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Abstract: The relationship between landscape patterns and soil conservation, as well as the need for nature-based soil erosion control
and landscape pattern optimization, have increasingly gained attention in the scientific and political community in the past decade. With
the implementation of a series of afforestation/reforestation projects in the western China, the optimization and management of forest
landscape patterns will become more important for soil conservation. In this study, the Bailongjiang Watershed (BLJW), in the western
China,  was used as  a  case study to  explore  the relationship between the forest  landscape pattern and soil  conservation services  using
mathematical and spatial statistics methods. A spatially-explicit model called the sediment delivery ratio (SDR) model of the Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) was used to assess the soil conservation service in each sub-basin of BLJW in
1990, 2002, and 2014, and landscape indices were used to describe changes in forest landscape patterns in each sub-basin. Nine forest
landscape indices, including the percentage of landscape (PLAND), largest patch index (LPI), edge density (ED), landscape shape index
(LSI),  mean  patch  shape  (SHAPE_MN),  patch  cohesion  index  (COHESION),  landscape  division  index  (DIVISION),  splitting  index
(SPLIT)  and  aggregation  index  (AI),  were  significantly  correlated  to  the  soil  conservation  service.  PLAND,  AI,  LSI  and  SPLIT  of
forestland were determined to be the more important landscape indicators. The results also indicated that soil conservation was substan-
tially scale-dependent.  The results  demonstrated that  landscape type diversity greatly affected watershed soil  conservation and can be
used  for  forest  landscape  restoration  and  management.  Furthermore,  spatial  statistics  analysis  indicated  that  the  Spatial  Lag  Model
(SLM) was superior to the Ordinary Least Squares (OLS) for soil conservation regressions in 1990 and 2014, while OLS was more ap-
propriate for the regression in 2002. These findings will be useful for enhancing soil conservation and for optimizing mountainous forest
landscape patterns for afforestation/reforestation and regional development. Future planning and implementation of ecological restora-
tion should focus more on strategic spatial planning and integrated landscape management with full consideration of future climate, wa-
ter  availability/consumption,  hydrological  regime,  topography,  and  watershed  features,  especially  on  afforestation  and  revegetation
projects in western mountainous China, where the socio-ecological system is fragile and poor.
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1　Introduction

Except global  environmental  change,  a  variety  of  hu-

man activities including agricultural production and nat-
ural resource exploitation, wildfire, landslide and debris,
and  invasive  species,  are  placing  immense  pressure  on 
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forests  (Bladon,  2018; Erbaugh  and  Oldekop,  2018;
Fischer,  2018; Favero  et  al.,  2020).  Large-scale  forest
restoration and  management  efforts  are  required  to  en-
sure the  forest-related  ecosystem  services,  such  as  car-
bon sequestration, biodiversity conservation, and provi-
sion  contribution  (Wang  et  al.,  2007; Chazdon,  2008;
Lewis et al., 2015; Ouyang et al., 2016; Lu et al., 2018;
Favero et al., 2020). Investments in forest landscape res-
toration and management play a great role in improving
livelihoods  and  well-being  (Kareiva  et  al.,  2011;
Ouyang  et  al.,  2016; DeFries  and  Nagendra,  2017;
Erbaugh  and  Oldekop,  2018; Fischer,  2018).  Forest
management on large spatial  and temporal  scales is  ur-
gently needed to counteract the effects of environment-
al  change and human activities,  which are  the  result  of
large-scale ecological patterns and processes that are not
limited by administrative borders (Fischer, 2018). Emer-
ging  paradigms  of  forest  management  emphasize  the
need to  consider  decision-making,  and how the present
and potential decisions may interact with social and eco-
logical  conditions  and  processes  that  affect  landscapes
across  space  and  time  (Filotas  et  al.,  2014; Messier  et
al.,  2015; Fischer,  2018).  Moreover,  land  management
practices  influence  ecological  patterns  and  processes
well into  the  future  with  impacts  that  often  go  unob-
served for long periods of time (Fischer, 2018).

