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Abstract: Inspired by recent significant agricultural yield losses in the eastern China and a missing operational monitoring system, we
developed a comprehensive drought monitoring model to better understand the impact of individual key factors contributing to this is-
sue. The resulting model, the ‘Humidity calibrated Drought Condition Index’ (HcDCI) was applied for the years 2001 to 2019 in form of
a case study to Weihai County, Shandong Province in East China. Design and development are based on a linear combination of the Ve-
getation  Condition  Index  (VCI),  the  Temperature  Condition  Index  (TCI),  and  the  Rainfall  Condition  Index  (RCI)  using  multi-source
satellite data to create a basic Drought Condition Index (DCI). VCI and TCI were derived from MODIS (Moderate Resolution Imaging
Spectroradiometer) data,  while precipitation is taken from CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data)
data. For reasons of accuracy, the decisive coefficients were determined by the relative humidity of soils at depth of 10–20 cm of partic-
ular  areas collected by an agrometeorological  ground station.  The correlation between DCI and soil  humidity was optimized with the
factors of 0.53, 0.33, and 0.14 for VCI, TCI, and RCI, respectively. The model revealed, light agricultural droughts from 2003 to 2013
and in 2018, while more severe droughts occurred in 2001 and 2002, 2014–2017, and 2019. The droughts were most severe in January,
March, and December, and our findings coincide with historical records. The average temperature during 2012–2019 is 1°C higher than
that during the period 2001–2011 and the average precipitation during 2014–2019 is 192.77 mm less than that during 2008–2013. The
spatio-temporal accuracy of the HcDCI model was positively validated by correlation with agricultural crop yield quantities. The model
thus, demonstrates its capability to reveal drought periods in detail, its transferability to other regions and its usefulness to take future
measures.
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1　Introduction

The increase in the frequency of droughts in the past has
become a prominent  problem for  cultivation areas with
serious economic losses all  over the world.  As weather
extremes are expected to increase even further in the fu-

ture,  adapting  agriculture  to  climate  change,  especially
to higher temperatures and less precipitation, is crucial.
Droughts, a common hydrometeorological phenomenon
(Wardlow  et  al.,  2012),  cause  various  degrees  of  harm
to  the  social  economy.  A  severe  drought  will  not  only
significantly reduce  the  agricultural  yield,  but  also  af-
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fect people’s economic situation and lives. Drought is a
phenomenon that is difficult to quantify and analyze. It
has  no  unified  definition  and  no  clear  start  and  stop
signs. The  simplest  manifestation  is  that  the  precipita-
tion  is  less  than  the  normal  (West  et  al.,  2019). Tradi-
tional  drought  monitoring  methods  focus  on  site-based
measurements such as the Palmer Drought  Severity In-
dex  (PDSI)  (Palmer,  1965)  and  others.  The  calculation
of these indices mainly depends on the measured data of
precipitation  and  or  temperature  variations.  But  owing
to  the  usual  limited  number  of  meteorological  stations
and the typical uneven spatial distribution, especially in
high altitude and sparsely populated areas, the scale and
spatial  accuracy of  drought  studies  is  limited.  With  the
development  of  remote  sensing  technologies,  drought
monitoring methods have undergone a major transform-
ation. Using remotely sensed data acquired by aircraft or
satellite platforms can not only obtain diverse meteoro-
logical data, but also monitor the status and the proper-
ties  of  the  Earth’s  surface.  The  emerging  technologies
and  associated  methods  have  changed  the  scope  of
drought  monitoring,  improved  latency,  and  reduced
costs, thereby  allowing  us  to  make  efficient  observa-
tions on a larger space-time scale (Choi et al., 2013).

Meteorological  drought  is  often an early indicator  of
drought  disasters,  while  precipitation  monitoring  is
paramount  to  this  issue.  The  introduction  of  remote
sensing precipitation  products  has  changed  the  effi-
ciency and  spatial  and  temporal  coverage  of  precipita-
tion monitoring,  but  the  calculation  of  precipitation  in-
dices  requires  long-term  monitoring  data  such  as  the
Rainfall  Anomaly  Index  (RAI)  (Van  Rooy,  1965),  the
Standardized  Precipitation  Index  (SPI)  (McKee  et  al.,
1993),  or  the  Precipitation  Condition  Index  (PCI)
(Zhang et al., 2013). The temperature of the soil surface
or vegetation  canopy  affects  transpiration  and  evapo-
transpiration  and  hence  the  water  content  and  balance.
To detect  even  subtle  changes  in  the  surface  temperat-
ure,  the  wavelengths  of  the  thermal  infrared  are  well
suited. Commonly used thermal infrared models are: the
Crop Water Stress Index (CWSI) (Idso et al., 1981), the
Apparent Thermal Inertia (ATI) (Price, 1985), the Tem-
perature Condition Index (TCI) (Kogan, 1995a), and the
Normalized  Difference  Temperature  Index  (NDTI)
(McVicar  and  Jupp,  2002). Vegetation  is  another  im-
portant factor that has a strong influence on the develop-
ment of droughts. It is very sensitive to soil moisture, so

drought monitoring  can  be  conducted  indirectly  by  de-
tecting the occurrence, distribution and the status of vi-
tality of  vegetation.  Commonly used vegetation indices
are  the  Normalized  Difference  Vegetation  Index
(NDVI)  (Rouse  et  al.,  1974),  the  Enhanced  Vegetation
Index (EVI) (Huete et  al.,  1997), the Anomaly Vegeta-
tion  Index  (AVI)  (Chen  et  al.,  1994),  the  Vegetation
Condition Index (VCI) (Kogan,  1995b), and the Stand-
ard  Vegetation  Index (SVI)  (Qi  et  al.,  2004).  As  far  as
microwave remote  sensing  is  concerned,  the  measur-
able dielectric properties of soils are directly affected by
the moisture content.  Thus, a statistical function of soil
moisture  and  backscatter  coefficient  can  be  established
and the soil moisture can be retrieved from the backscat-
ter coefficient.

