
Geochemistry of Sediments from a Subalpine Lake Sedimentary Succes-
sion in  the  Western Nanling  Mountains,  Southern China:  Implications
for Catchment Weathering During the Last 15 400 Years

WANG Bingxiang1, ZHONG Wei1, ZHU Chan2, OUYANG Jun1, WEI Zhiqiang3, SHANG Shengtan4

(1. School of Geography Sciences, South China Normal University, Guangzhou 510631, China; 2. Guangdong Center for Marine Devel-
opment Research, Guangzhou 510220, China; 3. Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Eco-
logy, Faculty of Geographical Science, Beijing Normal University, Zhuhai, Guangdong 519087, China; 4. School of Earth Science and
Engineering, Sun Yat-sen University, Zhuhai 519082, China)

Abstract: In the present work, 15 400 yr old geochemical records of a core from the subalpine Daping swamp are presented with the
aim to examine the relationship between the chemical weathering and the climatic changes in the region of the western Nanling Moun-
tains, China. The climate of the study region was deeply controlled by the East Asian summer monsoon. The results indicate that, in the
past 15 400 yrs, the values of chemical index of alteration (CIA) ranged from 73.9% to 88.2% (mean: 85.3%), suggested a medium and
high intensity of chemical weathering. The local exogenous clastic materials, which were derived from the weathered residues, played a
key role  in  contributing  towards  the  sediments.  Since  the  climate-induced chemical  weathering  exerted  strong influences  on  the  geo-
chemical features of weathered residues, the geochemical characteristics of the sediments were deeply impacted by climatic conditions.
Wetter and warmer conditions would favor increased chemical weathering, resulting in more leaching of soluble and mobile elements
(e.g., Ba and Sr) and leaving the resistant and immobile elements (e.g., Al and Ti) enriched in the weathered residues. These materials
were then eroded and transported into the lake, and led to the sediments characterized by the characteristic of having depleted soluble
elements. In contrast, dry and cold conditions would result in an opposite trend. In this sense, the geochemical records can serve as prox-
ies to indicate changes of chemical weathering intensity, which were closely related to the evolution of summer monsoon.
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1　Introduction

Chemical weathering  is  an  important  supergene  geo-
chemical behavior of the interaction among various lay-
ers  of  the  earth’s surface.  The  processes  of  the  migra-
tion  and  transformation  of  weathering  products  record
the  changes  of  paleoenvironment.  Therefore,  chemical

weathering is  also  an important  means of  the  inversion
of  past  climate  change  (Jin  et  al.,  2001a; 2006; Li  and
Yang,  2010; Hartmann  and  Moosdorf,  2011). The  de-
nudation and chemical  weathering of  silicate  rocks  can
affect  the global  climate by affecting the global  carbon
cycle.  A  number  of  studies  have  demonstrated  that  the
weathering  rates  in  soils  and  small  catchments  have
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been  found  to  be  linked  with  significant  climate  effect
(White and Blum, 1995; White and Brantley, 2003; Mir-
iyala  et  al.,  2017).  Recent  studies  have  demonstrated
that increased chemical weathering can rapidly respond
to  climatic  changes  (Degeai  et  al.,  2018; Wang  et  al.,
2020; Liu  et  al.,  2021).  Even  in  high-latitude  places,
such as Iceland, it is estimated that climatic change over
the past  four decades resulted in up to 30% increase in
the chemical  weathering flux (Gislason et  al.,  2009).  A
more recent study concerning the responses of chemical
weathering to deglacial-to-mid-Holocene summer mon-
soon intensification in the Myanmar watersheds reveals
that the weathering was not a later amplifier, but worked
in  tandem  with  global  climate  change,  which  was
closely related  to  the  changes  in  monsoonal  temperat-
ure and humidity (Miriyala et al., 2017).