Forest landscapes  are  typical  socio-ecological  sys-
tems composed  of  interdependent  biophysical  compon-
ents and associated human dimensional factors (Ostrom,
2009; Angelstam et  al.,  2013; Spies  et  al.,  2014; Guer-
rero et al., 2018; Wu et al., 2020). A landscape pattern is
the key  element  of  a  basic  landscape  structure;  there-
fore, it has a significant role in natural conservation and
landscape  management  (Reed  et  al.,  2017; Zeng  et  al.,
2017; Erbaugh  and  Oldekop,  2018; Gong  and  Xie,
2018). The analysis of landscape patterns is a major is-
sue of landscape ecology (Wu and Hobbs, 2002; Zhang
et  al.,  2011; Turner  and  Gardner,  2015).  Changes  in
landscape  patterns  can  affect  the  ecosystem’s  structure
and  function,  the  provision  of  ecosystem  services,
through  altering  surface  biophysical  parameters  (MA,
2005; Ouyang  et  al.,  2010; Kindu  et  al.,  2016). Land-
scape metrics, the simple quantitative metrics reflecting
the composition of landscape structure and attributes of
spatial  land use allocation (Wu et  al.,  2002),  are  useful
for  studying  landscape  patterns  (Ren  et  al.,  2013),  also
are  useful  to  reveal  relationships  between  landscape

structures  and  ecological  processes  (Fry  et  al.,  2009;
Ren  et  al.,  2013). On  a  landscape/regional  scale,  land-
scape component  directly  affects  the  provision  of  eco-
system services,  while  landscape  pattern  indirectly  im-
pacts  ecosystem  services  through  changing  ecological
processes (Fagerholm et al., 2012; Fu et al., 2013; Jia et
al.,  2014; Rieb  and  Bennett,  2020). Therefore,  under-
standing  the  relationship  between  landscape  patterns
and ecosystem  services  is  vital  to  maintaining  ecosys-
tem integrity  and  sustaining  Earth  (Kozak  et  al.,  2011;
Gray and Lee, 2017), and has become more important to
the study of landscape ecology and ecosystem manage-
ment than ever before.

The soil  conservation  service  is  a  fundamental  eco-
system regulation service that is essential to sustainable
development. In quantitative terms, it is obtained as the
difference between the potential  and actual soil  erosion
(Ausseil et al., 2013; Rao et al., 2014; Liu et al., 2019).
The  soil  conservation  service  can  be  obtained  with  the
Revised Universal Soil Loss Equation (RUSLE) (Liu et
al.,  2019),  Water  Erosion  Prediction  Project  (WEPP)
models  (Revuelta-Acosta  et  al.,  2021),  Soil  and  Water
Assessment  Tool  (SWAT)  (Cong  et  al.,  2020; Shi  and
Huang,  2021),  and  InVEST-SDR  (Sediment  Delivery
Ratio (SDR) in Integrated Valuation of Ecosystem Ser-
vices  and  Tradeoffs  (InVEST))  (Posner  et  al.,  2016;
Sharp et al., 2020), which are all useful tools for quanti-
fying  and  managing  soil  conservation  (Daily  et  al.,
2009; Kareiva  et  al.,  2011; Fu  et  al.,  2013; Liu  et  al.,
2019; Sharp et al.,  2020). SWAT, RUSLE, WEPP, and
InVEST-SDR have been extensively validated and used
at the  watershed and hillslope scales  in  different  envir-
onments and countries (Liu et al., 2019; Shi and Huang,
2021; Revuelta-Acosta  et  al.,  2021).  InVEST-SDR  has
been widely used for its reliable feature to predict water
erosion  in  different  environments  and  its  integration
with  ArcGIS  and  satellite  data  (Aneseyee  et  al.,  2020;
Cong et al.,  2020; Ougougdal et al.,  2020; Sharp et al.,
2020). InVEST-SDR can also be used to obtain custom-
ized soil conservation measures and management policy
for  specific  watershed  characteristics  (Zhang  et  al.,
2019; Aneseyee  et  al.,  2020; Ougougdal  et  al.,  2020;
Zhou et al., 2020).

Land use and landscape patterns affect changes in soil
conservation  (Fu  et  al.,  2013; da  Silva  et  al.,  2015;
Turner  and  Gardner,  2015; Zhang  et  al.,  2019). Land-
scape metrics have been found useful to show the rela-
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tionship between  landscape  patterns  and  soil  conserva-
tion services and the main methods of analysis are cor-
relation, regression, residual analysis and spatial econo-
metric  models  (Shi  et  al.,  2013; Zhang et  al.,  2017; Ji-
ang et al., 2020). For example, Ouyang et al. (2010) se-
lected landscape metrics to explore the soil  erosion dy-
namics  response  to  landscape  patterns  and  found  that
contiguous  grassland  patches  reduced  soil  erosion. da
Silva  et  al.  (2015) indicated that  landscape  metrics,  in-
cluding  PLAND  (percentage  of  landscape),  NP  (num-
ber  of  patches),  PD  (density  of  patches),  LPI  (largest
patch  index),  ED  (edge  density),  LSI  (landscape  shape
index) and FRAC (fractal dimension index) were sensit-
ive to the changes in soil surface micro-morphology. Shi
et al. (2013) found that the main factors that influenced
watershed soil  erosion  and  sediment  yield  at  the  land-
scape  level  were  SHDI  (Shannon  diversity  index),  AI
(aggregation  index),  LPI,  CONTAG  (contagion)  and
COHESION  (cohesion  index). Liu  (2017) found  that
landscape metrics  like  patch/edge  density,  shape  in-
dices,  and diversity  indices  at  the  landscape  level  were
effective in linking landscape patterns with soil erosion.
Jiang  et  al.  (2020) found  that  the  soil  erosion  module
correlated  positively  with  NP,  PD,  ED,  LSI,  SHAPE
(mean shape index) and FRAC, while it correlated neg-
atively with LPI, ENN (Euclidean nearest- neighbor dis-
tance),  IJI  (interspersion  and  juxtaposition  index),  AI,
and PLADJ (percentage of like adjacencies).

