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Abstract: The value of the high-resolution data lies in the high-precision information discovery. The fine-detailed landform element ex-
traction  is  thus  the  basis  of  high-fidelity  application  of  the  high-resolution  digital  elevation  models  (DEMs).  However,  the  results  of
landform element extraction generated by classical methods might be ungrounded on high-resolution DEMs. This paper presents our re-
search on using the aspect to reinforce the applicability and robustness of the classical approaches in landform element extraction. First,
according to the research of pattern recognition, we assume that aspect-enhanced landform representation is robust to rotation, scaling
and affine variance. To testify the role of aspect, we respectively integrated the aspect into three classical approaches: mean curvature-
based fuzzy classification, elevation-based feature descriptor, and object-based segmentation. In the experiment, based on four types of
high-resolution DEMs (1 m, 2 m, 4 m and 8 m),  we compare each classical  approaches and their  corresponding aspect-enhanced ap-
proaches based on extracting the rims of two craters having different landforms, and the ridgelines and valleylines of a region covered
by few vegetables and man-made buildings. In comparison to the results generated by curvature-based fuzzy classification, the aspect
enhanced curvature-based fuzzy classification can effectively filter a number of noises outperforms the curvature-based one. Otherwise,
the aspect-enhanced feature descriptor can detect more landform elements than the elevation-based feature descriptor. Moreover, the as-
pect-based segmentation can detect the main structure of landform, while the boundaries segmented by classical approaches are messing
and meaningless. The systematic experiments on meter-level resolution DEMs proved that the aspect in topography could effectively to
improve the  classical  method-system,  including  fuzzy-based  classification,  feature  descriptors-based  detection  and  object-based  seg-
mentation. The value of aspect is significantly great to be worthy of attentions in landform representation.
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1　Introduction

Digital  elevation  model  (DEM)  is  an  important  data

product to characterize the three-dimensional represent-
ation  of  landforms.  Currently,  massive  multi-resolution
DEMs were made available for public use thanks for the

 
Received date: 2020-12-18; accepted date: 2021-04-08
Foundation item: Under  the  auspices  of  Priority  Academic  Program  Development  of  Jiangsu  Higher  Education  Institutions  (No.

140119001), Science & Technology Department of Liaoning Province (No. 20180550831)
Corresponding author: ZHOU Xiran. E-mail: xrzhou@cumt.edu.cn
© Science  Press,  Northeast  Institute  of  Geography  and  Agroecology,  CAS  and  Springer-Verlag  GmbH  Germany,  part  of  Springer

Nature 2021 

 

Chin. Geogra. Sci. 2021 Vol. 31 No. 5 pp. 915−930
https://doi.org/10.1007/s11769-021-1233-5

  Springer      Science Press 
 www.springerlink.com/content/1002-0063

 

mailto:xrzhou@cumt.edu.cn


progress  of  earth  observation  techniques  (Liu,  2008;
Deilami  and  Hashim,  2011; Rossi  et  al.,  2012; Tao  et
al., 2012; Tarolli and Sofia, 2016; Arundel et al., 2018;
Yang et al., 2019). Since the boundaries of landform are
impossible  to  be  accurately  determined  (Evans,  2012),
many criteria and classification systems regarding land-
form element have been proposed by measuring the dis-
tance in surface and elevation from DEM, such as clas-
sification of  form elements  (Dikau,  1989), morphomet-
ric  features  classes  (Wood,  1996),  rule  base  of  15  unit
landform classification (MacMillan et al., 2000), classi-
fication  of  15  landform  elements  based  on  local  slope
and  curvature  (Schmidt  and  Hewitt,  2004),  landform
classes  based  on  multiple  types  of  curvature  (MacMil-
lan and Shary, 2009), Shary’s complete system of clas-
sification, morphometric features classification based on
slope  categories  (Ehsani  and  Quiel,  2008),  10  most
common  landform  elements  (Jasiewicz  and  Stepinski,
2013).  Landform element  has  become the  critical  units
for landform characterization.

Currently,  high  resolutions  DEMs,  especially  very-
high  resolution  DEMs,  provide  great  support  for  fine-
detailed  landforms  element  extraction,  which  would  be
critical for recording land surface. In order to automatic-
ally  and  quickly  extract  landform  elements,  elevation
and its derivatives including curvature, slope, hillshade,
aspect, etc.  have  been  used  as  the  parameters  (Drăguţ
and  Eisank,  2011; Jasiewicz  and  Stepinski,  2013; Zhu
et  al.,  2014; 2019; Qian  et  al,  2016).  The  techniques
proposed  by  these  works  include  edge  detection,  fuzzy
classification (Drăguţ and Blaschke,  2006; van Asselen
and  Seijmonsbergen,  2006),  object-based  segmentation
(Drăguţ  and Blaschke,  2006; Drăguţ  and Eisank,  2011;
Romstad  and  Etzelmüller,  2012),  hydrological  analysis
(Chaplot  et  al.,  2006; Murphy  et  al.,  2008),  feature
descriptor  (Jasiewicz  and Stepinski,  2013),  and  applied
data of elevation, curvature and/or slope.

However, the complicated and fine-detailed land sur-
faces  are  represented  significantly  different  between
moderate  or  low-resolution  and  high-resolution  DEMs.
There includes ‘less noise’ and the land surface is much
smoother  in  such  data  (Tarolli,  2014; Liu  et  al.,  2017;
Szypuła,  2019). Although  the  existing  methods  regard-
ing landform element extraction, such as fuzzy classific-
ation,  feature  descriptor  and  object  segmentation,  are
suitable  for  medium-  or  low-resolution  DEMs,  they
might  perform  weakly  in  noisy  background  when  the

surface details are obtained from high-resolution DEMs.
For example, when the details of land surface are avail-
able from high-resolution DEMs (i.e., rocks, trees, small-
scale hillsides and creeks), artificial substances and oth-
er  irrelevant  terrain objects  might be seen on two sides
of  a  ridge  or  a  valley,  making both  ridgeline/valleyline
and all these irrelevant features be extracted.