The typical  Asian  summer  monsoon  (ASM)  influ-
enced  regions,  where  involve  obvious  temperature  and
humidity  changes  both  critical  for  intensive  chemical
weathering,  and  whether  the  climatic  changes  have
triggered the erosion and weathering, are ideal places to
assess the linkage between climatic changes and chem-
ical  weathering.  In  this  sense,  the  Nanling  Mountains
(NLM) (24°00′N–29°00′N, 110°00′E–120°00′E, ~1500–
2000  m  a.s.l.  (above  sea  level))  is  an  ideal  region  to
study  this  issue  because  it  is  located  in  the  core  of  the
tropical  monsoon  regions  (Gao  et  al.,  1962), confront-
ing East Asian summer monsoon (EASM) and function-
ing  as  the  last  barrier  to  winter  monsoon  in  southern
China.  The  western  part  of  the  NLM  is  located  in  the
transitional belt between the EASM and the Indian sum-
mer monsoon (ISM) systems (Qian et al., 2007), specif-
ic  geographical  location  makes  this  region  particularly
sensitive to  shifts  in  monsoon  rainfall  patterns.  A  de-
tailed  investigation  on  the  relationship  between  the
chemical  weathering  and  the  climatic  changes  would
provide new insights  into the evolution of  the ASM. A
large number of studies have demonstrated that the con-
centration of  major  and  trace  elements  in  lake  sedi-
ments are sensitive to temperature/precipitation changes
(Gislason et al., 2009; Boës et al., 2011; Liu et al., 2020;
Li  et  al.,  2021),  which  can  provide  useful  information
on  elucidating  the  relationship  between  the  chemical
weathering and the climatic changes.

Based on a well-dated sedimentary core from Daping
swamp  in  western  NLM,  the  present  study  emphasizes
temporal variation characteristics of element content, in-

cluding  Al2O3,  TiO2,  MnO,  FeOt,  Rb,  Sr,  Cu  and  Ba,
and  ratios  (Rb/Sr,  SiO2/Al2O3,  MnO/Al2O3 and
FeOt/Al2O3),  as  well  as  chemical  index  of  alteration
(CIA). The  CIA results,  integrated  with  dry  bulk  dens-
ity, organic carbon isotope, pollen and grain size, reveal
the  paleoenvironmental/paleoclimatic  evolution  and  the
chemical weathering history of the Daping swamp since
the  Last  Deglaciation.  The  purpose  of  this  study  was
highlight importance of regional chemical weathering in
interpreting the  past  climatic  changes,  which  were  re-
lated to the ASM. 

2　Study Site

Daping swamp (26°10′11″N–26°10′42″N, 110°07′25″E–
110°08′00″E) is situated in the Daping Basin, located in
the weatern  NLM  in  South  China,  is  important  geo-
graphic division of the middle and southern subtropical
zones  (Fig.  1). Previous  studies  revealed  that  the  sedi-
mentary succession from the Daping swamp, which was
developed  in  the  closed  subalpine  intermontane  basin,
was an ideal geologic achieve for reconstructing the cli-
matic  and environmental  changes (Zhong et  al.,  2015a;
2017). Field investigations revealed that the bedrocks in
the study region are dominated by medium-grained por-
phyritic granites in the early Yanshan stage in the Meso-
zoic period, whereas the main minerals are potash feld-
spar,  plagioclase,  quartz  and  biotite  (Zhu  et  al.,  2009;
Wang  et  al.,  2013).  The  mean  temperature  in  January
and July are ‒0.5°C and 19°C respectively, with a mean
annual temperature of ~ 10.9°C. Mean annual precipita-
tion is about 2000 mm, and the annual evaporation is ~
500 mm. The regional  vegetation is  dominated by sub-
tropical  evergreen  broad-leaved  forest  and  deciduous
broad-leaved forest (Wu, 1980; Zhong et al., 2015b). 

3　Materials and Methods

A  236-cm-long  core  (designated  core  DP-2011-02),
which was extracted in Sept. 2011 using a piston coring
device  produced  by  Christie  Engineering  (Australia)
(CHPD  52),  was  used  for  this  study.  In  the  field,  this
core  was  cut  lengthwise,  photographed  and  described.
Samples  were  then  transported  to  the  laboratory  and
stored at 4°C.

Eight organic-rich bulk sample cores (laboratory code
LUG11-n)  (Table 1)  were collected from the study site
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for conventional radiocarbon dating using liquid scintil-
lation  technique  at  the  Key  Laboratory  of  Western
China’s Environmental Systems (Ministry of Education
of China) at the Lanzhou University, China. The specif-
ic  method  was  detailed  described  in  Zhong  et  al.
(2015a). In this study, the radiocarbon ages were re-cal-
ibrated  using  the  latest  IntCal  20  calibration  datasets
(Reimer  et  al.,  2020).  A  linear  interpolation  method

(Yeloff  et  al.,  2006; Machlus  et  al.,  2015)  was  used  to
establish  the  core  chronological  sequence  based  on  the
mean sedimentation  rates  of  the  two  adjacent  calibra-
tion ages.