Afforestation activities  and  soil  and  water  conserva-
tion measures can reduce erosion to promote soil reten-
tion (Wang et al.,  2007; Nunes et al.,  2011; Alatorre et
al., 2012; Feng et al., 2016; McEachran et al., 2018; Ji-
ang et al., 2020; Zhou et al., 2020). For example, Jiang
et  al.  (2020) found that  vegetation  restoration  can  im-
prove vegetation cover and soil retention, and that dense
forest  cover  is  a  major  factor  in  preventing  erosion  in
the Chinese Loess Plateau.  Furthermore,  soil  erosion is
affected by various factors like climate, topography, ve-
getation cover, human interferences, improper land use,
agricultural  practices,  and  deforestation, etc.  (Zhang  et
al., 2017; Diwediga et al., 2018). Therefore, it is urgent
to understand the relationship between forest  landscape
patterns  and  soil  conservation  and  identify  landscape
metrics to  monitor  it  and  benefit  forest  landscape  pat-
tern optimization and management.

Mountainous areas  provide  diverse  goods  and  ser-
vices  to  human societies  but  are  sensitive to  rapid land

use/cover change, fragmentation of habitats, natural dis-
asters, human activities and climate change (Schröter et
al., 2005; Grêt-Regamey et al., 2012; Gong et al., 2014;
Xie, 2015; Wang et al., 2017). Protecting fragile moun-
tainous ecosystems through afforestation and ecological
restoration  to  enhance  ecosystem  services  is  a  huge
challenge (Grêt-Regamey et al., 2012). A series of affor-
estation programs,  the most  ambitious revegetation and
conservation projects, including the Natural Forest Pro-
tection  Project  (NFPP),  the  Grain  to  Green  Program
(GTGP), and  soil  and  water  conservation  (SWC)  pro-
grams have been implemented in mountainous areas of
western  China  (Ouyang  et  al.,  2016).  The  design  and
management of  the  forest  landscape  to  improve  the  ef-
fectiveness  of  afforestation  and  ecological  restoration
are  of  scientific  and  practical  concern  (Brunckhorst,
2011; Hainz-Renetzeder  et  al.,  2015). Thus,  mountain-
ous ecotones in western China, which undergo the pres-
sures placed by geo-disasters, a large population and in-
tensive human activities,  should be paid more attention
to  forest  landscape design and management  to  enhance
their vital ecosystem services (Wang et al.,  2017; Fu et
al.,  2018).  In  this  study,  Bailongjiang  Watershed
(BLJW) in  western  China,  a  typical  ecotone  with  fra-
gile  environments  that  experiences  frequent  landslides,
soil  erosion,  and  intensive  human activities,  is  selected
to understand  how the  forest  landscape  pattern  will  af-
fect  soil  conservation  services.  The  objectives  of  this
study were to: 1) assess the soil conservation service on
a  sub-basin  scale  via  the  SDR  model  of  InVEST;
2)  identify  important  forestland  landscape  indices  for
soil conservation;  3)  characterize  the  spatial  distribu-
tions between soil  conservation and the selected forest-
land  landscape  indices,  and  4)  establish  a  robust  basis
for  forestland  landscape  management  to  enhance  soil
conservation services for mountainous areas. 