Although curvature is an important derivative of elev-
ation widely  being  used  for  landform  element  extrac-
tion  (Schmidt  and  Andrew,  2005; Pirotti  and  Tarolli,
2010; Romstad and Etzelmüller,  2012),  it  might  not  be
proficient in high-resolution DEMs (Zhou et al.,  2019).
A recently-published work found that landform element
extraction by these classical approaches could vary sig-
nificantly between moderate-resolution and high-resolu-
tion DEMs. Otherwise, aspect or direction, is viewed as
an  important  element  in  image  processing  and  pattern
recognition.  In comparison,  the aspect  in topography is
defined as slope direction in some literature,  which de-
scribes the downslope direction, or the direction toward
which the stream flows on a land surface.

The reported  findings  inspire  us  continuing  a  re-
search to explore the applicability and robustness of the
aspect  in  landform  element  extraction  on  high-resolu-
tion DEMs. First, we present the study data and our pre-
sumptions regarding aspect for landform representation.
Then, we generate the models of three classical method-
system  including  fuzzy-based  classification,  feature
descriptors and object-based segmentation. Based on the
study  data,  we  design  several  experiments  to  visually
showed, quantitatively compared, and discussed the res-
ults  of  landform  element  extraction  by  three  classical
method-system,  and  their  corresponding  aspect-en-
hanced  approaches.  All  experimental  results  could  be
used to test the effectiveness of aspect in improving the
results of landform element extraction. 

2　Study Area and Data
 

2.1　Study area
Fig. 1 uses topographic maps with contour lines to illus-
trate  three  study  areas  in  America. Fig.  1A shows  the
first study area—the Meteor Crater and its surrounding
areas. Meteor Crater locates in the northern Arizona. In
this  crater,  the  elevation  of  rims  is  relatively  similar,
composing  as  a  circular-like  crater.  Meteor  Crater  is
about 1720 m in average elevation and around 1200 m
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in average diameter. The bed of its center is about 1558
m  deep.  Meteor  Crater  is  commonly  known  as  one  of
the best-preserved meteorite crater on Earth.

Fig. 1B shows the second study area—a crater in the
Lunar  Crater  National  Natural  Landmark  in  Nevada.
The elevation of rims varies significantly in this  crater.
From the eastern rims to the wester  ones,  the elevation
changes  from  1935  m  to  1866  m.  This  crater  is  about
1912 m in average elevation. The major axis and minor
axis  approximately  follows  the  north-south  direction
and  the  east-west  direction.  These  two  axes  are  in
around 720 m and 540 m.

We select these two craters as the study area based on
two  conditions.  First,  the  rims  of  crater  are  ridgelines,
and  craters  rims  are  visually  recognizable  on  the  high-
resolution satellite image and DEM, making it easier to
draw  the  ground  truth  ridgeline  samples  for  evaluating
the  effectiveness  of  ridgeline  extraction.  Moreover,
these two selected craters have different  landforms.  El-
evation  is  approximately  similar  along  the  rims  of  the

Meteor  Crater.  In  comparison,  the  elevation  changes
substantially along the rims of the crater shown in Fig. 1B.

Fig.  1C shows  the  third  study  area,  which  locates  in
the northeastern area of Grand Junction, CO. We selec-
ted  this  region  mainly  covered  by  desert.  This  means
that  its  terrestrial  surface is  smooth,  without the effects
of man-made  facilities,  trees  and  other  non-terrain  ob-
jects. 

2.2　Data
For all study areas, we collected high-resolution resolu-
tion DEM datasets used for evaluating the impact of the
aspect  property  for  landform  element  extraction.  The
original DEM datasets for all study areas is 1 m in spa-
tial  resolution. For each original DEM, we respectively
generated 2  m,  4  m and  8  m resolution  DEMs accord-
ingly.

The  data  dimensionality  of  the  first  and  the  second
study  areas  is  2000  pixels  by  2000  pixels  and 1000
pixels by 1000 pixels, respectively. All these two DEM
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Fig. 1    Location of study areas in America and illustration of study area datasets
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datasets  were  accessed  from  OpenTopography  (Krish-
nan  et  al.,  2011),  a  cyberinfrastructure  that  provides
high-resolution  topography  data  and  tools.  Moreover,
the data dimensionality of the third study areas is 10012
pixels  by 10012 pixels.  Because  the  coverage  of  this
dataset is too large, we divided this dataset into 10 sub-
datasets  that  have  a  dimensionality  of 1000 pixels  by
1000 pixels. The  datasets  were  acquired  from  the  Na-
tional  Elevation  Dataset  of  the  US  Geological  Survey
(USGS NED). 

3　Methods
 

3.1　Presumptions of aspect in landform representa-
tion 

3.1.1　Rotation,  scale  and  affine  variance  in  aspect-
based landform representation
Fig.  2 illustrates  the  cross-section  profile  of  a  terrain
feature (ridge) after rotation, rescaling and affine trans-
formation. Assume Points O and O′ respectively refer to
the point  of  a  ridgeline in the original  DEM and in the
DEM  generated  through  rotation,  rescaling  and  affine
transformation. A and B, and A′ and B′ respectively are
the  neighboring  pixels  on  the  downslope  sides  of  O
and O′.

