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Abstract: Rapid urbanization leads to dramatic changes in land use patterns, and the land use/cover change (LUCC) can reflect the spa-
tial  impact  of  urbanization  on  the  ecological  environment.  Simulating  the  process  of  LUCC and  predicting  the  ecological  risk  future
changes  can  provide  supports  for  urban  ecological  management.  Taking  the  Yangtze  River  Delta  Urban  Agglomeration  (YRDUA),
China as the study area, four developmental scenarios were set on the basis of the land use data from 2005 to 2015. The temporal land
use changes were predicted by the integration of the system dynamic and the future land use simulation (SD-FLUS) model, and the geo-
graphically weighted regression (GWR) model was used to identify the spatial heterogeneity and evolution characteristics between eco-
logical risk index (ERI) and socio-economic driving forces. Results showed that: 1) From 2005 to 2015, the expansion of construction land
(7670.24 km2) mainly came from the occupation of cultivated land (7854.22 km2). The Kappa coefficient of the SD-FLUS model was
0.886,  indicating  that  this  model  could  be  used  to  predict  the  future  land  use  changes  in  the  YRDUA.  2)  Gross  domestic  production
(GDP)  and  population  density  (POP)  showed  a  positive  effect  on  the  ERI,  and  the  impact  of  POP  exceeded  that  of  GDP.  The  ERI
showed the characteristics of zonal diffusion and a slight upward trend, and the high ecological risk region increased by 6.09%, with the
largest increase. 3) Under different developmental scenarios, the land use and ecological risk patterns varied. The construction land is in-
creased by 5.76%, 7.41%, 5.25% and 6.06%, respectively. And the high ecological risk region accounted for 12.71%, 15.06%, 11.89%,
and 12.94%, correspondingly. In Scenario D, the structure of land use and ecological risk pattern was better compared with other scen-
arios considering the needs of rapid economic and ecological protection. This study is helpful to understand the spatio-temporal pattern
and demand of land use types, grasp the ecological security pattern of large-scale areas, and provide scientific basis for the territory de-
velopment of urban agglomeration in the future.
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1　Introduction

Land is the foundation of human survival and develop-
ment. It  is  also  the  medium of  interaction  between  hu-
mans  and  nature.  With  the  rapid  urbanization  process,

the demand for urban space is  increasing.  The continu-
ous  expansion  of  urban  space  has  led  to  significant
changes  in  the  land  use/cover  change  (LUCC),  which
affects the  structure  and  function  of  the  urban  ecosys-
tem seriously. Understanding rapid LUCC and ecologic-
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al security level in urban agglomerations is vital for urb-
an ecological  management  and  sustainable  develop-
ment  (Meneses  et  al.,  2015; Nan  et  al.,  2020; Vadrevu
and  Ohara,  2020).  In  fact,  the  continuing  increases  in
population, urbanization and the accompanying dramat-
ic  changes  in  land  use  and  land  cover  have  significant
environmental impacts on ecosystems. Such as land de-
gradation, biodiversity loss, water shortage, and heat is-
land  effect  (Li  et  al.,  2017a; Bhattachan  et  al.,  2018;
Singh  and  Kalota,  2019; Zhang  et  al.,  2021).  These
problems have led researchers to focus on the ecologic-
al  security of  urban development  (Dong and Xu,  2019;
Cao et al., 2020). Assessing the response of the eco-en-
vironment to LUCC has become a major research topic
in recent years in global change research.

Ecological risk is the likelihood of an ecosystems de-
graded  response  to  extraneous  disturbances,  reflecting
the negative impacts of human activities and natural en-
vironmental  changes  to  the  ecosystem  (Gong  et  al.,
2015; Depietri,  2020; Mann  et  al.,  2021).  Ecological
risk  assessment  refers  to  the  assessment  of  factors  that
can generate risks when humans or natural activities af-
fect  the ecological  environment  (Hunsaker  et  al.,  1990;
Sajikumar  and  Remya,  2015). The  ecological  risk  as-
sessment  results  can  be  used  as  an  important  basis  for
follow-up work  through reasonable  measures  to  reduce
the occurrence of risks and protect the ecological envir-
onment  (Christian  et  al.,  2009; Marhaento  et  al.,  2017;
Filonchyk  and  Hurynovich,  2020).  Currently,  many
types  of  research  on the  ecological  risk  focus  on water
environment  quality  assessment  (Pešić  et  al.,  2020),
landscape  ecological  risk  assessment  (Tuholske  et  al.,
2017), and ecological security early-warning (Chen and
Wang,  2020).  However,  although  many  evaluations  of
work  and  methodology  studies  have  been  carried  out,
few  researches  considering  the  relationship  between
LUCC  and  urban  ecological  risk  (Zhou  et  al.,  2021).
How  to  prevent  the  threats  from  land  use  changes  and
optimized  regional  ecological  security  patterns  are  the
focus of current attention (Li et al., 2020).

The scenario simulation of LUCC plays an important
role  in  urban  development  because  the  development  of
future pattern is full of uncertainty and complexity. Lots
of  researchers  have  developed  a  variety  of  models  to
simulate LUCC. These models mainly include two cat-
egories:  top-down  models  and  bottom-up  models
(Grimm,  1999).  ‘Top-down’ models  have  focused  on

describing  the  quantitative  transfer  among  different
LUCC types at the system level, such as system dynam-
ics  (SD),  grey  prediction  (GM)  and  Markov  models
(Wang et al., 2012; Rasmussen et al., 2012; Geng et al.,
2017). However, these simulated results are only quant-
itative changes in land use types, and ‘top-down’ mod-
els often lack the ability to simulate the spatial patterns
of  LUCC.  ‘Bottom-up’ models  can  predict  the  spatial
patterns  of  LUCC  through  simulating  the  dynamics  of
all  individual  units  within  the  system  (Castella  et  al.,
2007; Xu et al., 2016a). The most representative model
is  the  cellular  automata  (CA)  model  (Itami,  1994). Re-
grettably, these  models  have  low  accuracy  in  con-
trolling the quantity of land use. Based on this, some re-
searchers  have  integrated  ‘top-down’ and  ‘bottom-up’
approaches  for  simulation  prediction.  The  CA-Markov
model  is  the  most  widely  used  integrated  approach  in
LUCC simulations (Zhou et al., 2020). In addition, SD-
CA and  Logistic-CA-Markov  models  are  also  included
(Siddiqui  et  al.,  2018; Jiao  et  al.,  2019).  However,  this
integrated model  could  not  represent  the  interconnec-
tions between the LUCC and natural and socio-econom-
ic  factors  (Xu  et  al.,  2016a).  It’s  important  because
LUCC  is  affected  by  these  factors  (Fan  et  al.,  2015).
Therefore,  an  effective  LUCC simulation  model  is  still
needed to simulate future spatial and temporal changes.
The future  land  use  simulation  (FLUS)  model  is  a  fu-
ture  land use  simulation prediction model  based on the
improved CA principle (Liu et al, 2017). This model has
the  advantage  of  incorporated  self-adaptive  inertia  and
competition mechanism  within  the  CA  model  to  pro-
cess  the  complex  competitions  and  interactions  among
the different land use types. So, we took the advantages
of the SD-FLUS model to simulate LUCC. This model
can predict the LUCC from land use types quantity and
spatial patterns,  which  improves  the  simulation  accur-
acy.

