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Abstract: Carex tussock plays an important role in supporting biodiversity and carbon sequestration of wetland ecosystems, while it is
highly threatened by climate change and anthropogenic activities. Therefore, identifying the potential distribution patterns of Carex tus-
socks wetland is vital for their targeted conservation and restoration. The current and future (2050s and 2070s) potential habitats distri-
bution of Carex tussocks  in  Northeast  China  were  predicted using a  Maximum Entropy (Maxent)  model  based on 68 current  data  of
Carex tussock distributions and three groups of environmental variables (bioclimate, topography, soil properties). Results show that iso-
thermality, seasonal precipitation variability and altitude are important factors that determine the distribution of Carex tussock. The high
suitable habitat of Carex tussock is about 5.7 × 104 km2 and mainly distributed in the Sanjiang Plain, Songnen Plain, Changbai Moun-
tains and Da Hinggan Mountains. The area of stable habitats of Carex tussock is significantly higher than the lost and expanded habitats
in  the  future  climate  scenarios,  and  the  unsuitable  habitats  mainly  occur  in  Da  Hinggan  Mountains,  Xiao  Hinggan  Mountains  and
Changbai Mountains. Overall, Carex tussock wetlands at high altitude and high latitude are more sensitive to climate change, and more
attention should be invested in high latitude and high altitude areas.
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1　Introduction

The  responses  and  feedbacks  of  vegetation  to  climate
change have been brought to the fore of geography, eco-
logy  and  botany  (Shen  et  al.,  2015; Piao  et  al.,  2019).
Climate  change  may  substantially  change  the  structure
and  function  of  the  ecosystem  (Thomas  et  al.,  2004;
Piao  et  al.,  2019; Bastiaansen  et  al.,  2020; Geng et  al.,
2020), and affect its stability and biodiversity. Plant spa-

tial distribution is largely determined by climate and en-
vironmental  conditions  (Rabasa  et  al.,  2013; Du  et  al.,
2018). The differences of water, heat and their combina-
tions alter  plant  growth  and  distribution  pattern  by  af-
fecting  plant  physiological  and  ecological  processes
(Rabasa et al., 2013; Shen et al., 2015; Du et al., 2018).
Many  evidences  have  indicated  that  climate  warming
could  cause  vegetation  migration  (Root  et  al.,  2003),
and  increase  the  risk  of  species  extinction  (Bertrand  et
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al., 2011; Bellard et al., 2012; Urban, 2015). Therefore,
identify the spatial distribution and evolution character-
istics  of  plant  suitable  habitats  under  climate  change  is
of great significance for understanding the response pro-
cess of ecosystem to climate change, as well as species
protection.

The  species  distribution  models  are  contributed  to
ecological  risk  assessment  of  the  species  and  habitats.
Species distribution  models,  including  Maximum  En-
tropy  model  (Maxent),  Classification  and  Regression
Tree (CART)  and  Genetic  Algorithm  for  Rule-set  Pre-
diction (GARP), etc., are mainly used to predict the po-
tential  geographical  distribution  (Wei  et  al.,  2021).
Maxent is  statistical  modeling  based  on  maximum  en-
tropy theory and takes the environmental characteristics
of  presence  species  distribution  as  constraint,  and  then
predicts the  potential  distribution  of  the  target  by  find-
ing the probability distribution of maximum entropy un-
der  the  constraint  (Phillips  et  al.,  2006). Due  to  its  ac-
curate prediction, easy analyses and simple approaches,
Maxent model is widely used to predict the reserve con-
struction  (Urbina-Cardona  and  Flores-Villela,  2010;
Wang  et  al.,  2019c),  the  restoration  and  protection  of
endangered  species  (Qin  et  al.,  2017)  and  the  diseases
spatial distribution (Sun et al., 2021), as well as the im-
pact  of  climate  change  on  wetland  species  distribution
(Cao et al., 2020; Hu et al., 2020).