In Fig.  2A,  the  aspect  difference  between  the
downslope  sides  of  Point  A−Point  O  and  the  one  of
Point  B−Point  O  is  identical  to  the  aspect  difference
between the  downslope  sides  of  Point  A′−Point  O′ and
the one of Point B′ and Point O′. Fig. 2B illustrates the
original and a scaled DEM generated through downscal-
ing operation with Gaussian filter. Scale transformation
happens when the same terrain object is represented by
DEMs at different resolutions. The elevation, slope and
curvature of  Point  O are not  identical  to  those of  Point
O′. However, the aspect of Point O is the same as that of
Point O′. This means that elevation, slope and curvature
vary as the scale of DEM changes,  but aspect is  robust
to  scale  variance. Fig.  2C illustrates  the  original  and  a

new  DEM  generated  by  affine  transformation  with  2D
(2-dimensional )  geometric  transformation.  In  the  im-
age or DEM processing, affine transformation is used to
preserve points, straight lines, planes, and a set of paral-
lel lines  by  linear  way.  Affine  distortion  might  be  ob-
served in  a  raw DEM data  without  geometric  rectifica-
tion. In Fig. 2C, the slope and curvature of Point O are
not identical to those of Point O′. Additionally, the elev-
ation  and  aspect  of  Point  O  are  the  same  as  those  of
Point  O′.  Thus,  only  elevation  and  aspect  are  invariant
to affine transformation.

Above  all,  aspect  is  not  only  able  to  represent  the
slope direction between two downslope sides of a land-
form element (e.g., ridge, valley, etc.) but is also robust
to the  variance  of  rotation,  scaling  and/or  affine  trans-
formation.  Moreover,  although  aspect  alone  can  not
quantitatively measure  the  extent  of  changes  in  eleva-
tion,  it  would  be  more  useful  for  mapping  a  variety  of
landform elements  than  elevation  difference,  slope  and
curvature. 

3.1.2　Aspect granularity
Resolution or scale plays an important role in landform
representation  (Deng,  2007; Drăguţ  and  Eisank,  2011;
Li  et  al.,  2016).  Spatial  resolution  influences  not  only
the  accuracy  of  elevation  values  in  a  DEM  data  (Liu,
2008),  but  also  the  feature  extraction  results  produced
from its  derivatives including curvature,  slope and hill-
shade  (Favalli  and  Fornaciai,  2017; Yang et  al.,  2020).
Aside from spatial resolution and scale, the scale of as-
pect  also  impacts  the  representation  of  a  landform.  In
this paper, we propose a new term called aspect granu-
larity,  or  aspect  scale,  to  define  the  fineness  degree  of
aspect, which is shown in Fig. 3. The aspect granularity
is defined as follows:

Aspect  granularity: Aspect  granularity  refers  to  the
minimum  aspect  difference  available  to  be  represented
between  two pixels  in  DEM.  In  the  calculation,  we  set
the aspect granularity in a range from greater or equal to
0°  to  less  than  360°.  When  we  meet  360°,  we  will
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change it as 0°.
Fig.  3A shows the  discretization  scheme  for  the  as-

pect  attribute.  When  aspect  granularity  equals  90°,  it
supports the representation of landform by 4 directions.
When aspect  resolution  is  45°  or  22.5°,  it  can  respect-
ively  represent  landform  with  8  directions.  Moreover,
shown  in Fig.  3B, land  surface  is  characterized  differ-
ently  for  different  aspect  granularities.  More  details  of
terrain features  and  land  surface  are  available  by  in-
creasing aspect granularity. Similar to the spatial resolu-
tion of a DEM, aspect granularity also significantly im-
pacts the representation of landform elements.

As  shown  in Fig.  3,  aspect  difference  is  sensitive  to
the  elevation  variation  of  the  downsides  of  a  landform
element  (e.g.,  ridge  and  valley  point).  Thus,  the  bigger
aspect granularity enables the representation of fine-de-
tailed  elevation  variation,  which  means  that  the  bigger
aspect  granularity  could  represent  more  details  of  land
surface.  However,  the  bigger  aspect  granularity  also
might  raise  the  possibility  of  the  existence  of  noises.
Thus,  appropriate  aspect  granularity  is  also  critical  to

well-landform  element  extraction,  and  even  landform
characterization. To our knowledge, 45° is generally ap-
propriate for  around  10  m  DEM-based  landform  ele-
ment  extraction,  and  22.5°  is  generally  appropriate  for
1 m DEM-based landform element extraction. 

3.2　Aspect enhanced  curvature-based  fuzzy  classi-
fication for landform element extraction
Fuzzy classification  aims  to  classifying  data  into  vari-
ous fuzzy  sets  or  semantic  categories  using  fuzzy  pro-
positional functions. Fuzzy classification is useful to ad-
dress a problem that contains values ranging from com-
pletely true to completely false. In landform element ex-
traction,  the  techniques  of  fuzzy  sets,  fuzzy  logic  and
fuzzy  classification  have  been  used  to  determine  the
propositional conditions for classifying land surface in-
to predefined landform elements (Jiang et al., 2018; Zhu
et al., 2018).

Previous methods (Jiang et al., 2018; Zhu et al., 2018)
implemented fuzzy  classification  to  characterize  land-
forms based  on  the  curvature  map.  We used  this  fuzzy
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classification  to  extract  ridges  and  valleys  based  on
curvature  map  (curvature-based  fuzzy  classification)
and the  map  fusing  aspect  and  curvature  (aspect  en-
hanced curvature-based  fuzzy  classification),  respect-

ively. There includes two sequential parts.
(1) As shown in Fig. 4A, both curvature-based fuzzy

classification  and  aspect  enhanced  curvature-based
fuzzy classification follows the procedure described be-

 

Curvature-based fuzzy classification

(1 m)

Aspect enhanced curvature-based

fuzzy classification (1 m)

Curvature-based fuzzy classification

(2 m)

Aspect enhanced curvature-based

fuzzy classification (2 m)

Curvature-based fuzzy classification

(4 m)

Aspect enhanced curvature-based

fuzzy classification (4 m)

Curvature-based fuzzy classification

(8 m)

Aspect enhanced curvature-based

fuzzy classification (8 m)