Samples were collected at 2-cm intervals for chemic-
al  element  analysis.  All  samples  were  freeze-dried  and
ground  using  ZHM-1A  vibration  grinding  prototype
(Beijing Zhonghe Chuangye, China). After grinding, the
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Fig. 1    Climate background, geographic location and profile of Daping area. a. the climatic system of China including the East Asian
summer  monsoon (EASM) and Indian  summer  monsoon (ISM);  the  East  Asian  winter  monsoon (EAWM) winds  associated  with  the
Siberian-Mongolian High and the Westerly winds generalized as the mean locations of jet stream are indicated; the comparison sites are
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study region; c. the location of the study core (Modified after Zhong et al., 2015a)

 
Table 1    Radiocarbon dating results using the Intcal 20 calibration dataset for the core DP-2011-02 in Daping swamp
 

Lab. code Depth /cm Material Age / 14C yr B.P.
Calibrated age

cal. yr B.P. (2 sigma) Intercept (cal. yr B.P.)

LUG11-198 24−29 TOC 673 ± 87 542−1073 720

LUG11-199 54−59 TOC 2218 ± 113 2010−2786 2380

LUG11-200 67−72 TOC 3768 ± 94 3573−4303 3980

LUG11-201 81−86 TOC 4119 ± 95 4403−4969 4674

LUG11-202 108−113 TOC 5428 ± 158 5846−6773 6270

LUG11-204B1 151−156 TOC 8895 ± 128 9880−11132 10460

LUG11-205 183−188 TOC 11373 ± 127 12540−13444 13120

LUG11-206 223−228 TOC 12452 ± 167 14187−15409 14780

Notes：TOC, total organic carbon in lake sediments
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particle size of the samples was < 74 μm. First, 6.0 g of
powdered  samples  were  taken  and  boric  acid  was  used
as the sides and bottom. The samples were then pressed
into a  round  cake  with  a  diameter  of  3.2  cm  and  ana-
lyzed for the contents of major and trace elements using
the  polarization  energy  dispersive  X-ray  fluorescence
spectrometer  (Epsilon  5)  procured  from  PANalytical
B.V., The Netherlands.  The analytical  error  in the con-
tents of elements was less than 5%.

In order to assess the climatic significance of chemic-
al elements, several published proxy climatic records of
DP-2011-02 including dry bulk density (DD), coarse silt
and sand fraction of particle size (CSSF) (Zhong et al.,
2015a),  organic carbon isotopes (δ13Corg)  (Zhong et  al.,
2017)  and  pollen  data  (Zhong  et  al.,  2015b)  were  also
used in the present study. 

4　Results
 

4.1　Lithology and chronology
Lithology  of  the  core  consisted  of  alternating  layers  of

lake  and  marsh  sediments,  incarnating  hydrological
shifts in this region (Fig. 2). The detailed description of
this core profile were recorded was presented in Zhong
et  al.  (2015a).  The  newly  calibrated  radiocarbon  dates
and the age-depth relationship of the core are shown in
Table  1 and Fig.  2,  respectively.  The  age-depth  model
indicated that the bottom age of the core was cal. 15 400
yr B.P.. 

4.2　Variations in major and trace elements
Variations  of  the  selected  elements  and  element  ratios
are shown in Figs. 3 and 4, respectively. Prior to 14 500
cal.  yr  B.P.,  Al2O3,  TiO2 and FeOt (including FeO and
Fe2O3) and MnO, as well as Rb/Sr ratios exhibited relat-
ively lower  values,  whereas  Ba  and  Sr  displayed  in-
creases. From 14 500 to 13 200 cal. yr B.P., the decreas-
ing  values  of  SiO2/Al2O3,  MnO/Al2O3 and  FeOt/Al2O3