Carex tussock  wetlands  are  widely  distributed  in
floodplain  wetlands  and  mountain  valley  wetlands  in
Northeast  China  (Zhang,  2017).  Protruding Carex tus-
socks  increase  the  surface  area,  roughness  and  micro-
geomorphological  heterogeneity  (Lawrence and Zedler,
2011),  which  provides  support  for  biodiversity  (Crain
and  Bertness,  2005; Peach  and  Zedler,  2006; Johnston
and Zedler,  2012).  Besides, Carex tussocks  have  many
ecological functions including pollutant  adsorption,  nu-
trient accumulation, and biological carbon sequestration
(Lawrence and Zedler, 2013). Research showed that the
aboveground  carbon  pools  of Carex tussock  wetland
(16.5–27.5 Mg /ha, C) was significantly higher than that
of  other  herbaceous  systems  (Lawrence  and  Zedler,
2013).  In  particular,  the  unique  hummock  structure
formed by Carex root tillering makes a significant con-
tribution to the formation of herbaceous peat (Bai et al.,
1999).

However, since 1961, an obviously rising trend of an-
nual  temperature  and  decreasing  trend  of  precipitation

was found in Northeast China (He et al., 2013). Accord-
ing to the survey, nearly 72% of the existing wetlands in
Northeast China are threatened by different factors, res-
ulting  in  a  decline  in  ecological  function  (Mao  et  al.,
2018),  and  the  variation  of  precipitation  fluctuation  is
one of  the  important  factors  leading to  the  high risk  of
regional  wetlands  (Fu  et  al.,  2020).  Previous  study
shows that  alpine  swamp meadow would succession to
typical  meadow under  climate  drying  and  warming  (Li
et al., 2003). Coupled with the influence of human inter-
ference  (grazing,  mowing,  reclamation  and  ditching,
etc.,), large area of Carex tussock wetland has been de-
graded  or  disappeared  (Pan  et  al.,  2006; Wang  et  al.,
2019b) in Northeast China. Therefore, it is necessary to
protect  and  restore Carex tussock  wetland  to  exert  its
ecological  functions.  What  are  the  spatial  distribution
characteristics  of Carex tussock  wetland  in  Northeast
China?  Where  will  the Carex tussock wetland  be  dis-
tributed in the future climate scenario? What is the sta-
bility  of  the  potential  suitable  area  of Carex tussock
wetland? These  questions  need  to  be  answered  scien-
tifically.  Based on the above situation, in this study we
used Maxent model to determine the evolution of poten-
tial distribution pattern of Carex tussock wetland under
different  climate  scenarios.  Our  objectives  are  to:
1)  identify  the  potential  geographical  distribution  of
Carex tussock wetlands  under  climate  change,  2)  ex-
plore the main environmental factors that affect the dis-
tribution  of Carex tussocks, and  3)  determine  the  pat-
terns of habitat shifts and stability for the Carex tussock.
This study provides theoretical support for the ecologic-
al conservation and targeted management of Carex tus-
sock wetlands in Northeast China and has important ref-
erence value for the study of wetland stability. 

2　Materials and Methods
 

2.1　Study area
This  study  focused  on  the  Northeast  China  (38°43′N–
53°33′N, 115°31′E–135°5′E), which includes Heilongji-
ang Province, Jilin Province, Liaoning Province and the
eastern Inner Mongolia (Fig. 1). According to the topo-
graphy and climatic conditions, the Northeast China in-
clude seven ecological functional regions: Eastern Inner
Mongolia Plateau,  Da  Hinggan  Mountains,  Xiao  Hing-
gan  Mountains,  Changbai  Mountains,  Sanjiang  Plain,
Songnen Plain and Liaohe Plain (Shen et al., 2019). And
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the  Northeast  China  belongs  to  the  temperate  monsoon
climate  with  an  annual  precipitation  of  300−1000 mm
(Li et al., 2019a). Due to the influence of complex topo-
graphy, the climate in different ecological functional re-
gions  is  significantly  different.  Wetlands  in  Northeast
China  are  widely  developed  and  of  various  types.  The
main  plants  include Phragmites  communis, Typha ori-
entalis, Carex lasiocarpa, etc. (Mao, 2014). 