(A)

(B)

Curvature-based fuzzy classification

(1 m)

Aspect enhanced curvature-based

fuzzy classification (1 m)

Curvature-based fuzzy classification

(2 m)

Aspect enhanced curvature-based

fuzzy classification (2 m)

Curvature-based fuzzy classification

(4 m)

Aspect enhanced curvature-based

fuzzy classification (4 m)

Curvature-based fuzzy classification

(8 m)

Aspect enhanced curvature-based

fuzzy classification (8 m)

1 2 km0 

600 1200 m0

N

N

Fig.  4    The  result  comparison  of  curvature-based  and  aspect  enhanced  curvature-based  fuzzy  classification  in  study  areas  shown  in
Fig. 1A (A) and Fig. 1B (B)
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low:
A (x0,y0)

(x0,y0)
Assume a pixel  in the aspect  map is ,  where

 denotes the location of this pixel.

A (x0,y0)
ADdir dir

Step  1.  Computing  the  aspect  difference  between
 and  its  neighboring  pixels  in  eight  directions,

which are  denoted by ,  where  refers to  the  in-
dex of eight directions.

ADdir

ADdir ADeast

ADwest

Step 2. Based on two  in the opposite directions,
for  example,  the  in  east  and  west  (  and

), we label this pixel as 1 if the following precon-
ditions are satisfied:

ADdirif one of these two  is greater than 22.5
ADdirif another of these two  is less than 22.5

ADeast ADwest

A (x0,y0)
For example, if  is greater than 22.5 and 

is less than 22.5, we label  as 1. Since the resol-
ution  of  DEM  used  for  experiment  is  1m,  we  set  the
granularity of aspect difference as 22.5.

Step 3.  If  the condition in Step 2 is  not satisfied,  we
label this pixel as 0.

Step  4.  Generate  a  new  map  including  all  labeled
pixels.

(2)  Then,  we  respectively  conduct  the  curvature-
based  fuzzy  classification  and  aspect  enhanced
curvature-based fuzzy classification.

The  structure  of  curvature-based  fuzzy  classification
for ridge and valley extraction is shown as follows:

f (x0,y0) =


1,C(x0,y0) ∈ [θ1,+∞)
−1,C(x0,y0) ∈ (−∞, θ2]

0,C(x0,y0) ∈ (θ2, θ1)
(1)

f (x0,y0)
(x0,y0)

C(x0,y0)
θ1 θ2

θ1
θ2

where  is  the  fuzzy  propositional  function  for
determining whether one pixel in the coordinate 
of a DEM belongs to a ridge, valley or non-terrain fea-
ture,  is  the  mean  curvature  value  of  this  pixel
and  and  are  curvature  thresholds  for  ridges  and
valleys.  When  the  curvature  value  of  a  pixel  is  greater
than ,  this  pixel  is  classified  as  a  ridge.  When  the
curvature value of a pixel is lower than , this pixel is
classified  as  a  valley.  Otherwise,  this  pixel  would  be
classified as a non-ridge or valley pixel.

θ1 θ2
AD+ (x0,y0)

AD− (x0,y0) A (x0,y0)

The  following  expression  shows  aspect  enhanced
curvature-based fuzzy  classification  for  ridge  and  val-
ley  extraction,  where  and  are  two  thresholds  for
determining ridgelines and valley lines, and 
and  refer to the aspect difference of 
in two opposite directions:

f (x0,y0) =


1,AD+ (x0,y0) ≥ 22.5 and AD− (x0,y0) <

22.5 and C(x0,y0) ∈ [θ1,+∞)
−1,AD+ (x0,y0) ≥ 22.5 and AD− (x0,y0) <

22.5 and C(x0,y0) ∈ (−∞, θ2]
(2)

 

3.3　 Aspect  enhanced  elevation-based  feature
descriptor for landform element extraction
Local  features  of  computer  vision  (Li  and  Allinson,
2008)  focus  on  discovering  the  salient  features  (or
points of interesting) as the features of an image object
at  various  scales  and  rotations.  Some  algorithms  that
were successfully used in computer vision, such as loc-
al binary pattern (LBP), image pyramid and so on, have
implemented into landform element extraction.

This paper  uses  the  LBP  to  conduct  pixel-level  ter-
rain  analysis  based on elevation (Jasiewicz and Stepin-
ski,  2013)  and  aspect,  respectively.  In  a  3-pixel  by  3-
pixel  window,  the  center  pixel  has  eight  neighboring
pixels.  The  method  compared  this  center  pixel  and  its
neighboring pixel  in  each  direction  with  ternary  pat-
terns including 1, 0 and –1. The ternary patterns are ac-
quired by the following equation,

LBP (p0− pa) =


1, p0− pa > 0
0, p0− pa = 0
−1, p0− pa < 0

(3)

p0 pawhere  and  respectively  refers  to  the  value  of  the
center pixel and its neighboring pixel in one of eight dir-
ections in the 3 × 3 window.

Thus,  the  LBP  of  a  pixel  (the  center  pixel)  would
compose of  eight  values.  Unlike the pattern defined by
computer  vision, Jasiewicz  and  Stepinski  (2013) ig-
nored the  sequence  of  these  eight  neighboring  direc-
tions, and  predefine  10  patterns  for  a  variety  of  land-
form  elements,  including  flat  and  slope,  peak  and  pit,
ridge  and  valley,  shoulder  and  footslope,  and  spur  and
hollow. 

