1990, Jul. 22, 2000, and Oct.
8, 2010, and Landsat 8 Operational Land Imager (OLI)
images (30 m) at Oct. 31, 2019 are selected. The digital
elevation model (DEM) of Huangshan Mountain, with a
30  m  pixel  size,  is  downloaded  from  the  Geospatial
Data  Cloud  website  (http://www.gscloud.cn).  All  the
image  datasets  are  first  georeferenced  into  a  standard
geodetic  system  (WGS1984,  UTM  Zone  50N).  The
Landsat  image  pre-processing  was  performed  with
ENVI  5.3,  including  atmospheric  correction,  radiation
calibration  and  image  cropping.  Auxiliary  data  include
the precipitation data at Guangming Peak from 1984 to
2019 and the district map of Huangshan Mountain.

The maximum likelihood method, a supervised classi-
fication  method,  is  adopted  for  image  classification  in
ENVI  5.3.  Both  the  training  and  the  test  samples  for
each land  cover  type  are  selected  via  visual  interpreta-
tion and Google Earth samples. The training samples are
used to train the judgment function, which will  then be
used  to  classify  other  data  that  need  to  be  classified.
After  the  image  classification,  the  test  samples  will  be

used to  test  the  image  classification  accuracy.  Accord-
ing  to  China’s National  Standard  for  Land  Use  Classi-
fication (GB/T 21010−2017) (Ministry of Land and Re-
sources  of  the  People's  Republic  of  China,  2017 )  and
the  current  conditions  of  Huangshan  Mountain,  four
types of land cover have been identified, namely, water,
forest, building,  and farmland.  For  classification accur-
acy,  the  kappa  coefficient  and  the  overall  accuracy  of
each  classified  image  are  both  within  the  acceptable
ranges  for  further  analyses:  the  former  is  over  0.8,  and
the latter is approximately 87%. 

2.3　Methods
Risk is  defined as the product of the probability of risk
occurrence  and  its  consequence  in  a  specific  area  and
period (Hunsaker et al., 1990; Fu and Xu, 2001; Liu and
Li, 2018). The overall method of this study is presented
in Fig.  2.  Data  processing  software  adopted  include
ENVI 5.3, ArcGIS 10.5 and Fragstats4.2. 

2.3.1　Pre-processing
An essential feature of ERA is the spatial heterogeneity
of risk receptors and risks in the study area. In order to
spatialize the ecological risks and enhance the accuracy
of ERA, it is necessary to divide the study area into dif-
ferent  risk  cells  (Zhang  and  Xie,  2015; Li  et  al.,  2017;
Liu and Li,  2018).  In this study, the equidistant system
sampling  method  are  used  to  obtain  square  grids  with
sides length of 500 m.

After risk cell division, the risks and risk receptors of
the case study area are defined. In landscape ecological
risk assessments,  risk  receptors  usually  consist  of  mul-
tiple types of ecosystems rather than one single element,
and different kinds of ecosystems play different roles in
the overall ecological function of a region. In this study,
the  ecosystems  represented  by  the  above  four  kinds  of
land cover are taken as risk receptors. According to UN-
ESCO, the ecological risks of Huangshan Mountain in-
clude storm  damage  to  trees,  landslides,  water  short-
ages  that  increase  fire  hazards,  erosion,  pressure  from
visitors,  and  pinewood  nematode  pests.  We  selected
several  significant  risks  based  on  previous  researches,
namely, droughts, erosions, and geological disasters.

Each  risk  cell  corresponds  to  different  risks  and  risk
receptors.  Each  risk  cell’s  risk  probability  is  evaluated
by  combining  the  assessment  maps  for  droughts,
erosions and  geological  disasters,  and  a  landscape  eco-
logical  index  is  introduced  to  assess  its  vulnerability.
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Then,  the  ecological  risk  of  each  risk  cell  is  obtained
and used as the centroid value of a given risk cell to spa-
tially interpolate the ecological risk map. 

2.3.2　Risk probability calculation
After  identifying  risks,  the  necessary  remote  sensing
data are collected for further analyses in the GIS to de-
termine the risk probability of natural hazards.