2.2　Species occurrence records
Carex tussocks  are  developed  in  wet  valley  wetlands
and  flooded  wetlands,  which  are  the  key  symbols  of
Carex tussock wetlands. In this study, the distribution of
Carex tussock  was  used  to  predict  the  potential  spatial
distribution pattern of Carex tussock wetland under fu-
ture  climate  scenarios.  The  distribution  information  of
Carex tussock was obtained according to the records of
Wild  Vascular  Plant  in  Wetlands  of  Northeast  China
(Yi,  2008),  the  academic  researches  (Man  and  Cai,
2005; Wang  et  al.,  2014; Wang  et  al.,  2015; Zhang  et
al.,  2016; Zhang,  2017; Han  et  al.,  2018; Liu  et  al.,
2018; Lou et al., 2018; Wang et al., 2019a; Wang et al.,
2021) and  the  filed  investigation  (2016−2019).  We de-
leted  the  duplicate  records  and  ensured  that  there  was
only one distribution point in the 1 km ×1 km range, and
finally  screened  out  68  valid  samples  for  building  the
Maxent model (Fig. 1). Among them, 58 samples (85%)
came from the related researches and filed investigation,
and  the  other  10  samples  (15%)  were  the  distribution
sites  of  tussock-forming  species  (Carex  appendiculata,
Carex  schmidtii, Carex  meyeriana)  recorded  in Wild

Vascular Plant in Wetlands of Northeast China and they
were also verified by historical record such as news re-
ports,  meeting  reports,  memoirs,  expert  experience  and
wetland park website that there were Carex tussock de-
veloped here. The Carex tussock occurrence records are
derived  from  1958  to  2019,  and  about  18%  samples
were recorded before 2000. 

2.3　 Environmental data  acquisition  and  pretreat-
ment
28 environmental  variables,  including  climate,  topo-
graphy and soil properties, which affect the distribution
of Carex tussock were selected to simulate the potential
spatial  distribution  of Carex tussock  (Zong,  2014;
Zhang, 2017; Wang et al., 2019b; Zhang et al., 2019b).
Among them, the climate data including 19 bioclimatic
factors (Bio1 to Bio19, Table 1) were downloaded from
the  WorldClim  Database  (https://www.worldclim.org/)
under current (1950–2000) and future conditions (2050s
and  2070s)  of  different  climate  scenarios  (RCP  2.6,
RCP  4.5  and  RCP  8.5)  with  resolution  of  30''  (about

 
Table  1    Bioclimatic  variables  and  its  connotation  included  in
Maxent model
 

Bioclimatic
variables

Connotation

Bio1 Annual mean temperature

Bio2
Mean diurnal range (Mean of monthly (max temp-min
temp))

Bio3 Isothermality (Bio2/Bio7) ×100

Bio4 Temperature seasonality (standard deviation × 100)

Bio5 Max temperature of warmest month

Bio6 Min temperature of coldest month

Bio7 Temperature annual range (Bio5‒Bio6)

Bio8 Mean temperature of wettest quarter

Bio9 Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of wettest month

Bio14 Precipitation of driest month

Bio15 Precipitation seasonality (Coefficient of variation)

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quarter
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Fig. 1    Location of study area and Carex tussock wetland distri-
bution
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1 km). RCP is the representative concentration pathway,
and  RCP  2.6,  4.5  and  8.5  refer  to  radiative  forcing
reaches 2.6 W/m2, 4.5 W/m2 and 8.5 W/m2 by 2100, re-
spectively. The current bioclimatic data is only up to the
year  2000,  and  the  future  distribution  under  climatic
conditions  in  2050s  (2040–2060)  and  2070s
(2060–2080) were modeled using environmental factors
generated  by  BCC_CSM1–1  climate  model  (CMIP  5
data). The topography data  were derived from Geospa-
tial  Data  Cloud  ASTERGDEM  30M  digital  elevation
data (DEM) (http://www.gscloud.cn), and the slope and
aspect  were  calculated  by  ArcGIS  10.2.  (ESRI,  USA)
Soil  variables  (physical  and  chemical  properties)  were
downloaded  from the  Soil  Database  of  China  for  Land
Surface  Modeling  (http://globalchange.bnu.edu.cn/re-
search/soil2), including soil pH, bulk density (BD), soil
porosity (Por), cation exchange capacity (CEC), total ni-
trogen  (TN)  and  total  phosphorus  (TP).  In  order  to
maintain  the  comparability  of  the  time  series  of  the
model  and  analyze  the  potential  spatial  distribution  of
Carex tussock wetlands under different climatic scenari-
os, soil  properties  and  topography  factors  remain  un-
changed in the prediction in the future.