The Yangtze River Delta Urban Agglomeration (YR-
DUA), China is the largest one of the three major urban
agglomerations  in  China.  It  is  also  one  of  the  regions
with the highest level of urbanization and the most eco-
nomically  concentrated  regions  in  the  country.  How to
coordinate  the  relationship  between  rapid  urbanization
and ecological  risk  is  essential  for  building  and  main-
taining regional sustainability.  This area is  taken as the
research  object  based  on  the  socio-economic  data  and
remote  sensing  image  of  the  YRDUA.  The  SD-FLUS
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model  is  constructed  to  predict  the  land  use  pattern  of
the four  scenarios  in  2025,  and  the  ecological  risk  pat-
tern is predicted on the basis of the four land use scen-
arios.  The differences in urban development levels will
inevitably cause spatial differences in the driving forces,
so the geographically weighted regression (GWR) mod-
el  is  well-suited  to  examining  the  relationship  between
ecological risk  index  (ERI)  and  urbanization.  This  re-
search aims to: 1) discover the characteristics of LUCC
and ecological risk pattern changes from 2005 to 2015;
2) analyze the spatial heterogeneity and evolution char-
acteristics  between  ERI  and  socio-economic  driving
forces; 3)  predict  the  land  use  and  ecological  risk  pat-
terns  of  the  YRDUA in  2025 under  the  four  scenarios,
and explore the impact of land use changes on the eco-
logical  risk  pattern  under  multi-scenario  simulation  in
the YRDUA. 

2　Materials and Methods
 

2.1　Study area
The YRDUA is located in the middle of China, border-
ing  Shandong  Province  in  the  north,  between

28°80′N–34°27′N  and  115°45′E–122°50′E  (Fig.  1).  As
China’s economically  active,  open,  and  innovative  re-
gion, the Yangtze River Delta (YRD) achieves strategic
significance  in  the  country’s  modernization  and further
opening-up. It is mainly composed of 26 central cities in
one municipality and three provinces, including Shang-
hai,  Jiangsu  Province,  Zhejiang  Province,  and  Anhui
Province  (Luo  et  al.,  2021).  In  addition,  it  has  a  land
area of  21.17 × 104 km2,  accounting for  about  2.2% of
China’s land area.

The  YRDUA  terrain  is  mainly  composed  of  plains,
low  hills,  waters,  mountains,  islands,  and  basins.  The
highest elevation is found in the south, whereas the low-
est one is in the north. The elevation ranges from −92 m
to 1738 m.  The  annual  average  temperature  range  is
from  15.6℃ to  18.1℃,  and  the  annual  precipitation
range  is  from  704  mm  to 1734 mm (He,  2019).  As  of
2018,  the  population  of  the  26  cities  in  the  YRDUA
reached  154  million,  and  the  average  urbanization  rate
was  67.38%.  In  the  same  year,  the  average  total  GDP
was  17  800  billion  yuan  and  achieved  an  increase  of
12  700  billion  yuan  (RMB)  over  2017  with  a  growth
rate of 7.14%, which was higher than the national aver-
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Fig. 1    Geographical location of the Yangtze River Delta Urban Agglomeration (YRDUA) in China

WANG Xiao et al. Spatio-temporal Dynamic Simulation of Land-use and Ecological Risk in the... 831



age GDP growth rate of 6.6% (Luo et al., 2021). 

2.2　Data source
1) LUCC maps of the YRDUA region from 2005, 2010
and 2015 were downloaded from the Resource and En-
vironment  Data  Cloud  Platform  (http://www.resdc.cn/)
with a resolution of 30 m and the YRDUA was clipped.
To increase calculation speed, the spatial resolution was
resampled  to  100  m.  The  land  use  types  are  classified
into  six  types,  namely,  cultivated  land,  forest  land,
grassland,  water  area,  construction  land,  and  unused
land. 2) A digital elevation model with a spatial resolu-
tion of 30 m was used in the study area (http://www.gis-
cloud.cn/). 3) The 1000 m × 1000 m grid data of GDP,
population density  (POP),  and  soil  organic  matter  con-
tent were  downloaded from the  Resource  and Environ-
ment Data Cloud Platform (http://www.resdc.cn). 4) Road
information was obtained from the China National Geo-
graphic  Information  Center  (http://ngcc.sbsm.gov.cn),
and the distance indicators were calculated on the basis
of  ArcGIS.  5)  The  annual  average  temperature  data
were  obtained  from  National  Meteorological  Science
Data Center  (http://data.cma.cn).  6)  The socio-econom-
ic statistics data were acquired from the regional statist-
ics yearbook of the study area from 2006 to 2016 (http://
www.stats.gov.cn/tjsj/ndsj/). 

2.3　Methods
The study was conducted by using a  four-step method:
1) integrating the SD model and FLUS model to simu-
late LUCC; 2) designing four scenarios representing fu-

ture development levels; 3) establishing the ERI; 4) spa-
tial  regression  analysis  between  ERI  and  urbanization.
The  following  sections  give  details  on  each  of  these
steps. 

2.3.1　Simulation model of LUCC (SD-FLUS model)
(1)  Dynamic  simulation  model  of  land  use  type
quantity: SD Model
The SD model is an effective approach for modeling the
nonlinear behavior of complex systems over time by us-
ing  stocks,  flows,  internal  feedback  loops,  and  time
delays (Coyle, 1997). This model is widely used to rep-
resent  the  socio-economic  driving  forces  and  complex
systems (Lauf et al., 2012). Moreover, it can provide the
results  of  land  use  demand  projection  for  the  FLUS
model  (Liu  et  al.,  2017). The  developed  SD  model  in-
cludes population  sub-model,  economy  sub-model,  en-
vironment  sub-model,  and  land  use  sub-model.  This
model contains 7 exogenous variables, 8 state variables,
36  auxiliary  variables,  and  57  mathematical  equations.
The SD model (Fig. 2) was carried out using the Vensim
PLE 7.3.5 program. The time step of the SD model was
1 year. In addition, the SD model was parameterized us-
ing the official  statistical and LUCC data from 2005 to
2015.
(2)  Spatio-temporal  simulation  model  of  LUCC:
FLUS Model
The FLUS model is a future land use simulation predic-
tion model based on the improved CA principle (Liu et
al, 2017). This model has the advantage of incorporated
self-adaptive inertia and competition mechanism within
the CA model to process the complex competitions and
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Fig. 2    Structure of the SD model. Variables in red indicated the exogenous variable of the model, which varied in different scenarios.
Variables in green are arbitrarily selected indicators from the model that are used for accuracy verification
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interactions among  different  land  use  types.  The  prin-
ciple of  the  FLUS model  is  as  follows.  Firstly,  the  de-
velopment  suitability  probability  of  land  use  types  is
calculated by using the data of each driving factor based
on  ANN.  Secondly,  a  cellular  automata  module  based
on  adaptive  inertia  mechanism is  constructed,  which  is
composed  of  development  suitability  probability  and
neighborhood  factor,  inertia  coefficient  and  conversion
cost.  Finally,  the  future  land  use  is  simulated  based  on
the adaptive inertial  competition mechanism of roulette
selection.