(1) Drought
Due  to  the  influence  of  high  altitudes,  Huangshan

Mountain  is  highly  vulnerable  to  the  monsoon climate.
Although  the  average  annual  precipitation  is  massively
abundant, the seasonal distribution of the precipitation is
particularly uneven  due  to  the  seasonality  of  the  atmo-
spheric circulation. Additionally, due to a large amount
of runoff, the drainage is good in the rainy seasons, but
the  water  storage  capacity  of  the  mountain  is  weak  in
the less rainy seasons. Therefore,  seasonal droughts of-
ten  occur  in  Huangshan  Mountain  (Cheng,  2010). Us-
ing land surface temperature (LST) and normalized dif-
ference vegetation index (NDVI) alone for drought mon-
itoring  is  one-sided.  Instead,  integrated  analysis  based
on the two-dimensional feature space of NDVI-LST is a
more common technique (Sandlot et al., 2002; Zhang et
al.,  2007; Belal  et  al.,  2014; Du et  al.,  2017; Ali  et  al.,

2019).  Sandlot  et  al.  (2002)  simplified  the NDVI-LST
two-dimensional feature  space  into  a  triangle  and  pro-
posed  a  temperature  vegetation  dryness  index  (TVDI),
as expressed in Eq. (1):

TDVI = (Ts−Tsmin)/Tsmax−Tsmin (1)

where Ts represents the LST; and Tsmin and Tsmax repres-
ent  the  minimum  and  maximum LST,  respectively,  of
pixels  with  the  same NDVI value  in  the  image.  The
TVDI values  range  from  0  to  1  and  are  classified  into
five categories according to Zhang et al. (2007).

(2) Erosion
Among various  factors  that  affect  soil  erosions,  ter-

rain slope, land cover type, and vegetation coverage de-
liver  the  most  significant  effects  (Pandey  et  al.,  2009;
Zhou  and  Feng,  2018).  According  to  the  classification
standard for soil erosions issued by the Ministry of Wa-
ter Resources of China (Ministry of Water Resources of
the  People’s  Republic  of  China,  2008),  Huangshan
Mountain shall be regarded as a water erosion area. The
land  cover  type,  vegetation  coverage  and  slope  can  be
used  as  the  criteria  for  water  erosions  to  analyze  the
erosion  intensity  in  Huangshan  Mountain,  as  shown  in
Table 1.
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(3) Geological disasters
Heavy amounts and strong intensities characterize the

precipitation  on  Huangshan  Mountain.  A  large  amount
of precipitation may cause sharp mountain torrents, eas-
ily  triggering  geological  disasters,  such  as  mudslides
and landslides. Based on the existing researches, 10 in-
dicators  are  selected  to  establish  an  evaluation  system
for  the  probability  of  geological  disasters  (Kayastha  et
al.,  2013; Agapiou et  al.,  2015; Bathrellos  et  al.,  2017;
Lyu  et  al.,  2018; Zang  et  al.,  2018; Skilodimou  et  al.,
2019). Among  the  10  indicators,  slope,  elevation,  as-
pect,  curvature,  relative  relief,  vegetation  coverage,
river  proximity,  and  river  density  are  hazard-forming
factors, while precipitation and precipitation days in the
rainy seasons are hazard-inducing factors. The stages of
the approach consist  of:  1) factor extraction and rating.
All  factors  extracted  from primary remote  sensing data
are  divided  into  classes  representing  different  stability
conditions. Each  class  is  standardized  to  a  unified  rat-
ing scale, with a value range from 1 to 5. The greater the
value, the  more  favorable  the  conditions  are  for  geolo-
gical disasters.  2)  Weight  determination:  AHP  is  ap-
plied  to  compare  the  relative  importance  of  different
factors  and  calculate  the  criterion  weights.  After  the
hierarchy  order  is  determined,  a  pairwise  comparison
matrix  is  constructed  based  on  the  relative  importance
of each factor  to the others.  In this  matrix,  the value is
ranged from 1 for ‘equal importance’ to 9 for ‘extreme
importance’. Then,  the  matrix  is  normalized  by  divid-
ing  each  column  with  the  corresponding  sum.  Finally,
the weight of each factor is obtained by calculating the
average of  each  row.  Yaahp  software  is  used  to  con-
struct the matrix and calculate the weights in this study.
The relative  importance  is  then  acquired  from  refer-

ences  (Kayastha  et  al.,  2013; Lyu et  al.,  2018; Zang et
al., 2018). 3) Overall analysis: The weighted linear com-
bination is  implemented  to  generate  the  final  distribu-
tion map, which is then further classified, based on nat-
ural breaks in the cumulative frequency histogram, into
five classes:  i)  very low; ii)  low; iii)  medium; iv) high,
and v) very high.