Owing to the limitation of a single indicator, many re-
searchers are  exploring  comprehensive  models  of  mul-
tiple  indicators  in  order  to  improve  the  accuracy  of
drought  monitoring.  Diverse  studies  have  shown  that
different  monitoring  indicators  and  sensors  have  their
specific  advantages  and  disadvantages.  Comprehensive
models  need  to  adjust  the  parameters  according  to  the
research  area,  while  the  regional  adaptability  is  weak.
Against  this  background,  Kogan  (2002)  proposed  the
Vegetation  Health  Index  (VHI),  a  weighted  average  of
VCI  and  TCI  that  significantly  improved  the  results
based on the independent NDVI. Sandholt et al.  (2002)
proposed  the  Temperature  Vegetation  Drought  Index
(TVDI) based on the empirical relationship between the
NDVI  and  Land  Surface  Temperature  (LST).  Du  et  al.
(2013)  proposed  a  Synthesized  Drought  Index  (SDI),
combining PCI,  TCI,  and  VCI,  in  tandem  with  a  prin-
cipal  component  analysis  to  comprehensively  evaluate
the lack of precipitation, soil water depletion, and veget-
ation  stress.  Rhee  et  al.  (2010)  combined  the  LST  and
NDVI  products  of  the  Medium  Resolution  Imaging
Spectrometer (MODIS) and the precipitation data of the
Tropical Rainfall  Measuring  Mission  (TRMM)  to  con-
struct  a  regional  Scaled  Drought  Condition  Index
(SDCI), that is suitable for arid and humid areas through
a linear weighted combination.

In  recent  years,  China  has  experienced  frequent
drought disasters throughout the entire country (Li et al.,
2015; Lu et al., 2018). Especially Weihai County, a dis-
trict in the eastern Shandong Province, faced increasing
drought periods that have become a severe problem for
the agricultural  crop  yield  and  the  economic  perform-
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ance in the area (Bureau of Statistics of Weihai,  2002–
2020).  In  order  to  understand  the  increasing  frequency
of drought periods in the Shandong Province and to be
able to take appropriate measures for the future, a trans-
ferable remote  sensing-based  monitoring  system  is  be-
ing designed  and  developed.  In  this  context,  we  de-
ployed  MOD11A1,  MOD13Q1,  and  CHIRPS  (Climate
Hazards Group InfraRed Precipitation with Station data)
data  to  calculate  VCI,  TCI  and  the  Rainfall  Condition
Index (RCI)  of  the  study  area.  Based  on  these  funda-
mental  indices,  we  developed  a  comprehensive  model,
the  ‘Humidity  calibrated  Drought  Condition  Index’
(HcDCI), where the 10–20 cm top soil moisture data of
an agrometeorological station were used to determine a
combination of  weight  coefficients  suitable  for  the  in-
vestigated area  and  the  cultivated  crops.  The  main  in-
novations of this approach can be found in the choice of
CHIRPS  precipitation  data  and  the  calibration  using
highly reliable  soil  moisture  data,  which has been real-
ized seldomly for drought model generation before. 

2　Materials and Methods
 

2.1　Study area
Weihai County is  a  prefecture-level  district  at  the  east-
ernmost edge of the Shandong Province, China, located
at  a  peninsula,  between  36°41′N  to  37°35′N,  121°11′E
to 122°42′E (Fig. 1). In the north, east, and the south, it
is bounded by the Yellow Sea. Weihai County is an ag-

gregation of  four  districts  of  mostly  non-urban  charac-
ter.  These  are:  Rushan,  Wendeng,  Rongcheng,  and
Huancui. The administrative capital is the town of Wei-
hai  located  at  the  north  coast  of  the  Huancui  District.
Weihai  County  extends  135  km  from  east  to  west  and
81  km  from  north  to  south,  and  it  has  a  coastline  of
986 km. The total  area covers about 5800 km2.  Weihai
County  is  a  hilly  area  with  relatively  gentle  terrains,
wide valleys, and low slopes with an average altitude of
63.13 m. The highest peak is the top peak of the Kunyu
Mountain, the Talang Peak located west of the Wendeng
District with an altitude of 922.8 m. Weihai County be-
longs  to  the  continental  climate  of  the  north  temperate
monsoon type that is usually characterized by abundant
preciptation and moderate annual temperatures. Most of
the  farmland  in  Weihai  County  is  rainfed  and  as  such
prone  to  drought  events  caused  by  uneven  distributed
precipitation, the more when temperatures are rising. As
the  entire  area  is  known  for  its  intensive  agricultural
activities,  drought  events  have  a  significant  impact  on
the crop yield and the economic development of the re-
gion.  A  regular  monitoring  of  the  affected  area  with  a
potential for reliable predictions can help to adjust to the
situation at an early stage. 

2.2　Data sources
This  study  is  based  on  the  use  and  analysis  of  multi-
source  remote  sensing  satellite  data,  including  MODIS
(Moderate  Resolution  Imaging  Spectroradiometer),
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CHIRPS, and Landsat data. All such data were obtained
from  the  Google  Earth  Engine  (GEE).  The  Moderate
Resolution  Imaging  Spectroradiometer  (MODIS)  was
developed  by  NASA  (National  Aeronautics  and  Space
Administration)  and  operates  from the  Terra  and  Aqua
satellite platforms.  It  provides  36  spectral  bands  ran-
ging from the visible to the thermal infrared, with medi-
um  GSDs  of  250–1000  m,  observing  the  Earth’s sur-
face every one or two d. MODIS data products include
three  main  types  of  land,  atmosphere  and  ocean,  and
many  standard  products.  For  our  study,  we  used
MOD11A1 version 006 (a global 1-km surface temper-
ature/emissivity L3 daily product) to derive the TCI, and
MOD13Q1 version  006 (a  global  250 m resolution  ve-
getation  index  16-d  synthetic  product)  to  deduce  the
VCI. The CHIRPS provides  gridded precipitation data-
sets  within  50°S  and  50°N.  The  rasterized  rain  time
series are created by a modeled combination of climato-
logy data, satellite imagery, and meteorological site data
for trend analysis and seasonal drought monitoring. The
data resolution is 0.05° and the time span extends from
January 1, 1981 to the present. Thus, we used long-term
multi-temporal datasets of CHIRPS to calculate the RCI.