3.4　 Aspect enhanced  curvature-based  segmenta-
tion for landform element extraction
The  differences  between  pixel-based  and  object-based
data analysis  have been discussed for more than a dec-
ade. Pixel alone can not represent the characteristics of a
region  in  a  DEM.  The  object-based  strategy  aims  to
cluster  or  group similar  pixels  into  a  superpixel.  Based
on  the  literature  (Whiteside  et  al.,  2011; Liu  et  al.,
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2017),  the  object-based approach is  expected  to  have  a
better capability of mapping landforms from high-resol-
ution DEMs. First, object-based segmentation can over-
come the  negative  influence  of  noises  like  ‘salt-pepper
noise’,  ‘salt-pepper  noise’ mainly  originates  from  the
detailed roughness of  the land surface represented by a
high-resolution DEM. Unlike low- and moderate resolu-
tion DEMs, which describe a relatively smooth surface,
the  details  of  roughness  of  land  surface  (e.g.,  stones,
small  convex  and  concave)  in  a  high-resolution  DEM
provides  might  become  ‘salt-pepper  noise’.  Moreover,
object-based  segmentation  supports  landform  element
extraction based on the contextual  information,  such as
texture, pattern, structure and so on.

(L,A,B,X,Y) L A B
X Y

(
attrσ,X,Y

)
σ

X Y

In this experimental subsection, a cutting-edge object-
based segmentation  called  simple  linear  iterative  clus-
tering  (SLIC)  is  applied  to  segment  a  1  m  DEM,  1m
curvature  map  and  1m  aspect  map,  respectively.  SLIC
(Achanta et al., 2012) clusters the pixels as a superpixel
(or  object)  through  measuring  the  distance  over  spatial
space  and  intensity  (color)  difference.  In  SLIC,  the
space that includes color space and spatial space is rep-
resented as , where ,  and  denote three
channels of Lab color space, and  and  denote the ho-
rizontal and vertical dimensions of the image. Because a
DEM, curvature  map,  or  aspect  map includes  only  one
channel,  the  space  of  SLIC  based  on  elevation,
curvature,  or  aspect  is  changed  as ,  where 
refers to one of the three attributes: elevation, curvature
or aspect.  and  denote the horizontal and vertical di-
mensions  of  the  data.  Then,  the  function  of  SLIC  is
shown as follows:
S LIC(attrσ,X,Y ,g, θ) (4)

attrσ,X,Y
attrσ

attrσ,X,Y
attrσ,X,Y g

g

θ

where  is  the  result  of  normalizing  the  original
DEM,  curvature  map,  or  aspect  map  ( ).  In  other
words,  the  original  value  range  of  is trans-
formed  into  the  value  range  of  (0–1)  in  the . 
denotes  the  sigma of  the  Gaussian filter,  which is  used
to  control  the  degree  of  smoothing.  In  this  work,  the
value of  is 1. Moreover, to avoid missing the substruc-
tures  that  belong  to  a  landform  object,  a  smaller  scale
parameter value ( ) is given to generate a result that has
a bigger possibility of including more small objects.

Dtotal

The following equation shows the distance that meas-
ures  the  difference  between  two  pixels  ( )  in  the
SLIC segmentation:

Dtotal = Dz+
θ
√

N
×Dxy (5)

Dtotal

Dz

Dxy

θ

θ

N

Dattr Dxy

where  refers to the final distance that measures the
difference of two pixels.  refers to the distance of at-
tribute  (e.g.,  elevation,  curvature,  or  aspect)  between
two  pixels,  refers  to  the  spatial  distance  of  two
pixels.  denotes  the  ratio  between spatial  distance and
attribute difference (elevation, curvature or aspect). The
bigger  leads to generating a result that including large
landform objects, and vice versa.  denotes the approx-
imate  number  of  superpixels  after  segmentation.
Moreover,  and  are  obtained  by  the  following
equation:

Dz =

√
D2

attr+D2
attr+D2

attr

Dxy =

√
(Dx)2+ (Dy)2

(6)

Dattr

Dx Dy

where  refers  to  the  difference  of  attribute  (eleva-
tion, curvature or aspect) between two pixels.  and 
denote the distance between two pixels in horizontal and
vertical dimensions, respectively. 

4　Experiments and Discussion
 

4.1　Comparison of curvature-based and aspect en-
hanced curvature-based fuzzy classification
Fig. 4 shows the results of ridgeline (crater rim) extrac-
tion  using  mean  curvature-based  fuzzy  classification
and aspect  enhanced  curvature-based  fuzzy  classifica-
tion. The  threshold  of  mean  curvature  was  0.01,  be-
cause  it  enabled  extracting  a  majority  of  the  crater
boundary. We generated the extraction results based on
four  groups  of  high-resolution  DEMs  (1  m,  2  m,  4  m
and 8 m resolution DEM) by each method. The red parts
are the extracted ridgelines. In the results of Fig. 4A and
Fig.  4B, mean  curvature-based  fuzzy  classification  in-
cluded a  lot  of  false  positive  results,  making  it  im-
possible to derive the true boundaries of the two craters.
Additionally, a majority of the extracted ridgelines were
tiny  and  incomplete.  In  comparison,  the  boundaries  of
two craters in the results shown in Fig. 4A and Fig. 4B
are  much  clearer,  proving  that  the  fuzzy  classification
fusing aspect and mean curvature held better capability
of extracting ridgelines on the high-resolution DEM.

Moreover,  mean  curvature-based  fuzzy  classification
generally produces proper noises in the ridgeline extrac-
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tion  result  based  on  the  lower  resolution  DEMs.  This
means that the detailed roughness of land surface avail-
able in high-resolution DEMs (1 m, 2 m, 4 m and 8 m)
would result in many non-ridgelines being extracted by
mean  curvature  alone.  In  the  results  derived  from
Fig. 4A, the crater rims were not clear by integrating as-
pect  difference.  However,  in  the  results  derived  from
Fig. 4B, by integrating aspect difference, the crater rims
were much more easily distinguished from their context.
If  the  landform varied  mild,  like  the  crater  in Fig.  4A,
curvature alone might be appropriate. Otherwise, for the
landform like  the  crater  in Fig.  4B that  had  significant
changes in elevation and slope, the approach integrating
aspect  difference  and  mean  curvature  could  handle
noises and the features being similar to ridgelines avail-
able in the high-resolution DEM.