(4) Multi-hazard map
As  mentioned  above,  the  hazard  maps  for  droughts,

erosions  and  geological  disasters  in  the  study  area  are
classified into  five  categories.  However,  the  simple  in-
tegration of three hazard maps is insufficient to produce
a  reliable  multi-hazard  map.  Many  existing  researches
have implemented AHP to determine the weight values
for  their  entire  study  areas,  but  the  time  span  of  this
study is 35 yr, meaning that the main risk factors would
have changed over different periods, so it is not reason-
able to maintain consistent weight values over time.

To  address  the  problem,  this  study  puts  the  hazard
maps  mentioned  above  into  the  risk  cells.  The  product
of the proportion of its distribution area in a risk cell and
the risk intensity level is then used as the risk weight for
that cell. In this way, the same risk does not have a uni-
form  weight  across  the  whole  area  at  different  times;
rather, it indicates only the weight of a risk for a particu-
lar  risk  cell  during  a  specific  period.  The  overall  score
of the multi-hazard map is calculated as in Eq (2).

Pk =

n∑
j=1

∂k jPk j (2)

∂k j

where Pk represents the risk probability of the k-th risk
cell, Pkj represents the probability of the j-th risk in the k-
th  risk  cell,  represents  the  weight  of  the j-th  risk  in
the k-th  risk  cell,  and n stands for  the  number  of  haz-

 
Table 1    Erosion intensity classification for different land cover types in Huangshan Mountain, China
 

Land cover types Vegetation coverage / %
Slope / °

< 5 5–8 8–15 15–25 25–35 > 35
Forest 60–75 Low Low Low Low Medium Medium

45–60 Low Low Low Medium Medium High

30–45 Low Low Medium Medium High Very high

< 30 Low Medium Medium High Very high Severe

Farmland − Low Low Medium Medium High Very high

Water − Low Low Low Low Low Low

Building − Low Low Low Low Low Low

Note: − means no data
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ards, with n = 3. 

2.3.3　Landscape ecological index calculation
Different ecosystems represented by different land cov-
er types  own  different  positions,  structures,  and  func-
tions in the region. The different vulnerabilities of each
ecosystem  will  lead  to  different  responses  to  the  same
external disturbances.  According  to  the  existing  re-
searches  (Liu  and  Li,  2018; Zhang  et  al.,  2018),  the
landscape ecological  index  can  be  regarded  as  a  func-
tional expression  to  explore  the  vulnerabilities  of  vari-
ous ecosystems. Furthermore, it can reflect the degree of
human disturbance that different landscapes may suffer
and  the  relationship  between  landscape  patterns  and
ecological risks.  It  is  expressed by a landscape disturb-
ance index (Ei) and a landscape fragility index (Fi).

The landscape disturbance index (Ei) indicates the de-
gree of  human  disturbance  to  a  specific  type  of  land-
scape, as expressed in Equation (3):

Ei = aCi+bS i+ cDi (3)

where Ci represents  landscape  fragmentation  of  the i-
type landscape,  which  refers  to  the  structural  complex-
ity  of  the  landscape  space,  the  fragmentation  degree  of
the landscape distribution, and the degree of human in-
terference; Si means landscape segmentation,  which re-
flects  the  regional  distribution  characteristics  of  the i-
type  landscape;  and Di represents  the  reciprocal  of  the
perimeter-area fractal  dimension  and  reflects  the  com-
plexity of the geometry of the i-type landscape. All the
three  landscape  indices  above  are  calculated  by  using
Fragstats  4.2. a, b and c represent  the  weights  of  the
three landscape indices, which are assigned 0.5, 0.3 and
0.2,  respectively,  according  to  related  research  results
(Fu and Xu, 2001; Liu and Li, 2018; Zhang et al., 2018).

The landscape fragility index (Fi) indicates the resist-
ance ability of a specific landscape type to external dis-
turbance. The AHP mentioned above is used to determ-
ine  the  landscape  fragility  index  (Fi)  of  water,  forest,
buildings,  and  farmland.  Moreover,  the  value  of  the
matrix is determined by the order of their landscape fra-
gility indexes Fi, with water > farmland > forest > build-
ings, and their Fi values are 0.4642, 0.2544, 0.1839 and
0.0975, respectively.