2　Study Area and Methods
 

2.1　Study area
Bailongjiang  Watershed  (BLJW)  (103°00′E–105°30′E
and  32°36′N–34°24′N),  located  in  the  transitional  zone
of  the  Tibetan  Plateau,  Qinba  Mountains  region  and
Loess Plateau, with an area of 18 437.7 km2, is vital for
soil and water conservation in the western China due to
its steep slopes and deep valleys (Fig. 1). BLJW is char-
acterized by a subtropical climate, annual mean temper-
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atures  that  range  from 2℃ to  15℃ and  a  mean  annual
precipitation of 450 mm, of which over 80% falls from
June  to  September.  The  dominant  land  use  types  of
BLJW are forestland, farmland, and grassland. With the
implementation of a series of afforestation/reforestation
policies  in  China,  forestland  has  become  the  main  and
most important land-use type of watershed (Zhang et al.,
2019). The soils in BLJW are mainly leached-cinnamon
soils, brown soils, dark-brown soils and alpine meadow
soils.  Vegetation  types  are  temperate  deciduous  broad-
leaved  forest,  evergreen  broad-leaved  forest,  temperate
mountain coniferous forest and alpine mountain conifer-
ous forest. The ongoing land use and human activities in
the  watershed  have  resulted  in  severe  land  degradation
and soil erosion. 

2.2　General study framework
BLJW was  divided  into  37  hydrological  sub-basins  re-
sponse  units  via  the  distributed  watershed  hydrological
model—SWAT—to  obtain  spatial  patches  for  analysis
of  landscape  pattern  and  soil  conservation  (Fig.  1).
Based  on  the  sub-watershed  unit,  the  landscape  pattern
and soil  conservation  service  were  quantitatively  char-
acterized via the landscape pattern index and SDR mod-
el of InVEST. Mathematical and spatial statistics meth-
ods were  used  to  reveal  the  relationship  between  land-
scape metrics and soil conservation of the 37 sub-basins
in BLJW.  Soil  conservation  of  each  sub-basin  was  as-

sessed  via  the  SDR  model  of  InVEST.  The  landscape
metrics of  each  sub-basin  were  calculated  with  Frag-
stats version 4.2 (McGarigal et al.,  2012). Our research
framework included several steps: 1) land use classifica-
tion  and  mapping  via  Landsat  Thematic  Mapper  (TM)
and  Enhanced  Thematic  Mapper  (ETM+)  images;
2)  calculation of  forestland landscape indices (area and
edge  metrics,  shape  metrics,  and  aggregation  metrics)
via Fragstats  version  4.2;  3)  assessment  of  soil  conser-
vation service via the SDR model of InVEST; 4) identi-
fication  of  the  important  forestland  landscape  indices
via  mathematical  statistics;  5)  spatial  correlation
between the identified forestland landscape indices  and
soil conservation  via  spatial  statistics  methods;  6)  rela-
tionship between soil  conservation and forestland land-
scape pattern and implications for landscape pattern op-
timization and watershed management. 

2.3　Data source
The  DEM  dataset  with  a  spatial  resolution  of  30  m
was  downloaded  from  the  Geospatial  Data  Cloud
(http://www.gscloud.cn).  Land-use  maps  of  BLJW  in
1990,  2002,  and  2014  were  obtained  via  Landsat
TM/ETM satellite data in the summer (July and August)
with  a  spatial  resolution  of  30  m downloaded from the
United  States  Geological  Survey  (http://glovis.usgs.
gov). In this study, land use types were divided into six
categories,  including  farmland,  forestland,  grassland,
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Fig. 1    Location of the study area: Bailongjiang Watershed and its 37 hydrological sub-basins in Gansu Province of the western China
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water, construction land, and unused land, according to
the Land-Use  and  Land-Cover  Change  (LUCC)  classi-
fication standard and the current situation of BLJW. The
overall  accuracies  in  1990,  2002,  and  2014  were
89.02%,  90.71%,  and  91.08%,  respectively,  which  are
acceptable for land use change analysis (Gong and Xie,
2018). The soil map in BLJW was obtained from the 1∶
1  000  000  soil  type  map  of  Gansu  Province;  the  soil
particle  and soil  organic  carbon data  were  obtained via
field  sampling  and  laboratory  analysis  in  July  2012.
Meteorological data,  including  the  monthly  precipita-
tion  of  the  17  meteorological  stations  in  BLJW and  its
adjacent  area  from  1990  to  2014,  were  obtained  from
the  Chinese  Meteorological  Data  Service  Center
(http://cdc.cma.gov.cn). 