This study simulates the future land use changes un-
der  multi-scenario  in  the  YRDUA  based  on  the  SD-
FLUS model. First, the SD model was used to estimate
the demand for land use under different scenarios based
on  socio-economic  statistics  and  LUCC  data.  Second,
the FLUS model was used to obtain the overall suitabil-
ity conversion probability of various land use types and
then the simulation results of LUCC was obtained con-
sidering various natural and human factors, such as ter-
rain, climate, population, soil, and transportation. Third,
the present  and  future  LUCC  and  ecological  risk  pat-
terns were simulated and analyzed on the basis of mod-
el verification.
(3) Model validation
The  SD  model  is  verified  by  calculating  the  degree  of
deviation  between  the  simulated  value  and  the  true
value.  Six  indicators  (variables  in  green  from Fig.  2)
were randomly selected for model verification. Accord-
ing  to  the  relation  error  analysis,  the  relation  error  of
model was within ±5%. The result showed that the mod-
el conforms  to  the  historical  behavior  and  has  valida-
tion (Ladevèze and Chamoin, 2011; Geng et al.,  2017).
The processed data of 2005, 2010, and 2015 are impor-
ted into the FLUS model, and the simulated LUCC map
of 2015 was compared with the actual one, which had a
calculated Kappa  value  of  0.886.  Therefore,  the  para-
meters set by this model can express the land expansion
of YRDUA. The SD-FLUS model has certain precision
and can achieve the research purpose. 

2.3.2　Multi-scenario setting of future LUCC
Scenario  analysis  has  emerged  over  the  past  half-cen-
tury  as  a  methodology  for  analyzing  deeply  uncertain,
long-run future sustainability pathways for complex so-
cial-ecological  systems  to  support  strategic  decision-
making (Kates et al., 2001; Swart et al., 2004). Scenario
simulation is an effective tool for predicting the dynam-

ic trend of land and conducting long-term sustainability
evaluation  (Bryan  et  al.,  2016).  In  the  YRDUA,  a  new
rapid development  period is  going to  occur  soon based
on the  state  plan  for  the  integrated  regional  develop-
ment of the YRD. The land use simulation is clearly ne-
cessary for future decision-making. Future development
has  uncertainty  because  different  socio-economic  and
ecological  environments  have  varying  impacts  on  land
use changes.

On the basis of previous researches (Xu et al., 2016a;
Liu  et  al.,  2017; Jiao  et  al.,  2019),  four  development
scenarios of inertial development, rapid economy devel-
opment, ecological protection and coordinated develop-
ment were designed, which representing different ecolo-
gical  environments  and  socio-economic  development
levels for 2025, respectively. The multi-scenario setting
is  carried  out  from  two  aspects,  namely,  the  setting  of
land use quantity and the setting of land use conversion
mechanism. According to the adjustment of population,
economy,  policy,  ecological  environment,  and  the  land
use  area  in  the  SD  model,  different  scenarios  are  built
up. In  addition,  neighborhood  factors  and  land  conver-
sion  costs  are  set  for  different  scenarios  in  the  FLUS
model.
(1) The setting of land use quantity
Scenario  A  or  inertial  development.  This  Scenario  is
constructed  to  find  the  projected  future  land  use  trends
without  the  impact  of  policy  regime  and  other  factors.
Based on the development trend from 2005 to 2015, the
values from 2016 to 2025 are fitted. The values of the 7
exogenous variables all change dynamically. Scenario A
represents the arithmetic mean of their values (Table 1).

Scenario  B  or  rapid  economic  development.  In  this
scenario,  the  economic  development  is  given  priority,
with  the  highest  GDP  growth  rate,  population  growth
rate, and urbanization rate. The setting of these paramet-
ers  refers  to  the  long-term  goals  of  the  Yangtze  River
Delta  Urban  Agglomeration  Development  Plan  (2016),
the  ‘National  Economic and Social  Development  Plan’
of each province, and the overall planning of major cit-
ies  such  as  Shanghai,  Nanjing,  Suzhou and other  cities
in 2025. In addition, in order to meet the population de-
mand, the grain yield per unit area is set as the maxim-
um value of Scenario A, and the other three parameters
remain unchanged (Table 1).

Scenario  C or  ecological  protection. Green develop-
ment  and  ecological  environment  protection  are  the
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foundation based on the plan for building a demonstra-
tion area  in  the  YRD on ecologically  friendly develop-
ment. Therefore,  under  the  condition  of  strictly  con-
trolling pollutant discharge, the industrial wastewater re-
moval rate and industrial solid waste utilization rate are
set  to  maintain  100%.  And  the  per  capita  green  area
should be increased as far as possible, so it is set as the
maximum value  of  Scenario  A.  In  addition,  we strictly
control GDP and population growth and set them as the
average of  Scenario  A,  and  the  urbanization  rate  re-
mains the same as the base year (Table 1).

Scenario  D  or  coordinated  development. This scen-
ario focuses on coordinated rapid development and eco-
logical environmental protection, and tries to protect the
environment while developing, so as to take the road of

sustainable  development.  The  factors  of  economy  and
ecological protection  are  all  taken  into  account.  There-
fore, we simulate the Scenario B and C simultaneously,
and set the parameters to the average of the above scen-
ario (Table 1).
(2) The setting of land use conversion mechanism
Different land use types have different neighborhood ef-
fects.  According  to  the  experience  of  existing  research
(Liu et  al.,  2017; Liang et  al.,  2018), the expansion ca-
pacity  of  land  use  types  is  defined  as  construction
land >  unused  land  >  water  area  >  grassland  >  cultiv-
ated land > forest land. According to the characteristics
of multi-scenario, different neighborhood factors are set
(Table  2(a)).  Among  them,  the  neighborhood  factor
ranges from 0 to 1. The larger the neighborhood factor,