When  developing  an  advanced  comprehensive  DCI
from the above-mentioned three indices, the major chal-
lenge  is  to  find  the  optimum  coefficients.  Although
many  researchers  mentioned  humidity  as  one  of  the
most important  parameters,  this  has  been  realized  sel-
domly for model generation. So, we focused on the soil-
relative  humidity  data  obtained  from  the  ‘10-day  data
set  of  crop  growth  and  development  and  farmland  soil
moisture  in  China’ of  the  China  Meteorological  Data
Network  (http://data.cma.cn)  to  calibrate  our  humidity
based comprehensive model HcDCI.

To  correlate  and  validate  the  CHIRPS  precipitation
data by the areal distribution and multi-temporal trends
of surface water, such as rivers and reservoirs in the in-
vestigated region, October recordings of the years 2001
to 2019 which were evaluated by Landsat 5 TM, Land-
sat  7  ETM+,  and  Landsat  8  OLI  with  a  GSD  of  30  m
and correlated with the accumulated precipitation meas-
ured  from  January  to  October.  The  model  output  was
further validated by detailed agricultural crop yield data
derived  from  the  Weihai  Statistical  Yearbook  (Bureau
of Statistics of Weihai, 2002–2020).

To  realize  the  automatic  batch  processing  of  the
Landsat datasets,  we  used  the  ENVI 5.5  modeler  func-

tion, and  the  administrative  boundary  vector  was  ana-
lyzed and  mapped  by  the  QGIS  software.  The  pro-
cessing of MODIS and CHIRPS data was mainly imple-
mented  by  use  of  the  Google  Earth  Engine  (GEE),  a
cloud-based  geospatial  processing  platform  that  can  be
used  for  the  analysis  of  the  global  environment.  The
Earth  Engine  API  supports  Python  and  JavaScript,  and
thus, it was utilized to perform the necessary geospatial
analysis. 

2.3　Information extraction for model generation 

2.3.1　Vegetation Condition Index (VCI)
Vegetation growth is closely related to the environment-
al  development.  The  density  and  vitality  of  vegetation
canopies  are  expressed  by  the  difference  in  reflectance
of  spectral  bands  placed  in  the  red  (RED)  and  near-in-
frared  (NIR) wavelengths  that  are  provided  by  numer-
ous  satellite  sensors  and  manifested  as  the  ‘red  edge’
phenomenon.  NDVI  reflects  the  presence,  density,  and
vitality of vegetation canopies and indirectly reflects the
environmental status. The lower the value of the NDVI
(scaled  between  0  and  1),  the  less  (vital)  vegetation  is
present (Rouse et al., 1974).

NDVI =
NIR−RED
NIR+RED

(1)

The Vegetation Condition Index (VCI) is used to ac-
count for the vegetation growth and health during a peri-
od  of  time  based  on  a  long-term  sequence  (Kogan,
1995b).  The  formula  to  calculate  the  monthly  scale
monitoring is as follows:

VCIi =
NDVIi−NDVImin

NDVImax−NDVImin
(2)

where  the NDVIi is  the  value  of  the NDVI for  the i-th
month of a certain year, and NDVImin and NDVImax rep-
resent the minimum and maximum values, respectively,
of  the  NDVI  for  the i-th month  of  many  years.  There-
fore, the lower the VCI, the worse the vegetation dens-
ity and vitality and the more severe the drought. 

2.3.2　Temperature Condition Index (TCI)
Land  Surface  Temperature  (LST),  recorded  by  the
MODIS  sensor,  corresponds  to  the  temperature  of  the
land surface, vegetation canopies,  or that of water bod-
ies.  It  is  derived  by  emitted  thermal  infrared  radiation.
With  rising  temperatures,  the  transpiration  of  the  soil
and the evapotranspiration of vegetated areas is intensi-
fied and the loss of water will increase. In this context,
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the  ‘Temperature  Condition  Index’ (TCI)  is  used  to
evaluate the  daytime  temperature  changes  of  land  sur-
faces during a long period (Kogan, 1995a). The formula
for monthly scale monitoring is as follows:

TCIi =
LS Tmax−LS Ti

LS Tmax−LS Tmin
(3)

where the LSTi is the value of the LST for the i-th month
of  a  certain  year,  and LSTmin and LSTmax represent  the
minimum  and  maximum  daytime  values,  respectively,
for  the i-th  month  of  the  selected  years.  Therefore,  the
lower  the  TCI,  the  higher  the  land  surface  temperature
and the more severe the influence on the drought issue. 

2.3.3　Rainfall Condition Index (RCI)
Precipitation data are the most important component of
drought  monitoring.  Most  scientists  use  normalized
TRMM data or the data of the follow-on GPM mission.
The  spatial  resolution  of  TRMM  data  is  0.25°,  that  of
GPM  is  0.1°,  and  CHIRPS  data  is  provided  at  0.05°
since 1981. For our purposes, we decided to rely on the
continuously  produced  and  provided  CHIRPS  data  to
benefit  from an improved spatial  resolution.  This study
normalized the CHIRPS data and used it to calculate the
RCI by the following formula:

RCIi =
CHIRPS i−CHIRPS min

CHIRPS max−CHIRPS min
(4)

where  the CHIRPSi is  the  value  of CHIRPS in  the i-th

month of a certain year, and CHIRPSmin and CHIRPSmax

represent the  minimum  and  maximum  values,  respect-
ively,  of  CHIRPS  for  the i-th  month  of  the  selected
years. Therefore, the smaller the RCI, the less the mon-
thly precipitation and the higher the risk for a drought. 