Therefore,  the  landscape  ecological  index  of  each
landscape  (Ri)  and  of  each  risk  cell  (Dk) can  be  con-
structed by Eqs. (4–5).

Ri = Ei×Fi (4)

Dk =

N∑
i=1

Ai

A
Ri (5)

where Ai and A represent  the  total  area  of  the i-type
landscape and the entire study area, respectively; and N
stands for the number of land cover types, with N = 4. 

2.3.4　Ecological risk assessment
After  the  calculation  of  risk  probability  (Pk)  and  the
landscape ecological index (Dk), each risk cell will have
a comprehensive ecological  risk value,  as expressed by
Eq. (6):

Rk = Pk ×Dk (6)

To intuitively and numerically compare the ecologic-
al  risks  of  Huangshan  Mountain  in  1984,  1990,  2000,
2010 and 2019, the ecological risk index (ERI) is calcu-
lated as follows:

ERI =
K∑

k=1

Ak

A
Rk (7)

where K represents  the  number  of  risk  cells,  with K =
719; and Ak represents the area of the k-th risk cell. 

3　Results
 

3.1　Land cover and landscape change 

3.1.1　Land cover change
The  land  cover  of  Huangshan  Mountain  is  shown  in
Figs. 3 and 4. Over the 35 yr, different land cover types
in  Huangshan  Mountain  had  undergone  different
changes.  As  the  primary  land  cover  type,  forest  covers
more than 90% of the area of Huangshan Mountain.  In
1990,  the  area  covered  by  forest  was  145.37  km2

(90.52%), reaching an all-time low. Since then, this area
has  started  to  recover  gradually,  and  in  2019,  it  was
more  than  in  1984,  with  a  difference  of  0.07  km2.  The
water area had decreased between 1984 and 2019, with
a total dwindling of 1.58 km2. The area of farmland had
increased  sharply  by  5.7%  (approximately  9.08  km2)
since 1984, but was followed by a steady decrease from
1990 to  2010.  Overall,  the  area  of  farmland  had  in-
creased by 1.64 km2. The changes of the building areas
were  more  complex  and  frequent  than  the  other  three
land cover types. From 1984 to 1990, the building areas
declined  by  1.66  km2,  followed  by  a  dramatic  rebound
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upwards, with a peak in 2010 at 2.46 km2. And then the
building  areas  began  to  decrease  slowly.  Overall,  the
building areas had decreased by 0.54 km2. 

3.1.2　Landscape pattern change
The landscape indices of the four land cover types over
the period were calculated with Fragstats 4.2 (Table 2).
The total number of patches in 1984, 1990, 2000, 2010
and 2019 was 869, 1249, 1550, 1444 and 1246, respect-
ively.  It  can be seen that the number in 2019 increased
by approximately 43.4% compared to that in 1984.

As the primary land cover type in Huangshan Moun-
tain, the forest had the smallest Ci. Buildings and farm-
land showed higher landscape fragmentation due to their
small areas and large numbers. Generally, water has the
characteristics of aggregating in space, so its fragmenta-
tion  would  be  small.  However,  water  in  Huangshan
Mountain had the highest Ci,  mainly because the water
in  Huangshan  Mountain  was  blocked  by  tall  trees  and
appeared in the form of mixed pixels on the images, res-
ulting  in  a  fragmented  classification  result.  In  addition
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to  forests,  the Ci of  farmland,  buildings  and  water  had
increased  significantly  from  1984  to  2019,  indicating
that these three land cover types were significantly dis-
turbed by  human  activities.  Large  patch  areas  were  di-
vided,  and  the  number  of  landscape  patches  and Ci in-
creased.  The  changing  trend  of Si of  each  land  cover
type  was  basically  the  same  as  that  of Ci.  Compared
with building areas  and farmland,  the Di of  forests  and
water saw few changes, indicating that these landscapes
were  less  affected  by  human  interference  and  could
maintain their original natural states. The most apparent
interference  from  human  activities  was  observed  in
farmland,  with Di increasing  from 0.0641 in  1984  to
0.1533 in  2019. Ci, Si and Di enhanced Ei,  ultimately
leading to an increase in ecological risks. From 1984 to
2019, Ri of  Huangshan  Mountain  showed  an  upward
trend for buildings, farmland, and water, but only the Ri
of forest declined slightly. 