ratios were negatively correlated with Rb/Sr. In contrast,
Al2O3,  TiO2,  FeOt,  MnO and Cu exhibited an opposite
variation trend compared to Sr and Ba. From 13 200 to
11  000  cal.  yr  B.P.,  the  values  of  Sr,  MnO/Al2O3 and
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FeOt/Al2O3 increased,  whereas  those  of  Rb  and  Rb/Sr
decreased apparently. During 11 000−9000 cal. yr B.P.,
though Ba reached its  peak value,  it  exhibited an over-
all  downward  trend  during  this  interval,  whereas  TiO2,
FeOt, MnO, Cu and Rb displayed an opposite variation
trend.  Meanwhile,  the  ratios  of  FeOt/Al2O3 and
MnO/Al2O3 displayed  a  stepwise  decrease.  Moreover,
Al2O3,  TiO2, FeOt,  Cu  and  Rb  displayed  their  maxim-
um  values  between 9000 and 6000 cal.  yr  B.P..  The
value  of  the  Rb/Sr  ratio  exhibited  a  marked  increase
compared  to  the  preceding  period.  However,
SiO2/Al2O3,  MnO/Al2O3 and  FeOt/Al2O3 ratios obvi-
ously  decreased.  From 6000 to 2500 yr B.P.,  the  con-
tents of Al2O3 and TiO2 decreased evidently. However,
the  SiO2/Al2O3 and  MnO/Al2O3 ratios  displayed  a
gentle  increase.  During 2500−1000 yr B.P.,  the  con-
tents  of  Al2O3,  TiO2 and Cu increased,  whereas the ra-
tios  of  SiO2/Al2O3,  FeOt/Al2O3 and  MnO/Al2O3 de-
clined. After 1000 yr B.P., SiO2/Al2O3 and MnO/Al2O3,
especially FeOt/Al2O3 increased significantly. 

5　Discussion
 

5.1　Factors controlling the variations of major and
trace elements
The accumulation of geochemical elements in lake sedi-
ments  is  closely  related  to  the  leaching,  transportation
and  deposition  of  surface  materials  in  the  watershed.
Moreover,  chemical  weathering  is  an  important  factor
affecting  these  processes.  It  is  generally  accepted  that

climate  plays  a  major  role  in  controlling  the  chemical
weathering  processes,  as  rainwater  is  considered  to  be
the first-order control factor initiating chemical weather-
ing and determining the intensity of chemical reactions.
Therefore, the changes in intensity of chemical weather-
ing were  closely  related to  the  temperature  and rainfall
conditions of the region. Moreover, wet and warm con-
ditions  generally  favor  highly  weathered  elements  and
the chemical composition in sediments due to chemical
reactions. Therefore, the weathering intensity was high-
er than that under dry and cold conditions.

In  the  core,  multiple  proxies  including  δ13Corg,  DD,
CSSF,  and  pollen  data  (Zhong  et  al.,  2015a;  b; 2017)
were  used  to  decipher  the  changes  in  hydrological  and
climatic conditions. Higher δ13Corg and herb pollen con-
centrations  were  interpreted  to  indicate  relatively  dry
and cold conditions (Xue et al.,  2014; Rao et al.,  2012;
2017; Zhong  et  al.,  2017).  The  DD  and  particle  grain
size could provide more information about  the external
input of  detrital  material  (Zhou et  al.,  2004; Xue et  al.,
2009), with higher DD and CSSF suggesting higher in-
put  of  clastic  materials  and  relatively  coarser  materials
due  to  elevated  riverine/fluvial,  implying  a  wet  and
warm  condition,  and  vice  versa.  Based  on  these  proxy
records,  our  team has  constructed  the  hydrological  and
climatic history in Daping swamp over the past 15 400
yr  (Zhong  et  al.,  2015a; 2017),  and  several  millennial
climatic  events,  such  as  the  Heinrich  event  1  (H1)
(Heinrich  1988; Stanford  et  al.,  2011),  Younger  Dryas
event  (YD),  Holocene  optimum  period  (HOP)  and  the
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‘ 4200 yr  cooling’ event  (Wang  et  al.,  2005; Wang,
2011; Pan  et  al.,  2020)  were  clearly  identified.  These
results indicated that the changes in hydrological condi-
tions  in  the  lake  were  closely  related  to  the  summer
monsoon precipitation (Aggarwal et al., 2004; Fan et al.,
2017).  As  shown  in Figs.  3 and 4,  in  comparison  with
these climatic  stages,  it  can  be  observed  that  the  de-
creased  contents  of  mobile  and  soluble  elements  (such
as Ba and Sr) (Mackereth, 1966; Jin et al., 2001b; Yang