2.4　Generation of a comprehensive drought monit-
oring model
To  create  a  comprehensive  drought  model,  we  linearly
combined the three indices mentioned above—the VCI,
the TCI, and the RCI to construct a basic Drought Con-
dition Index (DCI) (Fig. 2).

DCI = a×VCI +b×TCI + c×RCI
a+b+ c = 1 and a,b,c ∈ (0,1) (5)

The essential  task here is  the determination of  relev-
ant  model  coefficients  (a, b,  and c).  Various  methods
have  already  been  used  to  determine  these  factors.
However, most of those methods afford loads of meas-
ured  field  data  and therefore  are  very  complex and not
easy to transfer to other regions. In our approach, we de-
vised a  less  complex,  but  robust,  reliable,  and transfer-
able solution including the possibility to model historic-
al data. We found the China Meteorological Administra-
tion  measures  and  used  the  10–20  cm  top  soil  relative
humidity  values  as  one  of  the  classification  standards
for droughts (General Administration of Quality Super-
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Fig. 2    Flowchart of the ‘Humidity calibrated Drought Condition Index’ (HcDCI) establishment based on a linear combination method.
VCI,  TCI,  RCI is  Vegetation Condition Index,  Temperature Condition Index,  Rainfall  Condition Index. CHIRPS is Climate Hazards
Group InfraRed Precipitation with Station data
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vision et al., 2017). The uptake of water and nutrients is
dependent on the penetration power of the roots. This is
usually measured in terms of root length per cubic centi-
meter of soil. For winter wheat, the 10–20 cm upper soil
layer has  the  highest  root  density  and  serves  for  effi-
cient use  of  mineral  nutrients  and  water  and  con-
sequently  reflects  the water  stress  of  the plants  and the
drought condition.  Thus,  we  used  the  soil-relative  hu-
midity values  of  the  China  Meteorological  Data  Net-
work (http://data.cma.cn) to determine the weight coef-
ficients for our model.

The soil  humidity  data  were  provided  from  an  agri-
cultural  station  in  Wendeng  (No. 54777).  The  time
range of available data reaches from June 1992 to June
2013, and each month was divided into the first, middle,
and last  10  d.  The  relative  humidity  of  the  soil  is  di-
vided into depths of 10, 20, 50, 70, and 100 cm. To cal-
ibrate  our  model,  the  humidity  of  the  soil  in  10  and
20 cm for each month (3 values) was averaged to get the
relative humidity  for  the  Wendeng  Station  from  Janu-
ary 2001 to June 2013. After removing all invalid data,
the  total  data  amount  was  summed up  to  135  mon.  To
calculate  the  model  coefficients,  a  farmland  closest  to
the  Wendeng  Station  was  selected.  Then  the  spatially
corresponding  satellite  data  of  this  farmland  area  are
used to  calculate  the  index  values  of  vegetation  condi-
tion VCI (a), temperature condition TCI (b), and precip-
itation condition RCI (c) were computed using the GEE
platform. The spatial resolutions of the respective data-
sets  MOD11A1  (1  km),  MOD13Q1  (250  m),  and
CHIRPS (0.05°) are different. GEE determines the scale
of the analysis by the output. The system automatically
uses the  nearest  neighbor  method  to  resample  the  im-
ages to the output resolution before calculation (https://
developers.google.com/earth-engine/guides/scale). To dr-
ive  the  factors  for  the  proposed  ‘Humidity  calibrated
Drought  Condition  Index’ model  (HcDCI), 4851 com-
binations of a, b, and c in steps of 0.01 were calculated
for 135 mon, respectively, to linearly fit the relative hu-
midity of soil. 

2.5　Methods of validation 

2.5.1　 Correlation of  precipitation,  station  measure-
ments and surface water area
For validation purposes, a correlation between precipita-
tion  data  from  CHIRPS  and  the  respective  water  area
was desired, although there are neither big rivers nor big

lakes in Weihai County. The main surface water-gather-
ing  areas  are  reservoirs  and  medium  as  well  as  small
rivers. With reference to the ‘Hydrological Information
Network’ (http://www.whsw.info) and  the  administrat-
ive  map  of  Weihai  County,  43  reservoirs  and  8  rivers
(parts  of  the  river  section)  were  selected  for  analysis.
The runoff is affected by the precipitation in the respect-
ive  season,  and  the  flow is  often  interrupted  in  the  dry
period. The largest rivers flow through all four districts.
These include the drainage area of the Muzhu River and
the Rushan River with more than 1000 km2. The overall
lengths of the Muzhu River,  the Rushan River,  and the
Huanglei River  is  more  than  60  km.  The  most  prom-
ising  time  to  gather  the  fluctuations  in  surface  water
levels turned out to be shortly after the main rainy sea-
son.  Thus,  Landsat  data  recorded  each  October  from
2000 to 2019 were selected, apart from the years 2011,
2016,  and  2018  due  to  a  lack  of  cloud  free  data.  Data
were atmospherically and radiometrically pre-processed,
and the outside border of the research area was masked.
Then an unsupervised classification approach was used
to calculate the area covered by water bodies. 