 
Table 1    Four scenarios with different variable values in SD model
 

Parameters Scenario A Scenario B Scenario C Scenario D

GDP growth rate/% 5.23 10.16 5.23 7.70

Population growth rate/% 4.13 7.32 4.13 5.73

Urbanization level/% 69.30 75.77 61.99 68.88

Industrial wastewater removal rate/% 97.01 87.60 100 93.80

Industrial solid waste utilization rate/% 99.05 94.91 100 97.46

Grain yield per unit area/(t/km2) 259.445 270.49 247.36 258.37

Public green land per capita/(m2/person) 7.38 5.28 8.55 6.91

 
Table 2    Neighborhood factors and land conversion costs setting
 

(a) Neighborhood factor parameters

Land use types Scenario A Scenario B Scenario C Scenario D

Cultivated land 0.6 0.5 0.5 0.6

Forest land 0.3 0.1 0.7 0.4

Grassland 0.4 0.3 0.5 0.4

Water area 0.5 0.4 0.6 0.5

Construction land 0.7 1 0.5 0.7

Unused land 0.6 0.6 0.6 0.6

(b) Conversion cost matrix

Land use types
Scenario A Scenario B Scenario C Scenario D

a b c d e f a b c d e f a b c d e f a b c d e f

a 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0

b 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

c 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

d 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0

e 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0

f 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1

Notes: a, b, c, d, e, and f represent cultivated land, forest land, grassland, water area, construction land, and unused land, respectively

834 Chinese Geographical Science 2021 Vol. 31 No. 5



the  stronger  the  expansion  type  of  the  land  use  types.
The  conversion  cost  matrix  is  used  to  indicate  whether
the  current  land  use  types  can  be  converted.  The  four
different  scenarios  correspond  to  four  different  land
conversion  cost  matrices  (Table  2(b)),  where  0  means
no conversion and 1 means can be converted.

Taking Scenario B as  an example,  the expansion ca-
pacity  of  construction  land  was  the  strongest  in  this
scenario, and the neighborhood factor was set as 1. Af-
fected by human demand for food, the expansion capa-
city of cultivated land was secondary. The expansion ca-
pacity of other land use types was assigned in the above
order. In addition, in the context of green ecological in-
tegration  in  the  YRD,  water  resources  protection  was
very important. Therefore, except for the water area, all
other land  types  were  set  to  be  converted  to  construc-
tion land in Scenario B. 

2.3.3　ERI of LUCC
In  order  to  describe  the  relationship  between  land  use
types  and  comprehensive  regional  ecological  risks,  the
land use ERI is established. Specifically, the proportion
of  land use  types  in  the  study area  is  used  to  construct
the ERI.  Land  use  types  are  transformed  into  spatial-
ized ecological  risk  variables  through  sampling  meth-
ods.

To express the regional heterogeneity of land use eco-
logical risk spatially, the study area was divided into 10
km × 10 km units (Zhang et al., 2018). The total of 2446
risk cells were generated, and the ERI was calculated in
each unit.  Among  them,  the  results  of  ERI  were  as-
signed  to  the  central  pixel  of  the  evaluation  area.  The
calculation formula of the land use ERI is expressed as
follows:

ERI =
m∑

i=1

AiWi

A
(1)

where ERI is the land use ERI, i is the land use type, m
is  the  total  number  of  land  use  types, Ai is  the  area  of
land type i in a risk community, Wi is the weight of the
ecological risk intensity of land type i, and A is the total
area of land use in a risk community. By combining the
expert consultation  methods  and  previous  research  res-
ults (Xu et al.,  2016b; Zhang et al.,  2018; Zhang et al.,
2020b),  the  ecological  risk  intensity  weights  of  each
land use  type  are  presented  as  0.32  for  cultivated  land,
0.12  for  forest  land,  0.16  for  grassland,  0.53  for  water
area,  0.85  for  construction  land,  and  0.82  for  unused

land. 

2.3.4　Regression analysis
The  GWR  model  is  an  improvement  of  the
Ordinary Least Squares  (OLS)  model,  which  allows
parameters to be estimated locally (Foody, 2003; Zhang
et al.,  2020a).  The GWR model supports the parameter
estimation  of  the  local  variation  between  independent
and dependent  variables and can reflect  the spatial  het-
erogeneity of  parameters,  which  causes  the  relation-
ships between the variables to vary with location (Yang
et al., 2018; Dadashpoor et al., 2019). The GWR model
is expressed as follows (Fotheringham et al., 1998):

yi = β0 (ui,vi)+
p∑

k=1

βk (ui,vi) xki+εi (2)

where yi represents  the  land  use  ERI, i is  the  sample
point, xki represents  the  socio-economic  driving  forces
factors, ui and vi are the spatial  coordinates of i, β0 (ui,
vi) is the intercept at the location k, βk (ui, vi) is the local
estimated  coefficient  of  the  independent  variable, k is
the grid cell involved in the analysis, p is the total num-
ber of grid cells, and εi is the error term.

In this study, we used the GWR model to analyze the
spatial  heterogeneity  and  evolution  characteristics
between  ERI  and  socio-economic  driving  forces.  The
GDP  and  POP  are  the  representative  socio-economic
factors (Li et al., 2017b; Kefalas et al., 2019). Thus, the
GDP  and  POP  were  used  as  the  explanatory  variables,
and  the  ERI  was  used  as  the  dependent  variable.  The
GWR analysis  was  performed  using  the  GWR tools  in
ArcGIS10.4.  In  the  GWR  model,  two  types  of  kernel
functions exist:  the fixed and the adaptive kernels.  The
fixed-kernel bandwidth was selected because of the grid
data  used  in  this  study,  for  which  the  density  of
sampling points in the space is uniform. The bandwidth
methods  included  the  Akaike  information  criterion
(AIC)  or  cross-validation  (CV),  and  the  AIC  approach
considered the differences in the freedom degree of dif-
ferent models  compared  with  the  CV  method.  There-
fore, we used the AIC method to determine the optimal
bandwidth. 

3　Results
 

3.1　Changes in land use patterns
From 2005–2015, the land use structure of the YRDUA
had undergone significant  spatial  changes (Fig.  3).  The
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cities  located  in  the  lower-and-middle  sections  of  the
Yangtze River experienced the most rapid expansion of
construction land. Cultivated land had the widest distri-
bution and  largest  area  in  the  YRD  and  showed  a  de-
creasing trend with time. The distribution of forest land
was related to the terrain, and it was mainly distributed
in  the  high-altitude  areas  of  the  southern  Anhui
Province  and  the  northern  Zhejiang  Province.  Water
area was mainly concentrated in the Taihu Lake Basin.
The unused land with the smallest area was mainly dis-
tributed around the YRDUA.