3.2　Ecological risk change
The risk probability, landscape ecological loss and eco-
logical  risk  of  each  ecological  risk  cell  are  calculated

with Eqs. (2)–(7), and they are used as the attribute val-
ues of the central point of each risk cell. Then, the spa-
tial distribution maps of risk probability, landscape eco-
logical loss and ecological risk in Huangshan Mountain
are obtained via kriging interpolation (Fig. 5). To com-
pare the risk probabilities in different periods, the medi-
um value of  such probabilities  over  time (i.e.,  years)  is
calculated as the boundary value. Values above the me-
dium are colored red, those below the medium are blue,
and those equal to the medium are yellow. The same is
for the landscape ecological loss. In addition, the natur-
al breakpoint method is used to further classify the dis-
tribution map of  ecological  risks into five categories in
ArcGIS. The redder the color in the map, the greater the
ecological risk.

As shown in Fig. 5, the ecological risk of Huangshan
Mountain had changed significantly from 1984 to 2019.
In  general,  the  areas  in  Huangshan  Mountain  were  at
low  and  relatively  low  risk  levels,  with  the  high-risk
areas  mainly  concentrated  near  the  border  regions.  In
1990, a large number of areas with relatively low ecolo-
gical  risks  were  converted  to  low  ecological  risk  ones,

 
Table 2    Landscape indices of different land cover types in Huangshan Mountain
 

Land cover
types

Year
Number of

patches
Landscape

fragmentation (Ci)
Landscape

segmentation (Si)
Landscape

dominance (Di)
Landscape

disturbance (Ei)
Landscape

fragility (Fi)
Landscape ecological

index (Ri)
Forest 1984 176 0.0047 0.0025 1.0000 0.2031 0.1839 0.0521

1990 52 0.0005 0.0004 0.9192 0.1843 0.0402

2000 37 0.0000 0.0000 0.9174 0.1835 0.0397

2010 60 0.0007 0.0005 0.9476 0.1901 0.0439

2019 50 0.0004 0.0003 0.9509 0.1905 0.0441

Building 1984 168 0.2826 0.2239 0.0962 0.2277 0.0975 0.0000

1990 79 0.8618 1.0000 0.0000 0.7309 0.1689

2000 210 0.4673 0.3316 0.0862 0.3504 0.0412

2010 272 0.5711 0.3561 0.1169 0.4157 0.0631

2019 191 0.6189 0.4611 0.0801 0.4638 0.0792

Farmland 1984 96 0.3929 0.4131 0.0339 0.3272 0.2544 0.2101

1990 635 0.3215 0.1300 0.3555 0.2709 0.1608

2000 700 0.4816 0.1862 0.3156 0.3598 0.2386

2010 360 0.6736 0.3650 0.1438 0.4751 0.3396

2019 355 0.6638 0.3622 0.1560 0.4718 0.3367

Water 1984 429 0.4456 0.2205 0.2665 0.3422 0.4642 0.4704

1990 483 0.5486 0.2561 0.2482 0.4008 0.5639

2000 603 0.7678 0.3211 0.2378 0.5278 0.7668

2010 752 1.0000 0.3747 0.3066 0.6737 1.0000

2019 650 0.9246 0.3727 0.2991 0.6339 0.9364
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while the high ecological risk ones appeared for the first
time  in  the  southeastern  and  eastern  border  areas  of
Huangshan Mountain. In 2000, relatively high and high
ecological risk areas emerged in the northern and west-
ern border  areas.  There were more high ecological  risk
areas  in  2000 than  in  1990,  and  the  spatial  distribution
of  ecological  risks  in  the  south-eastern  region  was  less
fragmented.  The  ecological  risk  distribution  in  2010
differed significantly from that in 1984, 1990 and 2000,
but was similar to that in 2019. The low-risk areas dra-
matically increased in 1990. Since 2010, the high ecolo-
gical risk areas have disappeared.