2.4　 Soil conservation  service  assessment  via  In-
VEST-SDR model
The soil  conservation  of  ecosystems  can  best  be  de-
scribed as soil  erosion prevention (Ausseil  et  al.,  2013;
Sharp et  al.,  2020).  Based on the InVEST-SDR model,
the soil  conservation  service  was  obtained  by  the  sedi-
ment retention  index  (SEDRET)  with  the  revised  uni-
versal soil  loss  equation  (RUSLE).  An  index  of  sedi-
ment retention on pixel i was calculated by the model as
follows:

SEDRETi = Ri ·Ki ·LS i (1−CiPi)SDRi

SDRi =
SDRmax

1+ exp
( IC0− ICi

k

) (1)

where SEDRETi is  an  index  of  sediment  retention
weighted  by  the SDR factor. SDRi is  the SDR ratio  for
pixel i, Ri is the rainfall erosivity ((MJ·mm) / (ha·h)), Ki
is the soil erodibility ((t·ha·h) / (MJ·ha·mm)), LSi is the
slope length-gradient factor, Ci is the crop management
factor, Pi is  the  practice  factor  (Renard  et  al.,  1997),
SDRmax is the maximum theoretical SDR and is set to an
average value of 0.8 (Vigiak et al., 2012), and IC0 and k
are  calibration  parameters  that  define  the  shape  of  the
SDR-IC relationship  (see  more  details  in  the  InVEST

User’s  Guide).  The procedure  for  the  calculation  of Ri,
Ki, Ci and Pi refers to the research work of Zhang et al.
(2019). 

2.5　 Calculation and  selection  of  forestland  land-
scape metrics
Fragstats (version  4.2)  was  used  to  calculate  the  land-
scape  pattern  indices  from the  grid  files  of  land  use  in
1990, 2002, and 2014. More than 110 landscape pattern
metrics  can  be  obtained  for  each  land  use  grid.
However,  if  all  the  possible  landscape  pattern  metrics
had been used as effective variables for regression ana-
lysis,  it  would  have  caused  workload  redundancy,  also
introduced the curse of dimensionality due to the linear
relations  between  the  various  metrics  (Zhang  et  al.,
2017). Therefore, it is vital to select the most represent-
ative metrics that are closely correlated with soil conser-
vation. There  are  three  kinds  of  landscape  pattern  met-
rics at the class level: area and edge metrics, shape met-
rics and aggregation metrics (McGarigal et al., 2012). In
this study, 11 landscape indices were selected based on
their suitability to characterize the forest landscape pat-
tern:  PLAND  (percentage  of  landscape),  LPI  (largest
patch  index),  PD  (patch  density),  AREA_MN  (mean
patch size), ED (edge density), LSI (landscape shape in-
dex),  SHAPE_MN  (mean  patch  shape),  COHESION
(patch  cohesion  index),  DIVISION  (landscape  division
index), SPLIT (splitting index), AI (aggregation index).
More  details  on  the  exact  information  and  calculation
can be found in McGarigal et al. (2012).

Pearson correlation  analysis  between  soil  conserva-
tion and forestland landscape metrics was carried out to
select  the  landscape  pattern  metrics  that  significantly
correlated with soil conservation (Table 1). The prelim-
inary analysis  showed that  most  of  the  forestland land-
scape metrics were significantly related to soil conserva-
tion at  the 0.05 level including PLAND, LPI,  ED, LSI,
SHAPE_MN, COHESION, DIVISION, SPLIT, and AI.
Furthermore,  it  was  determined  that  soil  conservation
was affected by the combination of area and edge met-

 
Table 1    Pearson correlation analysis of soil conservation and the 11 selected landscape indices in Bailongjiang Watershed
 

PLAND LPI PD AREA_MN ED LSI SHAPE_MN COHESION DIVISION SPLIT AI

Soil conservation 0.428** 0.326** 0.112 0.162 0.321** −0.209* 0.204* 0.222* −0.309** −0.198* 0.223*

Notes: **. Significant at the 0.01 level (2-tailed); *. Significant at the 0.05 level (2-tailed); PLAND, percentage of landscape; LPI, largest patch index; PD, patch
density; AREA_MN, mean patch size; ED, edge density; LSI, landscape shape index; SHAPE_MN, mean patch shape; COHESION, patch cohesion index;
DIVISION, landscape division index; SPLIT, splitting index; AI, aggregation index
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rics, shape metrics and aggregation metrics. The correla-
tion coefficient between PLAND for forestland and soil
conservation  was  the  largest  one,  which  indicated  that
the ratio of forestland played an important role in water-
shed  soil  conservation  in  western  China.  Finally,  nine
forestland landscape metrics were used as the independ-
ent variables for the multiple linear regressions. 