The land use changes in YRDUA were analyzed from
two  time  periods  of  2005–2010  and  2010–2015.  The
land  use  transfer  matrix  was  shown  in Table  3. Con-
struction land expanded rapidly, from 18 856.23 km2 in
2005  to 24  141.79 km2 in  2010  to 26  526.47 km2 in
2015, with a net increase of 7670.24 km2 and a substan-
tial  increment  of  40.68%.  The  increase  in  construction
land  was  mostly  at  the  expense  of  cultivated  land.  The
area converted from cultivated land into other land types
was 6824.02 km2 and 3394.29 km2,  accounting  for
71.72% and  65.60% of  land  use  change  areas  over  the
two  stages,  respectively.  This  result  indicated  that  the
construction  land  continually  occupied  cultivated  land,
which led to the continuous decrease in cultivated land.
In addition, the implementation of policies, such as ‘re-
turning  farmland  to  forests,  returning  farmland  to  the
lake’ also  reduced  cultivated  land.  The  total  area  of
forest land and grassland over the two stages decreased
by  392.43  km2 and  358.24  km2,  respectively.  At  the
same time, the total water area increased by 776.10 km2.
Overall, the main changes in the YRDUA included con-
struction  land  that  grew  continuously  and  cultivated
land  that  decreased  correspondingly.  Changes  in  other

land types were relatively unobvious, and no significant
difference was observed in spatial distribution. 

3.2　Spatio-temporal changes of ERI pattern
To  explore  the  spatial  structure  of  the  land  use  ERI  in
the YRDUA, we fitted the optimal model parameters ac-
cording  to  the  spherical  function  of  the  semi-variation
model and  used  the  ordinary  Kriging  method  to  calcu-
late  the  ERI  of  every  grid  element  in  the  study  area  in
2005, 2010 and 2015. Referring to the classification cri-
teria  in Table  4,  the  ecological  risk  distribution  in  the
YRDUA was obtained (Fig. 4).

Fig.  4 shows  that  the  spatial  distribution  pattern  of
ERI  was  extremely  uneven  in  the  YRDUA  in  2005,
2010 and 2015. The ERI had evident north-south differ-
ences  with  the  characteristics  of  circle  diffusion.  In
2005, the overall ecological risk pattern of the YRDUA
presented a  high situation  in  the  central  region,  includ-
ing Shanghai, Suzhou, Wuxi, Changzhou, and Nanjing;
and a  low situation  in  the  southern  region,  mainly  loc-
ated  in  inter-provincial  fringe  cities  with  high  altitude.
The  high  risk  region  in  2010  was  connected  near  the
Taihu Lake Basin, and a new high risk region appeared
in Hefei, Anhui in comparison with that in 2005. At the
end of  2015,  the  spatial  distribution  of  various  risk  re-
gions remained stable, and only some high risk regions
expanded slightly on the original basis.

The  change  of  the  ERI  pattern  of  the  YRDUA  was
shown in Table 5. With the continuous advancement of
urbanization,  the  ecological  risk  level  of  the  YRDUA
had increased to a certain level in 2005–2015. The area
of high  risk  region  and  medium-high  risk  region  in-
creased rapidly, from 43 157.71 km2 to 61 427.27 km2,
and the proportion of  total  land area rose from 20.76%

 

Legend
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Fig. 3    Land use classification map of the Yangtze River Delta Urban Agglomeration (YRDUA) in 2005, 2010 and 2015
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Table 3    Transfer matrix of land use types in the Yangtze River Delta Urban Agglomeration (YRDUA) from 2005 to 2015 (km2)
 

Year Land use types

(a) Transfer matrix from 2005 to 2010

2005

Cultivated land Forest land Grassland Water area Construction land Unused land Class total area in 2010

2010

Cultivated land 101202.12 352.55 55.88 248.42 562.52 0.17 102421.66

Forest land 363.01 56393.63 50.67 16.29 36.72 1.55 56861.87

Grassland 35.55 83.55 6906.13 11.91 31.65 0.3 7069.09

Water area 737.34 29.09 196.67 16002.21 277.67 0.45 17243.43

Construction land 5627.59 262.72 92.68 246.47 17910.92 1.41 24141.79

Unused land 60.53 33.28 60.48 1.38 36.75 29.87 222.29

Class total area in 2005 108026.14 57154.82 7362.51 16526.68 18856.23 33.75

Year Land use types

(b) Transfer matrix from 2010 to 2015

2010

Cultivated land Forest land Grassland Water area Construction land Unused land Class total area in 2015

2015

Cultivated land 99027.37 345.79 43.39 227.72 517.41 10.24 100171.92

Forest land 357.06 56274.22 71.29 20.03 38.37 1.42 56762.39

Grassland 34.87 56.83 6895.35 12.12 5.01 0.09 7004.27

Water area 348.35 27.32 16.41 16859.32 34.71 16.67 17302.78

Construction land 2652.66 154.47 41.29 123.97 23545.01 9.07 26526.47

Unused land 1.35 3.24 1.36 0.27 1.28 184.8 192.3

Class total area in 2010 102421.66 56861.87 7069.09 17243.43 24141.79 222.29

 
Table 4    Criterion of ecological risk index (ERI) classification in the Yangtze River Delta Urban Agglomeration (YRDUA)
 

Level ERI Features

Low risk region <0.2 The ecosystem is quite stable, and its anti-risk ability is very strong

Medium-low risk region 0.2–0.3 The ecosystem is relatively stable, and its anti-risk ability is relatively strong

Medium risk region 0.3–0.4 The ecosystem is moderately stable, and its anti-risk ability is moderately strong

Medium-high risk region 0.4–0.5 The ecosystem is relatively unstable, and its anti-risk ability is relatively weak

High risk region >0.5 The ecosystem is unstable, and its anti-risk ability is weak

 

Legend

a. 2005 b. 2010 c. 2015

Medium risk region

Medium-low risk region
Low risk region

Medium-high risk region High risk region

0 100 200 300 km

Fig. 4    Distribution of land use eclogical risk index (ERI) of the Yangtze River Delta Urban Agglomeration (YRDUA) in 2005, 2010
and 2015
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to 29.53%. Among them, the growth in the high risk re-
gion  was  the  most  significant  with  an  area  increase  of
12 669.62 km2,  and the proportion was four times than
the original. The proportion of low risk region and me-
dium-low risk region decreased slightly and the propor-
tion  of  medium risk  region  dropped significantly,  from
34.26% to 28.54%. 

3.3　 Relationship  change  between  ERI  and  socio-
economic driving forces
The GWR model produces adjusted R2, coefficient, and
residual of each grid, which can clearly express the fit-
ting effect  in  different  locations  and  thus  identify  spa-
tial  heterogeneity  (Li  et  al.,  2017b).  We  used  the  ERI
values in  2005,  2010  and  2015  as  the  dependent  vari-
ables, and the GDP and POP in the corresponding years
as  the  independent  variables  when  building  the  GWR
model.  The  adjusted R2 of  the  GWR  model  in  2005,
2010 and  2015  reached  0.73,  0.76  and  0.72,  respect-
ively. This result demonstrated that GDP and POP could
explain most  of  the ecological  risk situation from 2005
to 2015.