All environmental datasets were re-projected and uni-
fied  into  GCS_WGS_1984  coordinate  system  with  a
spatial resolution of 30″ using ArcGIS 10.2. Moreover,
in  order  to  avoid  the  model  over-fitting  that  caused  by
environmental variables  multi-collinearity,  person  cor-
relation  analysis  of  the  environmental  variables  was
conducted by SPSS 23 (IL, USA). When the correlation
coefficient is ≥ 0.8, the environmental factors with small
biological significance and low contribution will be ex-
cluded (Liu et al., 2018). Finally, 16 environmental vari-
ables  including  Bio1,  Bio3,  Bio11,  Bio14,  Bio15,
Bio18, aspect,  cation  exchange  capacity  (CEC),  eleva-
tion,  pH,  soil  porosity  (SP),  slope,  soil  total  nitrogen
(TN), were selected for model building. 

2.4　Spatial modeling and validation
The model of the potential spatial distribution of Carex
tussock wetland was built in Maxent 3.4.1 (https://biod-
iversityinformatics.amnh.org/open_source/maxent/),
75% of  the  occurrence  data  were  randomly  selected  as
the  training  set  to  build  the  model,  and  the  remaining
25% points were used as the test set for model verifica-
tion.  The  options  of  ‘Create  response  curve’ and  ‘Do
jackknife  to  measure  variable  importance’ were selec-

ted to  test  the  contribution  rate  of  environmental  vari-
ables to the distribution of Carex tussock. The accuracy
of model prediction was evaluated by the area under the
curve (AUC) value of the receiver operator characterist-
ics  (ROC)  plot.  The  AUCs  (0.5–1.0)  with  high  values
refers to accurate results: an AUC value in 0.9–1.0 rep-
resents excellent model performance, in 0.8–0.9 repres-
ents  good  performance,  in 0.7–0.8  represents  fair,
in 0.6–0.7 represents poor and in 0.5–0.6 represents fail
(Thuiller et al., 2006). 

2.5　Suitable habitats classification
The  occurrence  probability  grid  map  of Carex tussock
was obtained by ArcGIS 10.2 software to visually ana-
lyze  the  simulation  results.  The  occurrence  probability
(P) value is in the range of 0–1.0, and the higher P value
is  the  higher  probability  of  the  existence  of Carex tus-
sock. The habitat suitability of Carex tussock was clas-
sified into 4 classes: unsuitable (0 < P < 0.2), low suit-
able  (0.2  ≤ P <  0.4),  moderate  suitable  (0.4  ≤ P <0.6)
and  high  suitable  (0.6  ≤ P <1.0).  By  comparing  the
ranges of suitable distribution regions under current and
future  scenarios,  the  shifts  of  distribution  regions  were
obtained by mask extraction and then the Carex tussock
habitats were  divided  into  stable  region,  expanded  re-
gion  and  lost  region.  Finally,  we  calculated  the  habitat
areas (CTSi) by the following formula:

CTS i =
Ni

Ntotal
×S total (1)

where CTSi is the habitat area of Carex tussock, i is the
habitat category, Ni and Ntotal denote the pixel number of
habitat i and total study area, respectively, and Stotal de-
notes the total area of our study. 