et  al.,  2006; Xu et  al.,  2010)  and  increased  contents  of
immobile  and  resistant  elements  (for  example  Al2O3,
TiO2,  FeOt,  MnO,  Cu and Rb)  (Yancheva et  al.,  2007;
Sun et al., 2010; Wu et al., 2011; Babeesh et al., 2017)
corresponded  to  the  warm and  humid  periods,  whereas
under dry  and  cold  conditions,  they  displayed  an  in-
verse  situation.  In  this  sense,  the  ratios  of  Rb/Sr,
SiO2/Al2O3,  FeOt/Al2O3 and  MnO/Al2O3 were  used  to
indicate the changes in the intensity of chemical weath-
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ering,  with  higher  Rb/Sr  and  lower  SiO2/Al2O3,
FeOt/Al2O3 and  MnO/Al2O3 reflecting  more  intensive
chemical weathering, and vice versa. It should be noted
that  the  changes  in  Daping  chemical  records  exhibited
an asynchronous pattern with the Erhai lake in southw-
est  China  (Chen  et  al.,  2000; 2005; Shen  et  al.,  2005)
and  the  Daihai  lake  in  the  north  China  (Peng  et  al.,
2005; Jin  et  al.,  2006; Sun  et  al.,  2010),  whose  Al2O3,
SiO2,  FeOt  and  Cu  generally  displayed  lower  values
during  the  warm and  wet  periods,  and  vice  versa.  This
could be due to the reason that Daping swamp is a small
lake  located  in  a  closed  intermontane  basin.  Unlike
Daihai  lake  and  Erhai  lake,  the  weathered  granite
residues  in  the  catchment  are  the  dominant  sources  of
sediments,  and  therefore,  the  geochemical  features  of
the  residues  played  a  role  in  controlling  the  chemical
characteristics of the sediments.

In  the  core  DP-2011-02,  the  values  of  the  chemical
index  of  alteration  (CIA,  CIA=[(Al2O3)/(Al2O3+CaO+
Na2O+K2O)]  ×100)  (Nesbitt  and  Young  1982; 1989;
Fedo et al., 1995), which was related to temperature/pre-
cipitation-associated hydrothermal status, lied within the
range of 73.9%−88.2% (mean value: 85.3%), indicating
a  moderate  and  strong  chemical  weathering  in  the  past
15 400 yr. As illustrated in Fig. 4, The δ13Corg and herb
pollen  correlated  positively  with  the  values  of  the
SiO2/Al2O3,  FeOt/Al2O3 and  MnO/Al2O3 ratios.
However,  the  δ13Corg and herb  pollen  correlated  negat-
ively  with  CIA,  CSSF  and  Rb/Sr,  suggesting  that  the
geochemical features  of  the sediments  were deeply im-
pacted  by  the  climate-induced  chemical  weathering.
Meanwhile,  the  wet  and  warm  conditions  would  favor
more intensive  chemical  weathering,  resulting  in  en-
hanced input  of  weathering residues  and leading to  de-
pleted mobile and soluble elements in the sediments (Xu
et al., 2010; Babeesh et al., 2017). On the contrary, un-
der  drier  and  colder  conditions,  decreased  chemical
weathering  would  favor  the  enrichment  of  mobile  and
soluble  elements  in  the  sediments.  Additionally,  the
FeOt  and  MnO  records  were  often  used  to  indicate
redox conditions in the lake body (Haberyan and Hecky
1987; Davison 1993; Wu et al., 2011). Therefore, the in-
creased concentrations of  FeOt and MnO suggested in-
tensified  oxidizing  conditions,  implying  a  shallow-wa-
ter situation.  On  the  other  hand,  decreased  concentra-
tions  of  FeOt  and  MnO  indicated  increased  reducing
conditions, suggesting an expansion of lake water body.

As discussed  above,  it  was  inferred  that  the  vari-
ations of  various  geochemical  records  of  Daping  sedi-
ments  could  serve  as  indicators  of  climate-induced
chemical  weathering.  Since  the  study  area  was  deeply
influenced by ASM, the history of chemical weathering
as evidenced by the geochemical proxies bore the poten-
tial to  reconstruct  past  climatic  conditions  that  was  re-
lated to the summer monsoon in the past 15 400 yr. 