With  the  help  of  GIS,  the  areas  and  percentages  of
different  ecological  risk  levels  in  1984,  1990,  2000,
2010 and 2019 could be generated (Table 3 and Fig. 6).
Ecological  risks  in  Huangshan  Mountain  were  mainly
low  and  relatively  low.  The  percentages  of  these  two
kinds of areas in 1984, 1990, 2000, 2010 and 2019 were
93.97%, 87.71%, 85.66%, 84.77% and 85.53%, respect-
ively. Although the proportion of the two kinds of areas

in  1984  accounted  for  the  most  significant  proportion,
the lowest  ecological  risk  of  Huangshan  Mountain  ap-
peared in 1990. Areas with low ecological risk in 1990
were more extensive than those in 1984, when the areas
in Huangshan Mountain were mainly at a relatively low
ecological  risk  level;  in  contrast,  in  1990,  they  were
mainly at a low ecological risk level. The highest ecolo-
gical risk of Huangshan Mountain was observed in 2010
due to the El Niño phenomenon (see the section of Dis-
cussion).

Of the five ecological  risk levels,  the areas with low
and relatively low ecological risks showed the most dra-
matic  changes.  For  example,  during  this  period,  the
areas with low ecological  risks first  increased,  then de-
creased,  and  finally  went  up,  showing  a  fluctuating
trend.  Such  areas  surged  from  52.44  km2 (32.65%)  in
1984 to 107.51 km2 (66.94%) in 1990, followed by a de-
crease of 48.05 km2 from 2000 to 2010 and an increase
of 18.48 km2 from 2010 to 2019. The total area with low
ecological risks had increased by 25.51 km2 during 1984-

 
Table 3    Areas and percentages of different ecological risk levels
 

Ecological
risk level

1984 1990 2000 2010 2019

Area / km2 Percentage / % Area / km2 Percentage / % Area / km2 Percentage / % Area / km2 Percentage / % Area / km2 Percentage / %

Low 52.44 32.65 107.51 66.94 104.97 65.36 59.46 37.03 77.95 48.54

Relatively low 98.48 61.32 33.35 20.77 32.61 20.30 76.67 47.74 59.41 36.99

Medium 8.73 5.44 14.46 9.00 14.95 9.31 17.75 11.05 20.02 12.46

Relatively high 0.95 0.59 4.21 2.62 6.01 3.74 6.71 4.18 3.21 2.00

High 0.00 0.00 1.07 0.67 2.06 1.29 0.00 0.00 0.02 0.01

ERI 0.14054 0.13102 0.14815 0.16845 0.13926

Note: ERI is ecological risk index
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2019. The areas with relatively low ecological risks also
showed a fluctuating trend, but the trend was opposite to
that of  low  ecological  risks.  The  total  area  with  relat-
ively  low  ecological  risks  had  declined  by  39.07  km2

during 1984–2019. The areas at  the medium ecological
risk  level  had  gradually  increased  over  time  by
11.28 km2 from 1984 to 2019. The areas with high and
relatively high ecological risks did not change much. In
conclusion, the land at low and relatively low ecologic-
al  risk  levels  was  dominant  in  Huangshan  Mountain.
During  the  35  yr,  the  size  of  the  five  ecological  risk
levels was diminished in the following sequence:  relat-
ively low > low > medium > relatively high > high. 

4　Discussion

Obvious variations from 1984 to 2019 in terms of land
cover  and  ecological  risk  are  identified.  From  1984  to
1990,  the  conversion  of  a  large  amount  of  forest  to
farmland  led  to  a  significant  increase  in  the  area  of
farmland. Another  reason  for  the  largest  size  of  farm-
land in 1990 may lie in the demolition of a large num-
ber of  buildings  in  Tangkou  Town  in  the  southeast  re-
gion,  a  move  that  had  boosted  the  area  of  wasteland,
some of  which may have been mistakenly classified as
farmland.  There  was  a  rapid  tourism  development  in
Huangshan Mountain  during  1990−2000  after  the  re-
form  and  opening  up.  Most  of  the  infrastructure  in
Huangshan Mountain was also constructed in the 1990s,
particularly in  Tangkou  Town  in  the  southeastern  re-
gion.  The  building  areas  increased  substantially  and
reached a maximum during this period. In addition, after
the  Huangshan  Mountain  Scenic  Area  was  included  in
the  ‘List  of  World  Cultural  and  Natural  Heritage’ by
UNESCO  in  1990,  the  forest  in  Huangshan  Mountain
began  to  be  effectively  protected,  and  the  destroyed
forests  began  to  recover.  Since  the  21st  century,  the
government  has  formally  launched  a  plan  to  return  the
farmland  to  the  forest;  later,  the  Yungu  ropeway  was
built  up in  2006.  These measures  further  facilitated the
restoration of the destroyed forests, such as those in the
north-eastern region.  Additionally,  accommodation  fa-
cilities  within  the  scenic  area  began  to  move  out,  with
buildings gradually  becoming  concentrated  in  the  peri-
phery of  the  scenic  area.  As  a  result,  a  significant  in-
crease  in  the  forest  area  was  delivered  in  Huangshan
Mountain  between  2000  and  2010.  A  large  amount  of

water in the west region (Fig. 3d) may be related to the
2008  snow  disaster  when  snow  piled  up  on  top  of  the
high mountains. The removal of scenic accommodation
facilities during 2010–2019 narrowed down the built-up
area. Since 2010, Huangshan Mountain’s land cover has
remained stable.