2.6　Multiple linear regression analysis 

2.6.1　Principle of multiple linear regression analysis
Regression  analysis  was  performed  to  determine  the
correlations between two or more variables with cause-
effect  relations.  Multiple linear  regression models  were
used to  describe  how  a  single  response  variable  de-
pends linearly  on  some  predictor  variables.  The  mul-
tiple linear regression equation has the form:
y = ŷ+ε = β0+β1xPLAND+ ...+βpxAI+ε (2)

ŷwhere y is the observed value of the soil conservation, 
is  the  predicted  value  of  the  soil  conservation. β0 is  a
constant term, and β1,  ..., βp (p = 1, 2,  ...,  9) are partial
regression coefficients. xPLAND, xLPI,  ..., xAI are the val-
ues  of  nine  landscape  metrics  for  forestland  including
PLAND, LPI, ED, LSI, SHAPE_MN, COHESION, DI-
VISION, SPLIT, and AI. ε is the residual error. 

2.6.2　Significance test
For multiple linear  regression analysis,  the significance
test of  the  equations  and  variables  were  used  to  estim-
ate the  accuracy  of  the  regression  model.  The  regres-
sion equation and the  contribution of  each independent
variable should be statistically significant to ensure that
the  multiple  linear  regression  equation  consistent  with
the  data  characteristics  (Zhang et  al.,  2017).  Therefore,
hypothesis testing was needed for the established regres-
sion equation.

(1) Hypothesis test for the regression equation
The F test was selected as the hypothesis test for the

regression  equation.  The  null  hypothesis  is  H0: β1 =
β2 = … = βp = 0, that is, no regression model can be es-
tablished. The F statistic is formulated as the following
(Zhang et al., 2017):

F =
S reg/m

S res/(n−m−1)

S reg =

n∑
i=1

(ŷ− y)2

S res =

n∑
i=1

(y− ŷ)

(3)

ŷ
ȳ

where Sreg is  the  sum of  squares  of  the  regression, Sres
is  the  sum of  squares  of  the  residuals,  is  the  predict-
ed  value  of  the  dependent  variable,  is  the  mean
value of the dependent variable, y is the observed value
of  the  dependent  variable, m is  the  degrees  of  freedom
of  the  regression, n is  the  number  of  sample  data  and
(n−m−1)  is  the  degrees  of  freedom  of  the  residuals.  If
F > Fα =  0.05  (m, n−m−1),  the  null  hypothesis  is  rejected,
which shows that  there  is  a  linear  relationship between
the dependent and the independent variable.

(2) Hypothesis  test  of  the  partial  regression  coeffi-
cient

When  a  regression  model  is  tested  for  significance,
the t-test is used to determine which models are import-
ant  explanatory  variables.  The null  hypothesis  of  the t-
test is H0: βi = 0 (i = 1, 2, …, m; m = 9). The t-statistic is
determined as:

Ti =
bi

S bi
(4)

where bi is the partial regression coefficient of the inde-
pendent variable, Sbi is the standard error of bi. 

2.6.3　Stepwise regression
Stepwise regression is a useful method for selecting in-
dependent  variables  with  no  significant  collinearity  for
multiple  linear  regression  models  (Neter  et  al.,  1996).
Specific steps of stepwise regression were:

(1) The  simple  linear  regression  models  (only  in-
clude one variable) were fitted with nine candidate inde-
pendent variables (PLAND, LPI,  ...,  AI).  In addition to
this, k (k ≤ 9) linear regression models satisfied with the
F test, and PLAND was first introduced into the model
because of the smallest p value.

(2) After the PLAND variable was introduced into the
model,  the  independent  variables  were  combined  as
PLAND and LPI, PLAND and ED, and so on. Since the
P value of  PLAND and  AI  was  the  smallest  and  satis-
fied  with  the F test,  the  AI  variable  was  also  added  to
the model.

(3)  Then,  the  PLAND  and  AI  were  incorporated  in
the model. The t-test was used to determine whether the
PLAND variable  still  had statistical  significance.  If  the
PLAND did not pass the t-test, it was removed from the
model. If the regression models of the other seven vari-
ables including  AI  were  fitted  well,  then  the  combina-
tion  of  independent  variables  with  the  lowest P value
was  introduced into  the  model.  The  computing  process
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was terminated  until  all  statistically  significant  inde-
pendent variables were included in the model.

(4) If PLAND passed the t-test, it was incorporated in
the  model.  The  regression  analysis  continued  to  fit  the
model  with  the  remaining  seven  variables,  beginning
with the PLAND and AI variables. The rest of the vari-
ables  were  tested  for  statistical  significance,  and  the
variable with the smallest P value was gradually incor-
porated into the model. This kind of computing process
was  repeated  until  the  independent  variables  without
statistical significance were excluded from the model. 