The  regression  coefficients  of  GDP  and  POP  were
counted in Table 6. It could be seen that GDP and POP
had different  positive  and negative  effects  on  ERI,  and
the  proportion  of  positive  and  negative  effects  vary.  In
general, the socio-economic factors (GDP and POP) had
a  mostly  positive  correlation  with  the  ERI.  GDP  and
POP increased  continually  because  of  the  development
of  social  economy  and  the  expansion  of  urban  space,

thereby resulting in the continuous increase in construc-
tion  land  and  the  gradual  decrease  in  other  land  types.
As a  result,  the  ERI  of  land  use  increased,  and  the  de-
gree of ecological risk strengthened.

The spatial distribution of coefficients between socio-
economic factors and ERI were shown in Fig. 5. It could
be seen the driving forces of urbanization on ecological
risk patterns changed with the variation of spatial  posi-
tion. From a spatial perspective, the response degree of
ERI to GDP and POP was clearly high in the southwest
and  north  of  the  YRDUA  and  relatively  lower  in  the
fringe.  From  2005  to  2015,  the  proportion  of  positive
correlation  coefficient  of  GDP  increased  from  83.11%
to 86.01% and then decreased to 83.86%. The result in-
dicated  that  the  positive  drive  of  GDP  increased  first
and then decreased, over the two stages. In comparison,
the proportion of positive correlation coefficient of POP
had  been  increasing,  and  the  range  of  the  impact  was
further enhanced. In 2010, with the increased urbaniza-
tion  in  the  YRDUA,  the  POP  became  larger,  thereby
causing  the  positive  driving  range  of  GDP and  POP to
gradually spread  outward,  and  the  regression  coeffi-
cient  in  the  peripheral  region  was  higher  than  that  of
central  cities.  In  2015,  with  the  balanced  development
of the region, the impact of GDP on ecological risk ten-
ded to be balanced. In terms of space, the positive cor-
relation coefficient of GDP on ecological risk was more
concentrated,  and  the  proportion  of  grid  with  higher
coefficients reduced.  At  the  same time,  the  positive  in-
fluence of POP on ERI expanded from the center to the

 
Table 5    Criterion of ecological risk classification in the Yangtze River Delta Urban Agglomeration (YRDUA)
 

Ecological risk grade
2005 2010 2015

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Low risk region 47241.66 22.71 45335.45 21.80 43750.43 21.04

Medium-low risk region 46325.90 22.27 44446.65 21.37 43455.22 20.89

Medium risk region 71257.99 34.26 61277.57 29.46 59350.34 28.54

Medium-high risk region 39095.60 18.81 42984.29 20.67 44695.54 21.49

High risk Region 4062.11 1.95 13939.30 6.70 16731.73 8.04

 
Table 6    Regression coefficient ratio of GDP and POP of 2005, 2010 and 2015 in the Yangtze River Delta Urban Agglomeration (YR-
DUA)
 

Regression coefficients
2005 2010 2015

GDP/% POP/% GDP/% POP/% GDP/% POP/%

Positive regression coefficients ratio 83.11 83.96 86.01 84.68 83.86 87.90

Negative regression coefficientratio 16.89 16.04 13.99 15.32 16.14 12.10
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edge.  Especially,  with  the  increased  urbanization  in
Nanjing,  Suzhou  and  Jiaxing,  the  POP  impact  on  ERI
changed from a negative driving force to a positive one.
In  general,  urbanization  had  a  positive  impact  on  the
land use ERI in the YRDUA, and the impact of POP on
ecological risk was more significant than that of GDP. 

3.4　Future change in LUCC under multi-scenario
The simulation results of the land use pattern in the YR-
DUA in 2025 under four scenarios were shown in Fig. 6.
The construction land was  increased by 5.76%, 7.41%,
5.25% and  6.06%,  respectively.  The  expansion  of  con-
struction land was mainly concentrated in Shanghai, Su-
zhou,  Wuxi,  Changzhou,  Nanjing  and  Hefei.  At  the
same time,  the  expansion  of  construction  land  had  re-
duced  cultivated  land.  Both  forest  land  and  grassland
were in a slightly decreasing trend. The water area mod-
estly  increased  and  maintained  at  around  0.05%  under
the four scenarios. The unused land changed slightly.

In  Scenario  A,  given  the  same  development  trend
used  in  the  simulation,  the  basic  pattern  of  land  use  in
2025 is consistent with that in 2015. The cultivated land
is still  the  main  type  of  land  use  in  the  YRDUA,  ac-
counting  for  46.29%,  and  most  transferred  cultivated

land  is  converted  to  construction  land,  which  accounts
for 15.18%. In Scenario B, the rapid development of the
social  economy  has  led  to  an  increase  for  construction
land. The expansion rate of construction land has accel-
erated,  accounting  for  16.83%.  In  Scenario  C,  ecology
and  greenness  are  the  prerequisites  for  development.
The  development  of  cultivated  land  and  grassland  is
protected, accounting  for  46.29%  and  3.39%,  respect-
ively. The  expansion  rate  of  construction  land  is  de-
creased,  accounting  for  14.67%,  which  is  0.51%  and
2.16%  lower  than  Scenarios  A  and  B,  respectively.  In
Scenario  D,  the  cultivated  land  accounts  for  45.58%
which can meet the basic requirement of human beings,
and the  pattern  of  cultivated  land  is  similar  to  the  spa-
tial  distribution  of  Scenario  A  (45.91%).  The  area  of
forest land and unused land remain stable, and the pro-
portion of grassland is also consistent with Scenarios A
and B. In addition, the proportion of water area is con-
sistent with Scenarios B and C. Construction land has a
relatively  reasonable  expansion,  and  the  area  ratio
(15.48%) is between the three aforementioned scenarios. 

3.5　Multi-scenario simulation of ERI pattern
The land use  simulation  results  in  2025 vary  under  the
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Fig. 5    Spatial patterns of correlation coefficients between ERI and socio-economic driving forces: GDP and POP in 2005, 2010 and
2015 in the Yangtze River Delta Urban Agglomeration (YRDUA)
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four  different  development  scenarios,  thereby  causing
major changes in the ERI pattern. According to the clas-
sification method (Table 4), the simulated land use eco-
logical  risk  map  of  2025  under  different  development
scenarios are obtained (Fig. 7).

In terms of spatial layout, the degree of land use eco-
logical risk  differs  significantly  under  various  develop-
ment scenarios. Scenario A continues the trend of 2015,
and only the high risk region has changed significantly.
Compared  with  that  in  2015,  the  high  risk  region  in
Scenario A continues to spread outward from cities near

the Taihu Lake,  which connects  Yangzhou and Zhenji-
ang forming a whole high risk region. The medium-high
risk region distributed around the high risk region con-
tinually expands  outward,  which  in  turn  leads  to  a  re-
duction of medium risk region. The low risk region and
medium-low  risk  region  decrease  slightly.  Scenario  B
takes  the  rapid  economic  development  as  a  demand,
thereby  resulting  in  a  significant  increase  and  a  wide
coverage  in  the  high  risk  region.  The  ecological  risk
level  is  positively  correlated  with  the  social  economy.
The more economically developed a region is, the great-
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Fig. 6    Simulated LUCC map of 2025 under four scenarios in the Yangtze River Delta Urban Agglomeration (YRDUA)
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er  the  ERI  will  be.  In  Scenario  C,  the  low  risk  region
has  increased  and  concentrated  in  the  marginal  area  of
the YRDUA. The high risk region has the smallest out-
ward expansion among all  the scenarios,  whereas other
types  of  ecological  risks  have  also  changed  slightly.
Scenario D considers the coordination of economic and
ecological  development,  and  its  ecological  risk  level  is
in the middle of all scenarios. In addition, a low risk re-
gion with a small area first appeared in Shanghai.