3　Results
 

3.1　 Performance  of  Maxent  model  and  potential
distribution characteristics
Maxent model  performed  well  at  predicting  the  poten-
tial  spatial  distribution  of Carex tussock  wetland  with
AUC  values  of  0.861  (training  data)  and  0.891  (test
data) respectively (Fig. 2), which indicate ‘good’ (AUC =
0.8–0.9) model performance. The current potential spa-
tial distribution pattern (Fig. 3) indicates that the poten-
tial suitable habitats of Carex tussock are mainly distrib-
uted  in  the  Sanjiang  Plain,  Songnen  Plain,  Changbai
Mountains and Hinggan Mountains, with a total area of
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49.4  ×  104 km2.  The  high  suitable  region  is  about
5.7 × 104 km2,  accounting for 4.6% of the total  area of
Northeast  China,  which concentrated in Sanjiang Plain,
Changbai  Mountains  and  along  the  rivers  in  the
Songnen Plain, and sporadically distributed in Da Hing-
gan Mountains. 

3.2　Effect of the environmental factors
Based  on  the  Jackknife  module  of  Maxent  model,  the
contribution rate of environmental variables was tested,
and results  showed that  isothermality  (Bio3),  precipita-
tion seasonality (coefficient of variation) (Bio15) and el-
evation  had  greater  gains  on  the  prediction  results
(Fig.  4),  indicating  that  the  distribution  probability  of
Carex tussock was  sensitive  to  these  factors.  Further-
more,  the response curve of Carex tussock to main en-
vironmental  factors  exhibited  that  with  the  increase  of
Bio3 and Bio15, the presence probability of Carex tus-

sock decreased step by step. Additionally, the influence
of  elevation  is  shown  in Fig.  5,  which  indicates  that
Carex tussock would  prefer  lower  elevation  and  main-
tain  at  low  presence  probability  when  the  altitude  was
higher than 180 m. As the presence probability of Carex
tussock  ≥  0.6  represents  the  high  suitable  habitat,  the
Bio3  ranges  from  18.4  to  21.5,  the  Bio15  ranges  from
65.7 to 93.9, and the elevation is 23.5–107.1 m. 

3.3　 Spatial  distribution  pattern  of Carex tussock
wetland under climate change
Under different climatic scenarios, the high suitable and
moderate  suitable  habitats  of Carex tussock are  gener-
ally  consistent  with  the  current  distribution  pattern
(Fig.  6),  which  are  also  concentrated  in  the  Sanjiang
Plain,  and  relatively  scattered  in  the  Songnen  Plain,
Changbai Mountains and Da Hinggan Mountains, while
the  spatial  distribution  pattern  of  low  suitable  habitats
exhibit greatly changes. Besides, it is found that the area
changes  of  low  suitable  habitat  are  higher  than  that  of
the  moderate  and  high  suitable  habitat  (Fig.  7).  Under
RCP 2.6, the total suitable habitat of Carex tussock de-
creased by  18.2%  and  25.6%  in  2050s  and  2070s,  re-
spectively. Under RCP 4.5, the total suitable habitat had
a  slightly  increase  in  2050s,  while  it  was  significantly
decreased  in  2070s,  especially  the  low  suitable  habitat
decreased by  42.7%.  As  for  RCP  8.5  scenario,  the  re-
duction of moderate and high suitable habitats in 2050s
resulted in a decrease of 2.1% of the total suitable habit-
at. Although the moderate and high suitable habitats de-
creased in  2070s,  the  total  suitable  habitat  still  in-
creased  due  to  the  larger  area  and  increase  of  the  low
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suitable habitat (Fig. 7). 

3.4　Habitat stability analysis
The stable suitable habitats of Carex tussock are mainly
distributed  in  the  Sanjiang  Plain,  Songnen  Plain  and
Changbai Mountains in the future climate scenarios (ex-
cept for RCP 2.6 in 2070s) (Fig.  8),  which is generally
consistent  with  current  spatial  distribution  pattern.  In
addition,  the  area  of  stable  habitat  (29.98  ×  104−
41.75 ×104 km2) is  significantly higher than that  of ex-
paned region and lost region (Table 2, P < 0.01), indic-
ating that the potential suitable habitat of Carex tussock
is relatively stable.