Analyses  of  changes  in  ecological  risk  require  the
consideration  of  both  risk  probability  and  landscape
ecological risk. For example, Huangshan Mountain was
mainly  at  relatively  low  ecological  risk  levels  in  1984
may be  due  to  the  inconsistency  between  the  distribu-
tion of the risk probability and the landscape ecological
index. Specifically, most areas of Huangshan Mountain
stood  at  medium  or  high-risk  probabilities,  except  for
some  areas  in  the  southeastern  region,  and  the  areas
with  a  high  landscape  ecological  index  were  mainly
concentrated in  the  southeast  region.  This  phenomenon
may be  related  to  village  clustering  at  that  time.  Later,
from 1984 to 1990, many buildings in Tangkou Town in
the  southeastern  region  were  demolished,  so  much
wasteland appeared there. In other words, the risk prob-
ability there became high because the forest area was re-
duced  and  the  vegetation  was  sparse  due  to  human
activities.  Moreover,  the  distributions  of  both  the  risk
probability  and  the  landscape  ecological  index  became
consistent,  that  is,  high-risk  probabilities  multiplied  by
high landscape ecological indices yielded high ecologic-
al risks.  For  example,  the  south-eastern  fringe  area  be-
came  a  high  ecological  risk  area  in  1990.  In  contrast,
low risk probabilities  multiplied by low landscape eco-
logical indices  yielded  low  ecological  risks.  For  ex-
ample, the low ecological risk area in the central region
in 1984 had turned into a relatively low ecological area
in 1990. As mentioned above, most of the infrastructur-
al development in Huangshan Mountain was completed
during  1990–2000. Furthermore,  the  Yuping  and  Taip-
ing  ropeways  were  also  constructed  during  this  period,
with the latter connecting Beihai and Yuping. As a res-
ult,  more  high  ecological  risk  areas  emerged  in  2000
than  in  1990.  In  contrast,  the  remarkable  increase  in
forest  areas  in  the  southeastern  and  eastern  parts  of
Huangshan Mountain changed them from high ecologic-
al  risk  areas  to  medium  and  relatively  low  ones.
However,  rarely  seen  snow  disasters  in  2008  and
Typhoon Morakot in 2009 had all caused changes in the
natural  environment  (Hu  et  al.,  2013).  In  addition,
drought,  one  of  the  three  major  hazards  in  Huangshan
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Mountain, was significantly driven by the El Niño phe-
nomenon in 2010. All these disasters aggravated the risk
probability in  2010.  Furthermore,  the  2008  snow  dis-
aster  caused  a  massive  amount  of  snow  to  accumulate
on the top of the mountain. Therefore, in the land cover
map of 2010, a large body of water with high landscape
ecological loss appeared in the central part. As a result,
the risk probability, landscape ecological index and eco-
logical  risk  in  2010  differed  from  the  other  four  yr  in
terms of spatial distribution. Later, in 2012, the govern-
ment  proposed  a  plan  for  ecological  construction.  The
areas  of  buildings  had  fallen  by  1/3,  and  the  areas  of
forests had increased. It is worth noting that the maxim-
um  risk  probability  of  Huangshan  Mountain  in  2019
was 0.5716,  lower  than  that  in  the  other  four  years.
Therefore, the distribution of ecological risks showed a
more significant  relationship  with  the  landscape  ecolo-
gical index in 2019 than in other yr. The high values of
the landscape  ecological  index  were  mainly  concen-
trated in the middle and southeast  regions,  and the dis-
tribution  of  the  middle  and  relatively  high  ecological
risk  areas  was  basically  the  same.  In  2019,  high-risk
areas  almost  disappeared  in  Huangshan  Mountain.
However,  there  was a  transformation of  low ecological
risk areas into relatively low ones, and some high ecolo-
gical risk areas appeared in Diaoqiao.