2.5.2　Correlation of HcDCI values with yield
The  most  significant  diagnostic  approach  to  prove  the
quality of the results  derived from our model is  to cor-
relate the drought events over a period of time with dif-
ferent  crop  subsequently  harvested.  To  correlate  the
HcDCI results  with  agricultural  yield  data,  we  consul-
ted  the  Weihai  Statistical  Yearbook  (Bureau of  Statist-
ics  of  Weihai,  2002–2020).  Quantitative  yield  data  for
the  years  2001–2018  are  available  as  area-related,  as
total yield, and as per square meter of crop (kg/m2). The
unit of production is given in tons. In different years, the
unit  of  area  is  provided  in  acres  and  hectares  that  we
converted  to  kg/m2.  In  most  years,  the  planting  area  of
grain crops reached between 60%–70% compared to ve-
getables and other crops. The yield per square meter of
grain is separated in those harvested in summer (mainly
winter  wheat  sown in  October)  and others  harvested in
autumn  (mainly  corn  and  peanuts  sown  in  June).  We
used both the data of summer and fall harvests for cor-
relation with the HcDCI. 

3　Results
 

3.1　NDVI/VCI development and trend
The inter-annual development of the NDVI is displayed
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in Fig. 3a. From 2001 to 2019, the average value of the
NDVI  of  Weihai  County  was  0.3822.  The  minimum
value of 0.3518 shows up in 2001, while the maximum
value  of 0.4092 was  measured  in  2018.  The  general
trend in the investigated time period was increasing. The
linear  fitting  formula  is y =  0.001x +  0.365,  and  the r
value (correlation coefficient) results in 0.6626.

The spatial distribution of the averaged NDVI values
is shown in Fig. 3b. The derived VCI values in August
2019 expectedly  depict  a  similar  scheme,  that  is  dis-
played in Fig. 3c. 

3.2　Temperature development and trend
The inter-annual  changes of  the temperature are shown
in Fig.  4a.  The  annual  average  temperature  of  Weihai
County  continued  to  rise  slightly  from  2012  to  2019.
This  can  be  attributed  to  global  warming  with  a  minor
contribution of  urban  sprawl.  The  annual  average  tem-
perature during the past eight years was 13.57°C, about
1°C  higher  than  during  the  averaged  time  period  from
2001  to  2011.  The  average  temperature  during  2001–
2019 was 12.96°C. The average temperature at daytime
resulted  to  19.44°C,  while  the  average  temperature  at
night  was  6.47°C.  The  average  temperature  difference
between day and night was 12.97°C.

The  spatial  distribution  of  averaged  day  and  night
LSTs is shown in Figs. 4b and 4c. The temperatures of

forest, coastal,  and inland waters are lower during day-
time, and higher during nighttime. The temperature dif-
ferences  between day and night  in  the  Rushan area  are
larger  than  those  in  the  other  three  districts. Fig.  4d
shows the TCI in August 2019 calculated from daytime
temperatures (Fig. 4b). 

3.3　Precipitation changes and trend
The  inter-annual  changes  of  precipitation  are  given  in
Fig.  5a,  indicating significant  fluctuations.  The average
value  of  precipitation  in  19  yr  was  719.80  mm/yr.  The
minimum  value  of  507.95  mm  showed  up  in  2002,
while the maximum value of 956.02 mm was measured
in  2007.  The  precipitation  rate  in  the  past  six  years
(2014–2019)  was  lower  than  that  the  years  before.  It
shows an average value of 615.53 mm, indicating a de-
crease  of  192.77  mm from 808.29  mm in  the  previous
six  years  (2008–2013). Precipitation  is  mostly  concen-
trated in July and August,  reaching 48.58% of the total
year. There are seven months with less than 40 mm pre-
ciptationl,  including  less  than  20  mm  preciptationin
January, February, and March.

The  spatial  variations  of  average  precipitation  are
shown in Fig.  5b.  The  precipitation  in  Weihai  shows  a
significant decreasing trend from southwest to northeast
with certain  spatial  differences.  The  average  precipita-
tion in the north of Rongcheng is about 650 mm, while
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the average precipitation in the west of Rushan is about
800 mm. Fig. 5c displays the RCI in August 2019 calcu-
lated from the respective precipitation data. 

3.4　HcDCI, relative humidity and drought levels
First the variables VCI, TCI, and RCI are combined to a
basic  DCI  that  shows  a  significant  positive  correlation
with the 10–20 cm top soil relative humidity. Hence, we
determined  the  respective  coefficients  for  the  model
based on the given humidity data. The correlation coef-
ficient turns out to be highest at 0.6710, when VCI, TCI,
and  RCI  are  0.53,  0.33,  and  0.14  respectively  (P <
0.01). The fitting effect with this combination of coeffi-
cients is given in Fig. 6.

The  corresponding  relationship  between  the  relative
humidity  values  of  the  10–20  cm  top  soil  and  the
drought levels is proposed in grades used for meteorolo-
gical  droughts  (General Administration  of  Quality  Su-
pervision et al., 2017). The corresponding HcDCI levels
are calculated by the linear fitting formula y = 0.008x –
0.056, and the results are shown in Table 1. 

3.5　 Spatio-temporal  distribution  and  strength  of
droughts
The general  agricultural  drought  development  in  Wei-

hai  County,  as  modeled  by  the  HcDCI,  reveals  no  to
light droughts during the time period 2003 till 2013, and
in  2018.  It  also  uncovers  light  to  severe  droughts  in
2001 and 2002, from 2014 to 2017, and in 2019 (Fig. 7).
The modeled data coincides with available historical re-
cords.  Furthermore,  it  is  obvious  that  severe  droughts
occurred in a well-balanced way throughout all the four
quarters of  the  respective  years  and  increased  signific-
antly since 2014, with the sole exception of 2018.