In  the  future  climate  condition,  the  expanded/lost

habitats (i.e. unstable habitats) of Carex tussock mainly
distributed in  Da  Hinggan  Mountains  and  Xiao  Hing-
gan  Mountains.  Changbai  Mountains  also  exhibits  an
obvious  shrinking  trend  under  RCP  2.6  in  2070s.
Moreover,  the  largest  habitat  loss  occurred  in  RCP 4.5
in  2070s,  with  an  area  loss  of  19.53  ×  104 km2 and
wildly  distributed  in  Northeast  China.  And the  suitable
habitat  of Carex tussock  in  RCP 4.5  (2050s)  and  RCP
8.5  exhibit  more  obvious  expansion  than  that  in
RCP 2.6, and the expanded area can reach up to 9.5% of
the  total  area  of  Northeast  China  (Fig.  8, Table  2),
which  is  mainly  distributed  in  Da  Hinggan  Mountains
and Xiao Hinggan Mountains. 

4　Discussion

Maxent  model  has  great  applicability  in  prediction  of
wetland species distribution (Li et al., 2019b; Hu et al.,
2020; Liu  2020)  and  the  natural  reserve  construction
(Hunter et al., 2012; Wang et al., 2019c) with the AUC
value is 0.870–0.998. In this study, the model is used to
predict  the  potential  spatial  distribution  of Carex tus-
sock wetland, the AUC value is 0.8−0.9 and the predic-
tion results are consistent with the field observation, in-
dicating that the Maxent model provide a good perform-
ance. 

4.1　 Effects  of  environmental  variables  on Carex
tussock wetland distribution
The  presence  of  plant  composition  and  distribution  are
the  results  of  complex  interaction  of  physiological  and
ecology tolerances in response to bioclimate, soil, topo-
graphy, biology, etc.  (Bonin and Zedler, 2008; Van der
Putten et al.,  2010; Osland et al.,  2011; Saintilan et al.,
2014; Zhang  et  al.,  2020).  In  our  study,  the  Maxent
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model  shows  that  isothermality,  seasonal  precipitation
variation  and  elevation  are  the  main  environmental
factors  affecting  the  distribution  of Carex tussock
(Fig. 4).  The presence probability of Carex tussock ex-
hibited decreasing trend with the increase of isothermal
and seasonal  precipitation  variation.  This  was  consist-
ent with the research of Yao et al. (2011) and Hu et al.
(2020),  who  reported  that  the  temperature  affected  the
distribution of wetland plant the most, and rainfall could
determine  its  succession.  The  vertical  redistribution  of
water-heat conditions and the effect of altitude on water
availability of wetland plants affect the distribution pat-
tern of  plants.  However,  in  costal  wetland,  salt  and  ni-
trogen are  the  main  factors  affect  the  dominance  spe-

cies  distribution  (Zong  et  al.,  2017). Carex is  typical
freshwater wetland plant and its growth and distribution
are  influenced  by  wetland  water  conditions  (Lawrence
and  Zedler  et  al.,  2011; Zhang,  2017).  The  function
characters, physiological  processes  and  element  con-
tents  of Carex are significantly  different  under  fluctu-
ation  or  stable  hydrological  conditions  (Zhang  et  al.,
2019a; 2021). Compared with long-term drought, flood-
ing and water fluctuation are beneficial to the formation
of Carex tussock  (Lawrence  and  Zedler  et  al.,  2011).
Precipitation supplied freshwater and decreased salinity
(Hu et al., 2020) and was therefore improved soil water
conditions, which  could  increase  the  feasibility  of  res-
toration of degraded Carex tussock wetlands in semiar-
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Table 2    The shifts of potential suitable habitats of Carex tussock under future climate scenarios
 

Climate scenarios Year
Area /104 km2 Proportion of area / %

Stable Lost Expanded Stable Lost Expanded
RCP 2.6 2050s 36.24 13.27 4.25 29.2 10.7 3.4