In  terms  of  quantitative  trends, Table  7 and Fig.  8
show the area ratios  of  different  grades of  the land use
ecological  risks  in  2025  under  four  scenarios.  From

2005 to 2015, the low risk region, medium-low risk re-
gion, and medium risk region are in a downward trend,
while medium-high risk region and high risk region are
increasing. Regardless of whether it is decreasing or in-
creasing, the  slope  of  the  change  is  gradually  decreas-
ing.  After  joining  the  multi-scenario  development,  the
medium-low risk region and the medium risk region are
consistent with the past trends and continued to decline.
The  area  decreases  the  least  in  Scenario  C,  which  is
1329.48 km2 and 6775.32 km2, respectively,  and  de-
clines the most in Scenario B, which is 2294.42 km2 and
12 94.23 km2, respectively. With the rapid development
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Fig. 7    Simulated land use ecological risk map of 2025 under different development scenarios in the Yangtze River Delta Urban Ag-
glomeration (YRDUA)
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of social economy and the acceleration of urbanization,
the  high  risk  region  continues  to  increase.  It  has  the
highest  proportion  under  Scenario  B,  accounting  for
15.06% with an increase of 7.02% over 2015. And it has
the lowest  proportion under Scenario C, accounting for
11.89% with an increase of  3.85% over  2015.  Besides,
Scenario D is  basically  consistent  with the low risk re-
gion and  medium-high  risk  region  in  2015,  which  ac-
counting for 20.97% and 21.64%, respectively. The oth-
er  ecological  risk  regions  under  Scenario  D  are  in  the
middle of the four scenarios. 

4　Discussion
 

4.1　Comparison of urbanization impact on ERI
In  the  process  of  rapid  urbanization,  land  use  change
directly leads to different land use structure of risk com-

munities,  which  affects  the  entire  ERI.  In  this  study,
POP  and  GDP  are  used  to  represent  urbanization,  and
their explanatory ability and degree of influence are dif-
ferent. In general, the impact of POP on ecological risk
is more significant than that of GDP. As we know, urb-
an  development  in  China  is  driven  by  population
growth. The size of the population reflects the intensity
of human activities and interference directly. The popu-
lation size  directly  affects  the  area  of  urban  construc-
tion land,  which in  turn affects  the ERI.  Highly correl-
ated with population density, GDP can indirectly affect
ecological  risk  patterns.  The  result  is  essentially  the
same as the others in previously published research (Li
et al., 2017b).

In  the  middle  part  of  the  YRDUA,  GDP  and  POP
have  a  positive  impact  on  the  ERI.  Especially  in  the
high risk region, GDP and POP account for a high pro-

 
Table 7    Area ratio of different grade of land use ecological risk of the Yangtze River Delta Urban Agglomeration (YRDUA) in 2025
 

Ecological risk grade
Scenario A Scenario B Scenario C Scenario D

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Low risk region 44289.97 21.30 43295.44 20.82 44470.52 21.38 43614.83 20.97

Medium-low risk region 41685.46 20.04 40505.80 19.48 42125.74 20.25 41395.40 19.90

Medium risk region 50978.48 24.51 47256.11 22.72 52575.02 25.28 51063.57 24.55

Medium-high risk region 44597.23 21.44 45596.34 21.92 44084.37 21.20 45002.79 21.64

High risk region 26432.12 12.71 31329.57 15.06 24727.61 11.89 26906.67 12.94
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Fig. 8    Simulated land use ecological risk map of 2025 under different development scenarios in the Yangtze River Delta Urban Ag-
glomeration (YRDUA). SA, SB, SC and SD represent Scenario A, Scenario B, Scenario C and Scenario D, respectively
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portion that  increases  along  with  time.  With  the  devel-
opment  of  GDP  and  POP,  people’s  living  demand  for
construction  land  is  also  increasing.  Construction  land
constantly  occupies  cultivated  land.  At  the  same  time,
the  demand  of  population  grain  makes  the  cultivated
land expand to forest land and grassland, which lead to
the increase of ERI and the expansion of high ecologic-
al  risk  region.  Whether  the  future  land  use  layout  is
reasonable or not, it  is directly related to the ecological
risk pattern of the region. 

4.2　Simulation model and scenario setting
LUCC is influenced by many factors, including natural,
social  and  economic  variables  (Jiao  et  al.,  2019).  The
quantity and spatial pattern of land use types are neces-
sary  for  LUCC  simulation.  Most  previous  studies  use
mathematical or statistical methods (e.g., Markov chain)
to  predict  LUCC  magnitudes  (Arsanjani  et  al.,  2013;
Han et al., 2015), but it has been proved that these mod-
el  could  not  demonstrate  the  effects  of  various  socio-
economic factors on LUCC, which resulting misestimat-
ing  the  LUCC  magnitudes  (Xu  et  al.,  2016a). For  ex-
ample,  according  to  the  Markov  model  simulation
(Table 8), the magnitude of water will  increase consid-
erably comparing  with  the  actual  area  in  2015.  Obvi-
ously, it is not in compliance with the fact. In addition,
Table 8 shows that the simulated results of the SD mod-
el has lower error rates than the Markov model, and the
simulated  error  rates  are  less  than  1.0%  in  absolute
value. The SD model obtains a result closer to the actu-
al amount because it includes comprehensive factors, in-
cluding  social,  economic,  policy  and  planning  factors.
The FLUS model can simulate the land use dynamics in
a more realistic manner due to the use of the self-adapt-
ive  inertia  and  competition  mechanism  (Liu  et  al.,
2017). So, we integrates the SD model and FLUS mod-
el to simulate LUCC, the kappa value of simulation res-

ults is 0.886 and the overall accuracy is 0.924. Based on
the above research, the SD-FLUS model can be applied
to simulate the spatial and quantitative dynamics of urb-
an expansion in the YRDUA.