The  spatial  distribution  of  droughts  (averaged  per
year) in Weihai County from 2001 to 2019 is shown in
Fig.  8.  The  occurrence  of  droughts  is  random  with  no
focus  at  a  specific  district  or  area.  In  2001,  light  and
severe  droughts  transpired  throughout  the  investigated
area,  with  most  severe  droughts  in  the  Rongcheng  and
Rushan areas.  In 2002,  the drought  situation eased,  but
it  still  remained  severe  in  the  Rushan  District.  A small
drought  occurred in  2004 with  a  more severe  character
in  Rushan.  In  2006,  2007,  and  2009,  small-scale,  light
droughts arose with a relatively scattered distribution. In
2014, 2015, and 2016, medium-sized droughts occurred
throughout the four districts of Weihai County. In 2014,
droughts  concentrated  in  Huancui  and  Rongcheng,
while Rushan  and  West-Wendeng  faced  the  same  situ-
ation  in  2015.  In  2017,  Huancui,  Rongcheng,  and
Wendeng  experienced  light  to  moderate  droughts,  but
there  was  no  large-scale  drought  in  Rushan.  In  2019,
light  droughts  occurred  throughout  the  four  districts,
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Table 1    Criteria for drought classification
 

Level Relative humidity HcDCI Drought level

1 >60 >0.424 No

2 50–60 0.344–0.424  Light

3 40–50 0.264–0.344 Moderate

4 30–40 0.184–0.264 Severe

5 <30 <0.184 Extreme

Note: HcDCI: ‘Humidity calibrated Drought Condition Index’
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while moderate droughts emerged in the northern part of
Huancui, South-Rongcheng, South-Wendeng and South-
Rushan. Table 2 displays the relative proportions of drou-
ght levels for the entire investigated area and time period.

The  monthly  changes  in  drought  levels  are  realized
by  averaging  the  HcDCIs  of  all  months  from  2001  to
2019  (Fig.  9). Data  show  that  from  2001  to  2019  re-
peated  droughts  occurred,  with  emphasis  on  January,
March,  November,  and  December  for  the  entire  area.
The  months  of  relatively  obvious,  but  more  scattered
drought  events  in  various  districts  are:  April  and

September  in  Huancui,  September  in  Rongcheng,  July
and September in Wendeng, and February and October
in Rushan.

The  range  of  the  drought  level  reaches  from  about
0.38  to  0.51.  The  droughts  in  January,  March,  and
December  are  more  severe,  and  those  happened  from
September to December continue to intensify with a ma-
jor strength in spring and winter. 

3.6　Validation of results
The accuracy of  the developed model  is  primarily con-
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trolled by the precipitation data and the availability and
quality of the measured and archived humidity data. The
remaining  inputs,  such  as  VCI  and  TCI,  are  from their
nature data  sources  with  very  high  confidence.  There-
fore,  we  focused  the  validation  procedures  on  the  RCI
model  input  concerning  the  used  CHIRPS  estimates  in
relation to precipitation measurements of ground station
data  and  to  the  extension  of  surface  water  areas,  while
the model  output  was  compared  to  the  statistical  re-
cords of the respective agricultural crop yields. 

3.6.1　CHIRPS values related to station data and the
surface water area
To validate the accuracy of CHIRPS data, we first com-
pared them  to  the  local  measurements  of  ground  sta-

tions in Weihai County. Then, we further matched them
with  the  expansion  of  the  surface  water  area  derived
from  high-resolution  optical  satellite  data.  The  area
covered  by  surface  water  varies  greatly  over  the  years
with  a  maximum difference  of  38.68  km2. The  minim-
um  value  of  the  surface  water  area  appeared  in  2000,
while the maximum value is exposed in 2007. The sur-
face  water  area  in  2000  accounted  for  only  30.37%  in
2007.  The variations in  the individual  districts  are  well
balanced,  although  the  Wendeng  District  faced  the
strongest  reduction  of  the  surface  water  area  by  about
25% since 2015.

According to the analysis  of  the ground station data,
provided by the Statistical Yearbook of Weihai (Bureau

 
Table 2    Proportion of drought areas at various levels in drought years in Weihai County, Shandong Province, China / %
 

Year
Drought Level

Disaster proportion
No drought Light drought Moderate drought Severe drought Extreme drought

2001 13.4413 52.8318 30.8264 2.8899 0.0106 86.5587

2002 36.7414 54.1438 9.0687 0.0376 0.0084 63.2586

2004 85.5812 14.0230 0.3726 0.0102 0.0131 14.4188

2006 94.2493 5.6475 0.0889 0.0095 0.0048 5.7507

2007 95.2890 4.6270 0.0775 0.0028 0.0037 4.7110

2009 88.6485 11.2261 0.1126 0.0124 0.0004 11.3515

2014 52.6272 42.4350 4.7637 0.1642 0.0099 47.3728

2015 38.2693 47.7612 13.5148 0.4424 0.0123 61.7307

2016 42.8918 49.1723 7.6901 0.2380 0.0078 57.1082

2017 56.0192 35.6063 7.7936 0.5614 0.0195 43.9808

2019 38.9641 43.8469 15.8805 1.2982 0.0103 61.0359
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of Statistics of Weihai, 2002–2020), the average precip-
itation  in  Weihai  County  reached 1124.2 mm  in  2007.
This was the highest value ever recorded. From January
to October 2019, the cumulative precipitation in Weihai
County reached 371.3 mm, that was 42.4% less than the
preciptation  in  the  same  season  the  year  before  and
47.0% less than during the same season in many years.

To  be  able  to  compare  CHIRPS  data  and  ground-
measured  precipitation  data  with  the  recorded  surface
water  area,  the  cumulative  precipitation  from  January
till  October  was  calculated  for  each  year  from 2001  to
2019 for all data sources. Fig. 10 displays the cumulat-
ive  precipitation  provided  by  CHIRPS  and  the  ground
stations  in  combination  with  a  line  chart,  marking  the
surface water  area.  The trends of  precipitation and sur-
face water area are significantly similar, although the il-
lustration  exhibits  some  minor  discrepancies  in  detail.
CHIRPS  data  of  the  years  2009  and  2013  do  not  well
match the overall  trend function of  stationary measure-
ments  and  the  surface  water  area.  Furthermore,  the

ground  stations  display  a  slightly  higher  preciptation
amount  in  contrast  to  the CHIRPS data  during the first
half  of  the  entire  time  period,  with  an  opposite  trend
during the second half. In this context, it can be suspec-
ted that  CHIRPS  did  not  manage  to  download  the  sta-
tion data in China routinely.