2.7　Spatial statistics analysis 

2.7.1　Spatial correlation test
The  bivariate  Moran’s I,  including  the  global  bivariate
Moran’s I (Isl)  and  the  local  bivariate  Moran’s I
(I’sl),  is  an  effective  way  to  explore  spatial  clustering
(positive spatial correlation) and spatial dispersion (neg-
ative  spatial  correlation).  In  this  study,  bivariate  LISA
was used to reveal  the spatial  correlations between soil
conservation and forestland landscape metrics at the sub-
basin unit based on GeoDA software (Anselin and Rey,
2014). The Isl and I’sl are the global and local bivariate
Moran’s I for  soil  conservation  and  each  forestland
landscape metric (EFLM), respectively. The calculation
equations can be found in Anselin and Rey (2014). The
values  of Isl /I’sl range from −1 to  1.  A positive Isl /I’sl
value  indicated  a  positive  spatial  correlation  between  a
soil conservation value and EFLM, which signifies that
the  sub-basin  with  a  high  soil  conservation  value  is
likely to be surrounded by a sub-basin with high EFLM
values; a  negative  value  indicates  that  there  is  a  negat-
ive spatial correlation. The greater the absolute value of
Isl /I’sl, the closer of the spatial correlation between soil
conservation and EFLM.

The  bivariate  LISA method  can  be  used  to  visualize
the spatial correlations by generating cluster maps. The
cluster  map generated by the bivariate  LISA represents
four types of local spatial autocorrelations, 1) the high-
high  type  (shorted  as  HH)  shows  high  values  of  soil
conservation surrounded  by  high  values  of  the  forest-
land  landscape  index;  2)  the  high-low  type  (shorted  as
HL) shows high values of soil conservation surrounded
by low values of the forestland landscape index; 3)  the
low-high type (shorted as LH) shows low values of soil
conservation surrounded  by  high  values  of  the  forest-
land landscape index; and 4) the low-low type (shorted

as LL)  shows  low values  of  soil  conservation  surroun-
ded by low values of the forestland landscape index. 

2.7.2　Spatial regression model
The spatial regression method is used to reveal the spa-
tial dependence of soil conservation on forestland land-
scape metrics for 1990, 2002, and 2014. Spatial Regres-
sion  Models  (SRMs),  including  Spatial  Lag  Model
(SLM) and Spatial Error Model (SEM), were developed
via Ordinary Least Squares (OLS) by introducing a spa-
tial weight matrix into the regression (McMillen, 2004;
Chi and Zhu, 2008). SLM depicts spatial dependency by
dependent  variables,  whereas  SEM accounts  for  spatial
error  dependency  (Anselin  et  al.,  2006).  The  equations
of  SLM  and  SEM  can  be  found  in Anselin  and  Rey
(2014).  The  model  performance  comparison  of  SLM
and  SEM  is  carried  out  by  the  Lagrange  Multiplier
(LMLAG and LMERR) and the Robust Lagrange Multi-
plier  (R-LMLAG  and R-LMERR).  If  the  LMLAG  is
more  statistically  significant  than  the  LMERR,  and  the
R-LMLAG  is  significant  while  the R-LMERR  is  not,
then SLM is more appropriate; conversely, SEM is more
appropriate. If  the model  performance comparison can-
not  be  established,  statistical  parameters  like R2,  Log
likelihood  (LogL),  Akaike  information  criterion  (AIC)
and Schwarz criterion (SC), can be used. Normally, the
improved model  performance  is  indicated  by  the  in-
creased R2 and LogL, as well as by decreased AIC and
SC (Anselin et al., 2006). 

3　Results
 

3.1　Change of soil conservation services in the sub-
basins of BLJW
The  soil  conservation  of  BLJW  initially  decreased  and
then increased from 1990 to 2014 (Fig. 2). The minim-
um  value  of  soil  conservation  decreased  continuously,
which indicated that soil conservation declined in some
sub-basins.  Spatially,  there  were  few  substantial
changes in  soil  conservation over  the three years.  High
values  of  soil  conservation  were  mainly  distributed  in
the  southeastern  parts  of  BLJW  (such  as  in  sub-water-
shed  No.  1,  2,  3,  4,  5,  9,  10  and  11)  (Fig.  2),  which
mostly consist of nature reserves with less human activ-
ities. Low values of soil conservation were distributed in
the northern and middle parts of BLJW (such as in sub-
basins No. 30, 31, 14, 20, 21 and 22), where agricultur-
al activities are more intense (Fig. 2). 
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3.2　Multiple linear  regression  analysis  of  soil  con-
servation
The  independent  variables  were  the  nine  forestland
landscape  indices  and  the  dependent  variable  was  soil
conservation. Upon completion of the regression analys-
is, four regression models were obtained (Table 2). The
Sig. F indicated the significance of the regression equa-
tion at  the 0.05 level,  and the Sig. F values of the four
models  were  0.000,  which  indicated  that  the  models
provided a good fit  to the data. The R2 values reflected
the proportion  of  the  variance  of  the  original  data  ex-
plained  by  the  regression  equation.  The R2 of  the  four
models were  0.183,  0.231,  0.298  and  0.394,  respect-
ively,  indicating  that  the  fourth  model  explained  the
largest amount of variance in the data. However, the R2