In  order  to  depict  different  development  strategies,
we design four scenarios, which considering socio-eco-
nomic  developments  and  ecological  protection.  The
multi-scenario setting includes the setting of exogenous
variables in  the  SD  model,  and  the  setting  of  develop-
ment  adaptability  probability,  neighborhood  factor  and
land  conversion  cost  in  the  FLUS  model.  In  the  SD
model,  we  select  seven  socio-economic  and  ecological
environment  variables  in  the  subsystem.  The  variable
data are all from the statistical yearbook, and the model
has passed the accuracy verification. In the FLUS mod-
el, twelve natural geography and socio-economic factors
are  selected  to  calculate  the  development  suitability
probability based  on  the  ANN  model,  and  then  neigh-
borhood  factors  and  land  conversion  costs  are  set  for
different scenarios according to planning constraints and
environmental constraints. In future research, the LUCC
simulation  model  will  be  improved  by  adding  big  data
and  artificial  intelligence  algorithms.  In  terms  of  data,
the  data  directly  representing human activities  (such as
mobile  phone  signaling,  social  media,  transportation,
etc.) are incorporated into simulation model. 

4.3　 Analysis  of  LUCC  impact  on  ecological  risk
pattern under multi-scenario simulation
The  ecological  risk  pattern  and  its  changes  reflect  the
comprehensive  impact  of  nature,  human  factors,  and
ecological processes  on  the  ecosystem  to  a  certain  ex-
tent (Depietri, 2020). Under the four development scen-
arios,  urban  construction  land  always  tends  to  expand
outward.  Especially  under  Scenario  B,  the  construction
land expands with the fastest rate, and the proportion of
high  risk  regions  has  increased  from 8.04% in  2015  to

 
Table 8    Comparison of the simulation results between SD and Markov model
 

Land use types Actual area/km2
SD model Markov model

Simulated area/km2 Relative error/% Simulated value/km2 Relative error/%

Cultivated land 99503.37 98677.10 –0.83 96617.24 –2.90

Forest land 56619.2 56558.80 –0.11 56418.56 –0.35

Grassland 7055.96 7005.47 –0.72 6851.87 –2.89

Water area 17434.28 17540.7 0.61 18105.47 3.84

Construction land 27175.66 27429.7 0.93 29591.32 8.89
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15.06% in 2025. In Scenario A, cultivated land and wa-
ter area have become the most protected land use type.
In Scenario  C,  the  cultivated  land  and  grassland  de-
crease  the  least.  Moreover,  the  low-speed expansion of
construction land directly forms the best ecological risk
pattern. However,  this  goal  is  difficult  to  achieve  be-
cause  of  various  social  needs.  In  contrast,  Scenario  D
coordinates the rapid economy and the ecological envir-
onment and  relieves  the  pressure  on  the  ecological  en-
vironment caused by the expansion of construction land.
The high risk regions under this scenario accounted for
only 12.94%.

By comparing the four development scenarios set, we
find that Scenario D is more in line with urban develop-
ment needs and current national policies and guidelines.
The  GDP  development  target  and  population  growth
rate  under  Scenario  D  can  not  only  meet  the  needs  of
rapid urbanization in  the  region,  but  also  have less  im-
pact  on  the  environment  to  a  certain  extent.  However,
under  this  scenario,  the  high  risk  regions  in  YRDUA
significantly  increase  and  show  a  flaky  distribution,
spreading  from the  development  belt  along the  river  to
the  interior.  Among  them,  the  high  risk  regions  have
been  distributed  in  patches  in  Shanghai  and  Suzhou-
Wuxi-Changzhou metropolitan areas, while the Nanjing
metropolitan  area  has  not  yet  been  connected.  It  is  not
difficult to  find  that  even  under  the  coordinated  devel-
opment scenario, urbanization expansion occupies other
land  types,  which  is  bound  to  increase  ecological  risks
in  the  region.  For  the  Shanghai  metropolitan  area  and
the Suzhou-Wuxi-Changzhou metropolitan  area  experi-
encing economy developed earlier, focusing on the eco-
logical transformation after rapid urbanization is crucial.
While for the current development of Nanjing metropol-
itan area,  it  is  necessary  to  learn  from previous  experi-
ence to develop unused land efficiently and improve the
efficiency  of  land  intensive  use  under  the  principle  of
not  destroying  useful  arable  land  and  ecological  land.
This  will  help  reduce  ecological  risk  and  play  an  early
warning role,  avoiding the  path  of  first  destruction and
then protection.

In short,  due  to  the  different  development  back-
grounds and objectives, policy makers need to weigh the
relationship between economic development and ecolo-
gical  protection  in  urban  and  regional  development
planning. They  should  not  only  plan  overall  develop-
ment,  but  also  formulate  scientific  strategies  according

to  local  conditions.  In  view  of  the  current  impact  of
LUCC on the ecological risk pattern, the future develop-
ment strategy of the YRDUA can be guided by differen-
tiated policies from the perspective of regional coordin-
ation,  such as implementing strict  ecological  protection
strategies, formulating rationalized economic and social
development goals  and giving priority  to  economic de-
velopment in underdeveloped areas. 

5　Conclusions

This  paper  mainly  studies  the  LUCC  simulation  based
on SD-FLUS  model  under  multi-scenario  in  the  YR-
DUA and its impact on urban ecological risk patterns.

(1)  The  greatest  impact  on  LUCC  from  urbani-
zation  was  construction  land  expansion  (7670.24 km2)
and  cultivated  land  degradation  (7854.22 km2)  during
2005–2015. The ecological risk pattern of land use var-
ies from  north  to  south,  showing  apparent  circle  diffu-
sion characteristics.  The  ERI  generally  showed  an  up-
ward  trend,  which  was  due  to  urbanization  intensified
the development of construction land.

(2)  Socio-economic  and  human  activities  had
changed the  ecological  risk  pattern  in  the  YRDUA be-
cause  of  rapid  urbanization.  The  relationship  between
socio-economic driving  factors  and  ecological  risk  pat-
terns  had  significant  spatial  heterogeneity.  GDP  and
POP had a positive effect on the ERI during 2005–2015,
and the impact of POP gradually exceeded GDP.

(3)  Construction  land  and  ERI  increased  in  various
degrees under  different  scenarios.  In  Scenario  B,  con-
struction  land  expanded  the  fastest  (16.83%),  and  high
ecological  risk  accounted  for  the  highest  proportion
(15.06%). In Scenario C, the ecological risk pattern was
the best, with the high risk region accounting for 11.89%.
In  Scenario  D,  the  construction  land  (32  94.50  km2)
expanded moderately,  and the high risk region accoun-
ted for 12.94%. Considering the needs of rapid econom-
ic  and  ecological  protection,  the  structure  of  land  use
and  ecological  risk  pattern  under  Scenario  D  was  the
best, which could be recommended for the coming dec-
ade.

The SD-FLUS model is highly effective in represent-
ing  the  impacts  of  natural  and  socio-economic  factors,
and it can be used for LUCC simulation with high preci-
sion.  The  evaluation  of  urban  ecological  risk  from  the
perspective  of  the  spatio-temporal  dynamics  of  LUCC
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can  provide  a  practical  way  to  describe  its  ecological
risk pattern. In addition, the multi-scenario simulation of
land  use  and  its  ecological  risk  is  helpful  for  decision-
makers to make reasonable development strategies.
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