The linear fitting result based on two sources of pre-
cipitation  data  and the  surface  water  area  are  shown in
Fig.  11.  The correlation  coefficient  between the  station
measurements and the surface water area is strongest at
0.7664 (P < 0.01). The correlation coefficients between
the CHIRPS data and the variables ‘station-precipitation’
and  ‘surface  water  area’ are of  high  to  moderate  de-
grees  and can be considered as  a  reliable  magnitude of
association. Additionally, we correlated the surface wa-
ter area acquired every year in October with the HcDCI
calculated for the third quarter of each year. The correl-
ation coefficient resulted to 0.6504 (P < 0.01) from which
can  be  deduced  that  the  statistical  results  between  the
HcDCI and the surface water area have certain credibility. 
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3.6.2　HcDCI values  related  to  the  achieved  agricul-
tural yield
To  further  validate  the  accuracy  of  the  developed
HcDCI,  the  calculated  varying  drought  indices  were
correlated with the amount of grain yield data achieved.
The Weihai Statistical Yearbook (Bureau of Statistics of
Weihai,  2002–2020)  provides  the  total  yield  area,  total
yield, and the yield per square meter for different crops
from  2001  till  2019.  The  crop  yield  data  is  partitioned
into grown  crops  such  as  grain  crops,  peanuts,  veget-
ables,  medicinal  materials,  and  melons,  among  others,
where grain crops (winter  wheat  and corn) cover about
65% of  the  agricultural  fields.  To  examine  the  correla-
tion  between  the  HcDCI  and  the  crop  yield  of  winter
wheat  and  corn,  we  used  two  different  inputs
(Figs. 12a–12d). One was realized by correlating the re-
spective yield with the drought indices of the two previ-
ous quarters  of  the  year  before  harvesting.  This  coin-
cides with the jointing, heading, and filling stages of the
grain crops. This is also the critical period of water de-
mand. In a second attempt, the yield of both crop types
was  correlated  with  the  HcDCI  of  the  entire  growth
period. Both  approaches  for  the  distinct  crop  types  ex-
hibit a significant coherency, where the results based on
the  two  preceding  months  of  the  HcDCI  perform  best
and winter wheat performs better than corn. All calcula-
tions  passed  the  significance  test  (P < 0.01)  and  ap-
proved the HcDCI to be a useful tool for drought monit-
oring in rainfed agricultural areas. 

4　Discussion

As far as the primary inputs of our model are concerned,
all  variables  are  characterized  by  a  high  confidence.
This is especially true for the TCI and VCI, as those are
synoptically  recorded  by  satellite  sensors  since  many
years with an accuracy not measurable in such areal de-
tail by ground stations. However, the VCI is not classi-
fied with reference to distinct crop types but to the dens-
ity and the state of vitality of vegetation. Therefore, un-
certainties  may  arise  if  there  are  no  monocultures  but
the  presence  of  additional  crops,  such  as  vegetables,
peanuts and more. Their specific spectral reflectance ad-
ditionally modifies  the  NDVI  and,  thus,  the  VCI  com-
ponent, but they are not considered concerning the crop
yield. This  issue  is  especially  true  for  the  summer  cul-
tivation  of  corn,  that  depicts  a  lower  correlation  to  the
HcDCI values than the winter wheat. Besides, the vary-

ing drought tolerances of  each crop in different  growth
stages, along with possible scattered infections and a se-
lective  fertilization,  are  also  not  considered  so  far.
Moreover, though Weihai County is dominated by rain-
fed agriculture, some regions rely on irrigation schemes
that may change in space and time and can further neg-
atively affect  the  results.  In  this  context,  further  at-
tempts  have  to  be  made  in  the  future  to  include  crop
type, fertilization and irrigation schemes to improve the
validation procedure and the accuracy of results.

For the validation based on crop yield, we faced toler-
able  constraints  concerning  the  respective  method  of
how yield data had been collected. In our case, the sur-
vey method changed in 2014 from where the quantitat-
ive yield data is consistent in itself, but it is not compar-
able to the data of previous years. Before 2014, the res-
ults of the areas under cultivation were reported by loc-
al  yields  on  the  village,  town,  and  county  levels.  After
2014,  data  were obtained by statisticians  through UAV
(Unmanned  Aerial  Vehicle)  or  satellite  data.  Since  the
amount of crop yield data, especially of the years 2014
and  2015,  could  not  be  explained  in  the  context  to
former harvests, we used the crop yield data from 2001
to 2013 for the validation.

The  third  input  variable,  the  RCI  is  the  most  critical
of  all.  Ground station data  are  highly  accurate  but  lack
area-covering measurements. TRMM and CHIRPS data
from  satellite  recordings  are  quite  reliable,  and  offer  a
reasonable accuracy, whereby CHIRPS data benefit of a
merge  with  ground  measurements  (Funk  et  al.,  2015).
Although,  our  validation  approach  with  the  varying
areal coverage of surface waters such as rivers and lakes
resulted  in  an  acceptable  correlation  with  CHIRPS and
local ground measurements, there cannot be a linear re-
lationship due  to  naturally  varying  slope  angles  of  ri-
verbanks and lakeshores. Including bathymetric data for
the region of interest might improve the validation pro-
cedure  and  consecutively  offer  more  confidence  in  the
RCI  input  variable.  A  further  improvement  might  be
feasible  by  using  microwave  data  from  recently
launched satellite sensors which can deeper penetrate in-
to the  soils  than  optical  sensors  and  thus,  provide  fre-
quent  synoptic  measurements  of  soil  moisture  (Sawada
et  al.,  2019; Zhang et  al.,  2019).  The core challenge of
our  drought  model  is  the  determination  of  the  weight
coefficients for the basic inputs VCI, TCI, and RCI and
the choice of the calibration method. As many research-
ers consider soil humidity as one of the most important
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variables  for  drought  monitoring  (Eswar  et  al.,  2018;
Sazib et al.,  2018; Mladenova et al.,  2020), we decided
to  establish  the  model  coefficients  based  on  locally
measured  humidity  data.  Apart  from  minor  constraints
in  model  generation  and  validation,  the  integration  of