5.2　Variations  of  chemical  weathering  intensity  in
the past 15 400 yr
During the Last Deglacial period (15 400−11 000 yr B.
P.), the values of CIA and Rb/Sr ratios displayed lower
values  in  the  whole  profile  (Fig.  4 ), suggesting  relat-
ively weak  chemical  weathering  and  an  overall  relat-
ively  dry  and  cold  conditions.  Particularly,  during  the
two periods of  15 400−14 500 yr B.  P.  (H1 event)  and
13 200−11 000 yr B. P. (YD event), the CIA and Rb/Sr
showed  obvious  low  values,  suggesting  a  decreased
chemical  weathering.  The  increased  values  of
FeOt/Al2O3 and MnO/Al2O3 indicated a decline of lake
level  and  intensified  oxidation  conditions  in  the  water
body. The  dry  conditions  were  also  reflected  by  in-
creased  δ13Corg and  herb  pollen,  as  well  as  decreased
CSSF  (Fig.  4).  Evident  increases  in  the  values  of  CIA
and  Rb/Sr,  as  well  as  decreases  in  SiO2/Al2O3 ratios
between 14 500 and 13 200 yr B. P. suggested an intens-
ified chemical  weathering induced by strengthened wet
and  warm  conditions,  indicating  enhanced  summer
monsoon.  The  clear  decreases  in  δ13Corg,  CSSF  and  an
increase in  DD supported  this  interpretation.  This  peri-
od coincided with the Bølling and Allerød (B-A) warm
events.  In  this  period,  strengthened  humid  and  warm
conditions  favored  the  expansion  of  lake  water  body,
and the outflow might have carried more insoluble ele-
ments (such as Al2O3, FeOt and Rb) out of the lake, thus
leading to lower CIA but higher SiO2/Al2O3 than those
in the YD (Fig. 4).

In  the  Holocene  (11  000−0 yr  B.  P.)  period,  various
geochemical records displayed drastic variations (Figs. 3
and 4).  In  the  early  Holocene  (11  000−9  000  yr  B.P.)
period,  significantly  increased  CIA,  Rb/Sr,  DD  and
CSSF,  together  with  slightly  declined  SiO2/Al2O3 and
FeOt/Al2O3 suggested an  enhanced  chemical  weather-
ing and increased input  of  terrestrial  debris.  In  particu-
lar, the period from 9000 to 6000 yr B. P., which corres-
ponded  to  the  HOP,  exhibited  significant  increase  in
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CIA  and  evident  decreases  in  FeOt/Al2O3 and
MnO/Al2O3, as well as the maximum Rb/Sr and minim-
um  SiO2/Al2O3,  signifying  an  intensified  chemical
weathering and strengthened deep-water hypoxic envir-
onment. The notable wet and warm conditions were also
reflected  by  evidently  decreased  values  of  δ13Corg and
herb  pollen,  as  well  as  increased  values  of  DD  and
CSSF (Zhong et al., 2017). All the proxy records indic-
ated an abundance of terrestrial plants and enhanced ter-
rigenous debris influx due to the strengthening of EASM.

After 6000 yr B. P., the value of Rb/Sr decreased ob-
viously,  whereas  the  values  of  FeOt/Al2O3 and
MnO/Al2O3 tended to flatten out as compared to the pri-
or  stage.  Together  with  higher  δ13Corg and  lower  DD
(Fig. 4), the results indicate that the overall climate was
relatively dry and cold since 6000 yr B. P.. However, in
the period between 6000 and 2500 yr B. P., the CIA dis-
played  relatively  higher  values,  whereas  SiO2/Al2O3,
FeOt/Al2O3 and  MnO/Al2O3 exhibited  lower  values
than  those  in  the  HOP.  This  phenomenon  implies  the
impacts  of  significant  wet  and  warm  conditions  in  the
HOP  on  the  weathered  residues.  Evident  intensified
chemical weathering during the HOP resulted in intens-
ive  leaching  of  soluble  and  mobile  elements  in  the
weathered materials.  The  effects  of  desilication  and  al-
litization  would  result  in  significantly  Al-enriched  and
Si-depleted  weathered  residues,  after  entering  the  late
Holocene period, these materials were eroded and trans-
ported  into  the  lake,  and  resulted  in  higher  CIA  and
lower  SiO2/Al2O3,  FeOt/Al2O3,  and  MnO/Al2O3 than
those in the HOP period. After 2500 yr B.P., the values
of  SiO2/Al2O3,  FeOt/Al2O3,  and  MnO/Al2O3 decreased
slightly,  indicating that  the  climate  had shifted towards
wet  and  warm  conditions.  It  was  noteworthy  that
SiO2/Al2O3,  FeOt/Al2O3 and  MnO/Al2O3 ratios in-
creased  significantly  after 1000 yr  B.P.,  indicating  that
the  chemical  weathering  decreased  again.  Meanwhile,
the values of DD and CSSF (Fig. 3) declined evidently,
suggesting a climatic shift towards drier and colder con-
ditions.