Based on the analyses above, it can be concluded that
changes  in  ecological  risks  are  closely  related  to  land
cover changes and natural disasters. Even though major
natural  disasters  may  have  affected  the  ecological  risk
distribution  in  the  whole  region,  changes  in  land  cover
caused  by  human  activities  would  drive  a  shift  in  the
levels of ecological risks in some areas. Take Fugu as an
example: the change in the ecological risk level of Fugu
is inseparable from its development. The construction of
Fugu  in  1990  led  to  an  increase  in  its  ecological  risk
level. The year 2010 saw a point for the ecological risk
to start  recovering.  Therefore,  it  is  necessary  to  con-
struct tourist  facilities  and  villages  according  to  relev-
ant plans. The land cover should be planned as a whole,
and the construction layout should be optimized to con-
tain  the  ecological  risk  within  a  controllable  range.  In
general,  areas  with  greater  anthropogenic  disturbance
would encounter more ecological risks, such as Yuping.
It is the essence of Huangshan Mountain and a must-vis-
it  attraction  for  tourists,  with  a  high  utilization  rate  of
tourism and great interference from tourists. As a result,

Yuping  has  seen  high  landscape  ecological  losses  and
ecological  risks.  For  such scenic  spots,  regular  rotation
is a feasible protective measure.

Nevertheless,  this  study  has  some  limitations  that
must be  resolved  in  future  research.  First,  it  is  import-
ant to solve the problem of how to establish an optimal
scale for ecological risk assessment models. Some com-
parison  tests  can  be  set  up  to  determine  the  optimal
scale by comparing the results of ecological risk assess-
ments at  different  scales.  Second,  some  data  about  hu-
man activity  trajectories,  such  as  scenic  roads,  rope-
ways, POI  locations  and  historical  events  (such  as  his-
torical  registries  of  fires),  can  be  explored  in  further
studies.  Then,  it  will  be  possible  to  introduce  more
factors in calculating risk probability and analyze some
other  risks,  e.g.,  fires  and  air  pollution.  Several  studies
have also demonstrated that the invasive species of pine
nematodes is moving close to Huangshan Mountain. So,
vegetation  type  data  and  high-resolution  UAV  images
are needed  to  pinpoint  the  geographic  location  of  dis-
eased pine trees. 

5　Conclusions

Both  anthropogenic  and  natural  hazards  can  provoke
equal  or  different  participation  in  WHS  damage.  This
study  considers  both  the  natural  disasters  and  human
activities,  and  examines  the  spatial  and  temporal
changes in ecological risk in Huangshan Mountain from
1984 to 2019.  For natural  hazards,  this  study combines
the drought, erosion, and geological disaster assessment
maps  into  one  to  generate  the  overall  risk  probability.
Ecological disturbances to Huangshan Mountain caused
by human activities are measured by the landscape eco-
logical index.

The  analysis  of  land  cover  and  landscape  change
shows  that  the  area  of  four  land  cover  types,  namely,
water, forest, building, and farmland, fluctuated over the
35  yr  in  Huangshan  Mountain,  with  the  primary  land
cover  type  being  forest.  From  1984  to  2019,  only  the
landscape  ecological  index  of  forest  declined  slightly,
while  those of  the other  three land cover  types showed
an upward trend. The analysis of ecological risk reveals
that over 80% of the areas in Huangshan Mountain was
low or  relatively  low risk,  and  the  high  ecological  risk
areas were mainly concentrated in the border areas, with
the lowest and highest ERIs in 1990 and 2010, respect-
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ively. In addition, from 1984 to 2019, the five ecologic-
al risk areas decreased in the following sequence: relat-
ively low > low > medium > relatively high > high. The
areas of relatively high ecological risk and those of rel-
atively low  ecological  risks  shifted  in  opposite  direc-
tions, especially after 1990.

Risk preparedness and prevention are essential for the
sustainable  development  of  Huangshan  Mountain.  The
spatial distribution map of ecological risks presented in
this study can be regarded as a road map for developing
proposals and  adopting  measures  to  protect  and/or  re-
store WHS. This study also provides important insights
and information for policy-makers, planners and engin-
eers.  Additionally,  the  model  developed  in  this  study
based  on  RS  and  GIS  can  be  modified  and  applied  to
other WHSs.
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