soil humidity values for model calibration turned out to
be very reasonable and successful. Those data are most
confident,  are  available  in  most  countries  and  control
the reliability and accuracy of the model and the corres-
ponding  results.  Possible  improvements  in  this  context
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Fig. 12    Correlation and relationship between the total yield of summer (winter wheat) and fall (corn) with the HcDCI calculated for
different quarters of the year from 2001 to 2013 in Weihai County. Summer harvest and HcDCI of the 1st and 2nd quarter of the year (a,
e) and the entire growth period (b, f). Fall harvest and HcDCI of the 2nd and 3rd quarter of the year (c, g) and the entire growth period
(d, h)
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may  be  achievable  by  choosing  the  optimum  depth
where  humidity  data  are  measured  to  precisely  adapt
these  levels  to  the  root  level  of  the  respective  crops
(Menge  et  al.,  2016).  Although,  ground  measurements
of soil humidity data are available in many countries, re-
spective stations are often widely scattered and data are
measured rather infrequently. Therefore, we also calcu-
lated the respective coefficients  between HcDCI (using
Wendeng station data to determine the coefficients) and
the  humidity  of  stations  in  Fushan  and  Laiyang  which
are  located  outside  Weihai  County  in  the  neighboring
Yantai  District.  The results  turned out  to  be reasonable
with coefficients of 0.4438 and 0.3619 along with a P <
0.01,  but  the  accuracy  decreased  seriously.  Hence,  the
transferability  of  the  model  is  given  as  compared  to
principal  component  (PCA)  and  neural  network  (NN)
approaches (Kaur and Sood, 2020; Kim et al., 2021), but
measurements of  the  closest  local  database  are  abso-
lutely favored for calibration purposes. 

5　Conclusions

In order  to  confirm  and  analyze  the  worldwide  in-
creased occurrence of droughts in the eastern China, we
have  developed  a  comprehensive  modeling  approach
based  on  remotely  recorded  satellite  data  from 2001 to
2019. This was realized with the help of distinct indices
that were calculated from MODIS satellite data and the
CHIRPS system.  The  three  most  influential  factors  de-
termined  are  the  vitality  and  distribution  of  vegetation
(VCI), the localities and level of land surface temperat-
ures (TCI)  and  the  distribution  and  level  of  precipita-
tion (RCI). It was found that the annual average temper-
ature  of  Weihai  County  continuously  raised  from 2012
to 2019 what can be attributed to global warming with a
minor contribution of urban sprawl. The general trend of
the VCI based on the NDVI was also increasing in the
investigated  time  period  while  the  precipitation  index
(RCI)  showed  no  trend  but  varied  significantly  from
year to  year.  Higher  precipitation  is  mostly  concen-
trated  in  July  and  August,  while  in  January,  February,
and  March  the  preciptation  is  less  than  20  mm.  These
three  variables  VCI,  TCI,  and  RCI  are  combined  to  a
basic  DCI  that  shows  a  significant  positive  correlation
with  the  10–20 cm top soil  relative  humidity  measured
by an agrometeorological ground station and, thus, was
consequently used  to  determine  the  respective  coeffi-
cients  for  our  model.  The  corresponding  HcDCI  (Hu-

midity  calibrated  DCI)  levels  are  given  in  grades  used
for  meteorological  droughts.  The  new  model  was  then
applied  to  the  Weihai  County  region  characterized  by
huge  areas  of  rainfed  agriculture.  The  occurrence  of
droughts turned out to be random with no focus at a spe-
cific district  or  area.  Light  and  severe  droughts  tran-
spired throughout  the  investigated  area  most  signific-
antly  in  2001  and  2002,  2014–2017, and  2019.  Re-
peated  droughts  occurred  with  emphasis  on  January,
March, and December for the entire area.

The  thoroughly  accomplished  validation  procedures
revealed the newly developed model  as  sufficiently ac-
curate when using three basic indices as input variables,
especially  CHIRPS  data  for  precipitation  and  ground
based humidity data for calibration. Therefore, in the fu-
ture, the developed HcDCI will  be used for operational
monitoring  of  agricultural  droughts  in  Weihai  County,
Shandong Province,  China.  We  conclude  that  the  de-
veloped ‘Humidity calibrated Drought Condition Index’
and  its  findings  provide  clear  quantitative  evidence  of
its robustness  and  applicability  for  monitoring  agricul-
tural  drought  events,  offers  forecasting  options,  and
helps to contribute to the understanding of  a  respective
ecological status and its evolution.

The validation of the derived results was a most chal-
lenging  issue.  Concerning  uncertainties  with  the
CHIRPS data we correlated them with the ground-meas-
ured cumulative precipitation from January till  October
and the  surface  water  area  recorded  by  Landsat  satel-
lites. The correlation coefficients are of high to moder-
ate degrees  and  can  be  considered  as  a  reliable  mag-
nitude of  association.  The  same  is  true  for  the  correla-
tion of the surface water area acquired every year in Oc-
tober with the HcDCI calculated for the third quarter of
each  year.  The  accuracy  of  the  developed  HcDCI  was
further  positively  validated  by  correlating  the  varying
drought  indices  with  the  amount  of  winter  wheat  and
corn yield.
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