2070s 32.45 17.06 4.36 26.1 13.7 3.5

RCP4.5 2050s 41.75 7.76 8.97 33.6 6.2 7.2

2070s 29.98 19.53 1.10 24.1 15.7 0.9

RCP 8.5 2050s 40.77 8.74 7.70 32.8 7.0 6.2

2070s 41.23 8.29 11.84 33.2 6.7 9.5

Notes: RCP 2.6, 4.5 and 8.5 refer to radiative forcing reaches 2.6 W/m2, 4.5 W/m2 and 8.5 W/m2 by 2100, respectively
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id areas (Wang et al., 2019c).
Generally,  methods  of  plant  distribution  modeling

mainly use climate, topography and soil variables in re-
gional  scale  studies  (Koncki  et  al.,  2015; Cao  et  al.,
2020; Hu  et  al.,  2020).  However,  the  distributions  of
wetland plant  species  are  also  affected  by  microtopo-
graphy, water depth and distance to open water surface
in  wetland  ecosystems  (Riis  et  al.,  2001; Gosejohan  et
al.,  2017; Lou  et  al.,  2018).  According  to  the  study  of
Lou et al. (2018), due to the different optima and niche
width, wetland plant species show different distribution
patterns according to the hydrological conditions.

Water  level  and  hydrological  fluctuation  period  are
important ecological factors affecting the formation and
development  of Carex tussock  (Zhang  et  al.,  2019a),
however  in  the  regional  study,  it  is  hardly  to  use  the
changes of  water  level  (centimeter  precision) as  an im-
portant  environmental  factor  in  the  construction  of  the
model since the grid resolution is usually in the range of
meters to kilometers. Besides, in this study, three groups
of environmental factors were integrated during model-
ing, including  bioclimate,  soil  properties  and  topo-
graphy, but did not consider the influence of human dis-
turbance on the spatial distribution of Carex tussock. In
the past 30 to 50 yr, human disturbance including farm-
land,  reclamation,  grazing,  cutting  and  burning  has  led
to  a  large  area  of Carex tussock  wetlands  degraded  or
disappeared in Northeast China (Pan et al., 2006; Mao et
al.,  2018; Zou  et  al.,  2018),  and  ditches  and  roads
blocked the  hydrological  connectivity  of  wetlands,  res-
ulting in the decline of ecological functions (Tong et al.,
2008).  The  destruction  of  hydrological  connectivity
caused by  human  activities  is  the  main  reason  that  af-
fects the spatial distribution of Grus leucogeranus (Liu,
2020).  Therefore,  in  the  study  of  small-scale  wetland
species  distribution,  it  would  be  significant  to  take  the
hydrological characteristic and human activity into con-
sideration during modeling. 

4.2　 Potential  distribution  and  habitat  stability  of
Carex tussock under climate change
Climate  change  is  expected  to  have  a  profound  impact
on  species  distribution,  richness  and  diversity  (Pecl  et
al.,  2017; Tilman  et  al.,  2017).  The  impact  of  global
warming on  species  habitats  is  uncertain.  Some  of  re-
searches have indicated that with the rise of global tem-

perature,  the  decreased  of  species  suitable  habitats  will
lead to an increase in risk of species extinction (Pearson
et  al.,  2014; Urban,  2015). However,  the  study  of  en-
dangered  wetland  species  distribution  in  low  latitude
shows that  species  habitat  shifts  have  the  trends  of  in-
crease and unstable (Cao et al., 2020). In this study, the
stable habitat is generally consistent with current spatial
distribution pattern (Fig. 8), and the stable habitat in the
future climate is significantly larger than the lost habitat
and  expanded  habitat  (Table  2).  Furthermore,  the
lost/expanded habitat is mainly the low suitable habitat,
while  the  moderate  and  high  suitable  habitats  fluctuate
in a small  range (Fig.  7),  indicating that  the Carex tus-
sock  habitat  is  relatively  stable.  This  may  result  from
the differences in ecological amplitude of species in dif-
ferent latitudes, many studies have confirmed that plant
in high latitudes and high elevations are more sensitive
to  temperature  rise  (Liu  et  al.,  2017; Thakur  and
Chawla,  2019),  resulting  in  differences  in  response  of
species habitat stability to climate warming.