The  millennial  H1,  B-A  and  YD  events  during  the
Last  Deglacial  detected  from  the  current  geochemical
records (Fig. 5a) displayed a consistency with East Asi-
an  Summer  Monsoon  Index  (EASMI)  (Fig.  5b)  (Li  et
al.,  2013),  δ13Corg record of  Dahu swamp (Fig.  5c)  and
the  the  percentage  of  tropical  plants  in  Huguangyan
Maar  lake  (Leizhou  peninsula,  South  China)  (Fig.  5d)

(Wang  et  al.,  2016),  as  well  as  the  stalagmite  δ18O  of
Dongge  cave  (Guizhou,  Southwest  China)  (Fig.  5e)
(Dykoski et al., 2005) and the Oman Qunf cave (Arabi-
an  Peninsula)  (Fig.  5f)  (Fleitmann  et  al.,  2003)  which
was considered to be a good indicator of EASM evolu-
tion  with  its  lower  values  indicating  strengthened
EASM,  and vice  versa, indicating  a  sensitive  response
of Daping region to the evolution of Asian monsoon cir-
culation and global climatic changes.

On  the  orbital  scale,  the  solar  radiation  may  play  a
role  in  modulating the climatic  changes (Fig.  5g)  (Ber-
ger  and  Loutre,  1991; Wei  et  al.,  2020).  In  this  study,
the geochemical  records  indicated  that  the  HOP  oc-
curred within the range of 9000−6000 yr B. P. (Fig. 4),
the 1000-yr  lag  of  the  onset  timing  of  HOP  in  Daping
swamp  compared  to  the  Dahu  sediments  in  eastern
NLM (Fig. 5c) (Xiao et al., 2007; Wang et al., 2021) as
well as other ASM proxy records (Figs. 5b,5d−5f) may
be attributed to the ‘glacier boundary effect’, which was
caused  by  the  high  latitudes  and  residual  ice  on  the
Tibetan  plateau  (Wang  et  al.,  2001; Chen  et  al.,  2015;
Zhao et al., 2016; Wei et al., 2020). 

6　Conclusions

Multiple  geochemical  records  derived  from  lacustrine
sediments of Daping swamp in western Nanling moun-
tains indicated that the accumulation of major and trace
elements  mainly  contributed  by  inputting  weathered
residues  in  the  catchment.  Changes  in  the  intensity  of
chemical  weathering  played  a  role  in  controlling  the
variations  of  geochemical  records.  Warmer  and  wetter
climatic  conditions  would  favor  stronger  chemical
weathering, resulting  in  more  soluble  and  mobile  ele-
ments (such as Ba and Sr) to be leached and leaving the
weathered  residues  enriched  in  resistant  and  insoluble
elements (such as Al2O3, TiO2, and Rb). These residues
were  then  eroded  and  transported  to  the  lake,  resulting
in the  enrichment  of  insoluble  elements  in  the  sedi-
ments  as  evidenced  by  higher  CIA,  Rb/Sr  and  lower
SiO2/Al2O3, FeOt/Al2O3 and MnO/Al2O3 ratios. In con-
trast, under dry and cold conditions, it would exhibit an
inverse  situation.  Since  variations  in  the  intensity  of
chemical weathering were closely related to the changes
in climatic  conditions,  the  geochemical  records  ob-
tained  in  the  current  work  indirectly  reflected  that  past
climatic  changes  in  the  study  region  were  associated
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with  the  Asian  summer  monsoon.  This  study  provides
new data  for  exploring  the  response  of  surface  geo-
chemical processes to chemical weathering in the catch-
ment of subalpine lake in South China.
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