Above  of  all,  the  results  in Fig.  4 proved  that
the  fuzzy  classification —commonly  used  approach  for
moderate resolution DEM—could be competent for high-
resolution DEM while integrating aspect. 

4.2　Comparison  of  elevation-based  feature  descri-
ptor  and  aspect  enhanced  elevation-based  feature
descriptor
Fig. 5 shows the results of crater rim (ridgeline) extrac-
tion using elevation-based LBP and aspect enhanced el-
evation-based LBP.  The  threshold  of  elevation  and  as-
pect  are  0.06  and  22.5,  respectively.  The  red  parts  are
the  extracted  ridgelines.  We  generated  the  extraction
based on the 1 m, 2 m, 4 m and 8 m resolution DEM by
each method. In the results of Fig. 5A and Fig. 5B, elev-
ation-based  LBP  produced  much  more  nonlinear
ridgelines  than  aspect  enhanced  elevation-based  LBP.
Moreover, the ridgelines in the interior part of the crater
were not extracted by elevation-based LBP. This is  be-
cause a majority of ridgelines in the interior part of the
Meteor  Crater  were  only  extracted  by  platform
curvature.  For  the  second  crater,  elevation-based  LBP
and  aspect  enhanced  elevation-based  LBP  generated
similar  results  for  extracting  the  ridgelines.  In  this
crater, the  slopes  of  partial  ridgelines  (rims)  in  the  in-
terior  are  very  smooth,  making  them  impossible  to  be
characterized by  elevation  difference  and  aspect  differ-
ence.

Moreover, many  branches  were  observed  in  the  res-
ult  of  crater  rim  extraction  using  elevation-based  LBP.
The elevation-based LBP reported by Jasiewicz and Ste-

pinski  was  tested  on  a  30  m  DEM.  On  this  occasion,
crater rims  (ridgelines)  have  a  distinct  elevation  differ-
ence  compared  with  their  context.  Thus,  the  elevation-
based  LBP  could  generate  a  result  better  than  the  one
generated by aspect-enhanced LBP. However, when the
detailed  roughness  of  land  surface  was  available  in  a
high-resolution DEM, the ridge or crater rimes could not
be distinguished well by elevation difference. Elevation-
based  LBP  is  incompetent  to  predefine  precise  pattern
templates for  representing complicated landforms.  Oth-
erwise, the total number of ridgelines (crater rimes) ex-
tracted  by  aspect  enhanced  elevation-based  LBP  still
seemed insufficient. This means that the patterns of spe-
cific  landforms might  be  very  difficult  well  defined  on
the high-resolution DEM. 

4.3　 Comparison  of  elevation-based  segmentation,
curvature-based  segmentation  and  aspect  enhanced
curvature-based segmentation
Fig.  6 shows  the  results  of  crater  boundary  (ridgeline)
extraction  using  elevation-based  SLIC,  curvature-based
SLIC and  aspect  enhanced  curvature-based  SLIC,  re-
spectively.  We  generated  the  extraction  based  on  the
1 m, 2 m, 4 m and 8 m resolution DEM by each method.
The approximate number of segmentations and Gaussi-
an  scales  used  for  segmentation  is 3000 and  2.  In  the
results of Fig. 6A and Fig. 6B, few lines extracted were
true ridgelines. In the results of Fig. 6A and Fig. 6B, al-
though the contour of these two craters was slightly ob-
served,  only  few  lines  extracted  were  true  ridgelines.
Moreover,  the  rims  of  these  two craters  are  impossible
to  be  recognized  from  the  results  by  elevation-based
segmentation  and  curvature-based  segmentation.  These
lines  belonging  to  the  crater  rims  seem  impossible  to
separate from  other  lines  extracted  without  manual  in-
terpretation.

In  comparison,  the  contour  of  these  two  craters  was
much more recognizable  to  a  greater  degree in  the res-
ults  of Fig.  6A and Fig.  6B.  Similar  to  the  example
shown  in Fig.  2,  the  contour  of  landform,  or  the
ridgeline, or  the  crater  rim  was  easily  mapping  by  as-
pect difference.  Otherwise,  we  also  found that  the  seg-
mentation  results  had  few  difference  on  4  m  and  8  m
resolution DEM, respectively. 

4.4　Result analysis and discussion
Considering  that  the  ground  truth  datasets  were  not
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available,  we  visually  drawn the  referenced  crater  rims
based on the satellite images and mean curvature map of
these two craters. Since the surface of these two craters
is  very  toughly  recognizable  from  the  high-resolution

DEM,  we  set  the  width  of  the  visually-generated  rater
rims  as  5  m.  Any  extracted  pixels  being  inside  of  the
crater rims were labeled as true extracted pixel.

Besides the visual-based comparisons shown in Fig. 4

 

(A)

1 2 km0

(B)

600 1200 m0

Elevation-based feature descriptor

(1 m)

Elevation-based feature descriptor

(2 m)

Elevation-based feature descriptor

(4 m)

Elevation-based feature descriptor

(8 m)

Aspect enhanced elevation-based

feature descriptor (1 m)

Aspect enhanced elevation-based

feature descriptor (2 m)

Aspect enhanced elevation-based

feature descriptor (4 m)

Aspect enhanced elevation-based

feature descriptor (8 m)

Elevation-based feature descriptor

(1 m)

Elevation-based feature descriptor

(2 m)

Elevation-based feature descriptor

(4 m)

Elevation-based feature descriptor

(8 m)

Aspect enhanced elevation-based

feature descriptor (1 m)

Aspect enhanced elevation-based

feature descriptor (2 m)

Aspect enhanced elevation-based

feature descriptor (4 m)

Aspect enhanced elevation-based

feature descriptor (8 m)

N

N

Fig.  5    The  result  comparison  of  elevation-based  feature  descriptor  and  aspect  enhanced  elevation-based  feature  descriptor  in  study
areas shown in Fig. 1A (A) and Fig. 1B (B)
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Fig.  6    The  result  comparison  of  elevation-based  segmentation,  curvature-based  segmentation  and  aspect  enhanced  curvature-based
segmentation in study areas shown in Fig. 1A (A) and Fig. 1B (B)
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to Fig. 6, we use precision (P) and recall (R) to quantit-
atively measure the results by different methods.