Numerous evidences have suggested that  species  ad-
apt  to  global  warming  by  adjusting  their  physiological
and ecological characteristic (Walther et al., 2002; Men-
zel  et  al.,  2006; Shen et  al.,  2015) or migrating to high
latitudes  or  high  elevations  (Du  et  al.,  2018; Vetter  et
al.,  2018),  especially  in  alpine-plateau  ecosystems  and
polar-subpolar  ecosystems.  The  loss  and  expansion  of
Carex tussock wetland in high altitude and high latitude
is  the response of  plant  distribution to global  warming,
which  is  consistent  with  previous  studies  (Beckage  et
al.,  2008; Rabasa  et  al.,  2013; Jin  et  al.,  2018).  The
Carex tussock  habitats  have  an  obviously  trend  of
shrinks under RCP 2.6 and RCP 4.5, and the lost habit-
ats are mainly distributed in north of Da Hinggan Moun-
tains  and  Xiao  Hinggan  Mountains  and  Changbai
Mountains  (Fig.  8).  Additionally,  the  expansion  of
Carex tussock  is  more  prominent  in  medium  and  high
emission  scenarios,  and  expanded  habitats  are  mainly
distributed in  Da  Hinggan  Mountains  and  Xiao  Hing-
gan  Mountains,  which  indicates  that  the Carex tussock
wetlands  in  high  latitude  and  high  altitude  are  more
sensitive to climate change. 

4.3　Carex tussock wetland conservation
In recent  years,  with  the  strengthening  of  wetland  pro-
tection  in  China,  the  State  Forest  Administration,  the
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National Development and Reform Commission and the
Ministry of  Finance  jointly  issued  the  ‘National  Wet-
land Protection 13th five-year Plan’ to open up the com-
prehensive  protection  of  wetlands  (http://www.gov.cn/
xinwen/2017-04/20/content_5187584.htm).  In  addition,
with the  improvement  of  public  awareness  of  environ-
mental protection and the strengthening of scientific re-
search, wetlands  protection  and  restoration  are  gradu-
ally  deepening.  At  present,  wetland conservation teams
have  developed  a  series  of  restoration  techniques  for
Carex tussock wetland, including seed bank technology
(Wang et  al.,  2013; 2015),  hydro-regulatory techniques
(Wang et  al.,  2019b; Zhang  et  al.,  2019a)  and  rhizome
clonal propagation technology (Qi et al., 2021), which is
of  great  significance  for Carex tussock habitat  protec-
tion and restoration. And the guidance of national policy
will  help us to actively deal  with the impact  of  climate
change on wetland plant species in the future. 

5　Conclusions

Current  potential  suitable  habitat  of Carex tussock  is
about  49.4  ×  104 km2 in Northeast  China,  which  is
mainly distributed in the Sanjiang Plain, Songnen Plain,
Changbai  Mountains  and  Hinggan  Mountains.  High
suitable habitat of Carex tussock is about 5.7 ×104 km2,
concentrated in  the  Sanjiang  Plain,  Changbai  Moun-
tains  and  along  the  rivers  in  the  Songnen  Plain,  and
sporadically distributed in Da Hinggan Mountains.  Un-
der future climatic scenarios, the spatial distribution pat-
tern  is  generally  consistent  with  current,  the  moderate
and  high  suitable  habitats  are  also  concentrated  in  the
Sanjiang  Plain,  while  the  low  suitable  habitat  shifts
greatly.  Under  the  future  climate  scenario,  the  area  of
high, moderate and low suitable habitats are mainly re-
duced.  Isothermality,  seasonal  precipitation  variability
and altitude  are  the  main  environmental  factors  affect-
ing the distribution of Carex tussock wetland. The area
of stable habitat is obviously higher than that of the lost
and expanded habitat. And the lost and expanded habit-
ats mainly occur in Da Hinggan Mountains, Xiao Hing-
gan Mountains and Changbai Mountains, indicating that
Carex tussock wetlands  at  high  altitude  and  high  latit-
ude  are  more  sensitive  to  climate  change.  Therefore,
more attention should be invested in the habitat protec-
tion of Carex tussock at high latitude and high altitude.
This study revealed the potential distribution and ecolo-

gical  stability under climate change,  which is  reference
that  could  be  applied  to  sustainable  tussock  wetland
management.
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