P =
T P

T P+FP

R =
T P

T P+FN

(7)

where TP, FN and FP respectively  refers  to  the  total
amount  of  true  positive  extracted  pixels,  the  total
amount of false negative extracted pixels, and false pos-
itive  extracted  pixels.  Precision  measures  the  ratio
between  correctly  extracted  pixels  and  all  extracted
pixels, or how many extracted pixels are true topograph-
ical  features.  Otherwise,  recall  measures  the  ratio
between correctly extracted pixels and all true pixels, or
how many topographical features are extracted. Table 1
to Table  3 list  the  precision  and  recalls  for  each  result
shown in Fig. 4 to Fig. 6.

In  comparison  to  the  results  generated  by  mean
curvature  (Jiang  et  al.,  2018; Zhu  et  al.,  2018),  joining
the fuzzy  set  of  aspect  difference  can  effectively  en-
hance defining the characteristics of ridgelines and val-
leylines based on the high-resolution DEM. The results
generated by mean curvature-based fuzzy classification
might  include  many  true  negative  errors  because
ridgelines,  as  well  as  shoulders  would  be  extracted.
When the detailed roughness of land surface was avail-

able  in  a  high-resolution DEM, a  ridge and a  shoulder,
or  a  valley  and  a  footslope,  might  have  approximately
similar curvature values. In this case, both the shoulder
and  ridge  would  possible  be  extracted  using  the  mean
curvature alone. In some cases, the curvature of a ridge
point or a valley point was even smaller than a shoulder
point or a footslope point. Under this condition, only the
shoulder  and  footslope  would  be  extracted  by  mean
curvature alone.

The  feature  descriptor  method  (LBP)  proposed  by
Jasiewicz  and  Stepinski  (2013) was significance  of  ex-
tracting  main  landform  elements,  however,  we  found
that its performance varied considerably when using dif-
ferent DEM  derivatives.  By  integrating  aspect  differ-
ence, the new 2D template of LBP can better define the
complicated  context  of  a  valleyline  or  ridgeline.  Thus,
the  LBP  integrating  aspect  difference  and  elevation
could generate better extraction results of landform ele-
ments  than the  elevation-based LBP from the  high-res-
olution DEMs. Otherwise, many broken lines also exis-
ted in  the  extraction results.  This  might  be  because  the
limits  of  pixel-level  approach  in  extracting  landform
elements  from  high-resolution  DEM.  The  land  surface
on  the  1  m  DEM  is  much  more  complicated  than  and
significantly different from the 30 m DEM. This proves
that it  is  challenging  to  predefine  the  template  (or  pat-

 
Table 1    Quantitative statistical analysis and comparison of curvature-based and aspect enhanced curvature-based fuzzy classification
 

Figure Resolution / m Method Precision Recall
Fig. 4A 1 Curvature-based fuzzy classification 0.1459 0.8822

Aspect-enhanced curvature-based fuzzy classification 0.3272 0.9174

2 Curvature-based fuzzy classification 0.1676 0.9170

Aspect-enhanced curvature-based fuzzy classification 0.3651 0.9347

4 Curvature-based fuzzy classification 0.1901 0.9535

Aspect-enhanced curvature-based fuzzy classification 0.4235 0.9589

8 Curvature-based fuzzy classification 0.2121 0.9703

Aspect-enhanced curvature-based fuzzy classification 0.5371 0.9784

Fig. 4B 1 Curvature-based fuzzy classification 0.1224 0.8036

Aspect-enhanced curvature-based fuzzy classification 0.3272 0.7562

2 Curvature-based fuzzy classification 0.1652 0.9221

Aspect-enhanced curvature-based fuzzy classification 0.4520 0.8065

4 Curvature-based fuzzy classification 0.2830 0.9689

Aspect-enhanced curvature-based fuzzy classification 0.5898 0.8927

8 Curvature-based fuzzy classification 0.4033 0.9851

Aspect-enhanced curvature-based fuzzy classification 0.8572 0.9560
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Table  2    Quantitative  statistical  analysis  and  comparison  of  elevation-based  feature  descriptor  and  aspect  enhanced  elevation-based
feature descriptor
 

Figure Resolution / m Method Precision Recall
Fig. 5A 1 Elevation-based LBP 0.3051 0.7727

Aspect-enhanced elevation-based LBP 0.1716 0.8891

2 Elevation-based LBP 0.3671 0.8105

Aspect-enhanced elevation-based LBP 0.2163 0.8836

4 Elevation-based LBP 0.4682 0.8330

Aspect-enhanced elevation-based LBP 0.2571 0.9072

8 Elevation-based LBP 0.5948 0.8581

Aspect-enhanced elevation-based LBP 0.3891 0.9311

Fig. 5B 1 Elevation-based LBP 0.2908 0.4336

Aspect-enhanced elevation-based LBP 0.3251 0.5296

2 Elevation-based LBP 0.2537 0.2137

Aspect-enhanced elevation-based LBP 0.3233 0.4607

4 Elevation-based LBP 0.2175 0.1505

Aspect-enhanced elevation-based LBP 0.2574 0.3856

8 Elevation-based LBP 0.2409 0.1755

Aspect-enhanced elevation-based LBP 0.5762 0.7147

Note: LBP is feature descriptor method

 
Table  3    Quantitative  statistical  analysis  and  comparison  of  elevation-based  segmentation,  curvature-based  segmentation  and  aspect
enhanced curvature-based segmentation
 

Figure Resolution / m Method Precision Recall
Fig. 6A 1 Elevation-based segmentation 0.0729 0.3561

Curvature-based segmentation 0.0232 0.0895

Aspect enhanced curvature-based segmentation 0.1328 0.7181

2 Elevation-based segmentation 0.1009 0.3788

Curvature-based segmentation 0.0526 0.1450

Aspect enhanced curvature-based segmentation 0.1961 0.7615

4 Elevation-based segmentation 0.1323 0.3971

Curvature-based segmentation 0.0709 0.2016

Aspect enhanced curvature-based segmentation 0.2217 0.8271

8 Elevation-based segmentation 0.1510 0.4852

Curvature-based segmentation 0.0934 0.3379

Aspect enhanced curvature-based segmentation 0.2518 0.8661

Fig. 6B 1 Elevation-based segmentation 0.0837 0.0505

Curvature-based segmentation 0.1071 0.1826

Aspect enhanced curvature-based segmentation 0.3590 0.7644

2 Elevation-based segmentation 0.1108 0.8772

Curvature-based segmentation 0.1363 0.8256

Aspect enhanced curvature-based segmentation 0.4244 0.9371

4 Elevation-based segmentation 0.3637 0.9478

Curvature-based segmentation 0.4170 0.8966

Aspect enhanced curvature-based segmentation 0.4426 0.9556

8 Elevation-based segmentation 0.4882 0.9675

Curvature-based segmentation 0.4765 0.9632

Aspect enhanced curvature-based segmentation 0.5103 0.9660
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tern)  to  precisely  represent  the  complicated  elevation
variations of land surface on high-resolution DEMs.

For multi-segmentation,  elevation-based  segmenta-
tion  and  curvature-based  segmentation  basically  might
not be used for extracting ridgelines on the high-resolu-
tion DEM. Both of these two approaches only detect the
edges that carry significant elevation variation, a major-
ity  of  which  belong  to  shoulders  rather  than  ridges.
Moreover, based  on  a  high-resolution  DEM,  the  seg-
mentation algorithm would be very sensitive to the elev-
ation  and  curvature  difference  between  two  side  of  a
ridgeline or a valleyline. Last but not least, the two sides

of  a  ridgeline  would  carry  a  distinct  aspect  difference,
which  might  be  not  in  such  way  for  a  shoulder,  or  a
footslope. Thus,  by  integrating  aspect  feature,  the  con-
text of ridgelines and the representation of complicated
landform are much more discernable in the high-resolu-
tion DEMs. This explain why aspect enhanced curvature-
based segmentation outperforms the elevation-based and
curvature-based segmentation.

Moreover, in Fig. 7, we present the significance of as-
pect through the curvature map and aspect map of Met-
eor  Crater.  Landform  elements  including  ridge,  valley,
shoulder and foot-slope seem impossible to be precisely

 

Meteor Crater,  AZ Curvature map Aspect map

N

0 500 1000 m

Fig. 7    Illustration on curvature-based and aspect-based terrain feature representation in Meteor Crater, Arizona, America
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mapping from the high-resolution curvature map, which
is created by the mean curvature calculation tool in Arc-
GIS.  Otherwise,  the detailed boundary and micro-topo-
graphy  of  Meteor  Crater  is  much  more  discernable  in
the aspect map and its partially enlarged view.

Last  but  not  least,  through  the  experimental  results,
we found that  the appropriate aspect  granularity for  to-
pographical  feature  extraction  might  vary  according  to
the  spatial  resolution  of  high-resolution  DEM.  As
shown  in Figs.  4–6 and Tables  1 to 3,  the  appropriate
granularity  of  aspect  relies  on  the  scale  (or  the  spatial
resolution) of  topographical  features.  Generally  speak-
ing, regarding  the  adaptive  aspect  granularity,  the  as-
pect granularity—22.5 relatively fit for 1–5 m high-res-
olution DEM, and the aspect granularity—45 relatively
fit for 5–m high-resolution DEM. For the DEM that has
a resolution higher than 1 m, 11.25 is relatively the ap-
propriate aspect granularity. Since the higher resolution
DEM represents more complicated land surface, we as-
sume that the bigger aspect granularity would be appro-
priate  for  analyzing  the  more  complicated  surface.  In
other  words,  the  aspect  granularity  is  proportion  to  the
scale of land surface and the resolution of DEM in topo-
graphical feature extraction. 

5　Conclusions

The  value  of  the  high-resolution  data  lies  in  the  high-
precision feature  information.  The  fine-detailed  land-
form element  extraction  is  thus  the  basis  of  high-fidel-
ity application  of  the  high-resolution  DEMs.  In  con-
front  of  the  difficulty  of  the  existing  approaches  in
maintaining the accuracy of  fine-detailed landform ele-
ment  on  the  high-resolution  DEM,  this  paper  focus  on
comprehensively  examining  the  significance  of  aspect
in topography for improving the performance of classic-
al approaches in landform element extraction.

In this paper, we compare the extraction results based
on four groups of high-resolution DEMs (1 m, 2 m, 4 m
and  8  m resolution  DEM).  According  to  the  extraction
results including crater rims by fuzzy classification, fea-
ture descriptor-based  detection,  and  object-based  seg-
mentation, aspect can enhance the performance of these
classical approaches  in  terms  of  landform  element  ex-
traction on high-resolution DEMs.  In  the  future,  aspect
could be an important attribute for landform characteriz-
ations based  on  high-resolution  DEMs.  Integrating  as-

pect and other elevation derivatives (e.g., curvature, hill-
shade, slope, etc.) is expected to support accurate land-
form element extraction and visualization.
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