coefficient  has  some  limitations  when  evaluating  the
model. For example, the value of R2 may increase even
if  the introduced variable is  not  statistically significant.
Thus, the adjusted R2 was used as an additional statistic-
al parameter to evaluate the model. In this study, the R2

and  adjusted R2 both increased  as  the  number  of  inde-
pendent variables increased.

Five variables were excluded by model 4 and its test
results are listed in Table 3. In the study, the t-test was
applied to the independent variables at the 0.05 level. As
shown in Table 3, the Sig. T values of the five variables
added to  model  4  were  greater  than  0.05,  which  indic-
ated that the five variables were not statistically signific-
ant for regression analysis. Moreover, the variance infla-
tion factor (VIF, which is the reciprocal of tolerance) of
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Fig. 2    Soil conservation service of the sub-basins in Bailongjiang Watershed in 1990, 2002, and 2014

 
Table 2    Four regression models and their analysis of variance (ANOVA) for soil conservation in Bailongjiang Watershed
 

Model and variable R R2 Adjusted R2 Standard error of the estimate Sig. F

1 / PLAND 0.428 0.183 0.175 1.923 0.000

2 / PLAND, AI 0.481 0.231 0.217 1.875 0.000

3 / PLAND, AI, LSI 0.546 0.298 0.278 1.800 0.000

4 / PLAND, AI, LSI, SPLIT 0.628 0.394 0.371 1.680 0.000

Note: landscape indices were shown in Table 1

 
Table 3    T test and collinearity analysis for variables excluded from model 4
 

Variable Beta In T Sig. T Partial correlation
Collinearity statistics

Tolerance VIF

LPI −0.132 −0.793 0.430 −0.077 0.209 4.794

ED 0.033 0.222 0.824 0.022 0.258 3.883

SHAPE_MN −0.092 −1.018 0.311 −0.099 0.701 1.427

COHESION −0.310 −1.005 0.317 −0.098 0.060 16.618

DIVISION 0.208 1.455 0.149 0.141 0.276 3.628

Notes: landscape indices were shown in Table 1
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the collinearity analysis was greater than 15 for the vari-
able  COHESION,  indicating  significant  collinearity
between variables.  Therefore,  this  variable  was  ex-
cluded from the regression model.

Table  4 indicated  the  coefficients  of  the  variables  in
model  4,  including  the  standardized  coefficients  of  the
model  variables,  the  probability  of  the t-test,  and  the
collinearity statistics (tolerance and VIF). The probabil-
ities of the t-test for the constant and the four independ-
ent  variables  were  less  than  0.05,  which  indicated  that
the variables were statistically significant. The VIF val-
ues of the four variables were <10, which indicated that
there was no obvious collinearity between the four inde-
pendent  variables.  The  mean  value  of  the  standardized
variable was 0 and the standard deviation was 1, so the con-
stant term of the fitted regression in this study was 0. The
final multiple linear regression equation of soil conserva-
tion  is  1.079PLAND−1.050AI−0.356LSI−0.463SPLIT. 

3.3　 Spatial  statistics  analysis  of  soil  conservation
and forestland landscape metrics 

3.3.1　Spatial  correlations  between  soil  conservation
and forestland landscape metrics
Based  on  stepwise  regression  analysis,  four  variables
(PLAND,  AI,  LSI,  and  SPLIT)  were  determined  to  be
more  suitable  for  soil  conservation  without  significant
collinearity. The  spatial  distributions  of  soil  conserva-
tion  and  each  of  the  four  forestland  landscape  metrics
within the sub-basin unit for the three years is shown in
the bivariate LISA maps (Fig. 3). We found a clear sim-
ilarity  in  the  spatial  clustering  patterns  for  the  three
years  of  each  of  the  four  forestland  landscape  metrics
and soil conservation. As for the bivariate LISA map on
the relationship between soil  conservation and PLAND
of forestland, LL areas were mainly concentrated in the
middle of BLJW (sub-watersheds No. 14, 20, 21, 22 and

23), which indicated that areas with lower soil conserva-
tion were surrounded by areas of  forestland with lower
values  of  PLAND (Fig.  3). Compared with  the  cluster-
ing pattern above, the LL areas of soil conservation and
the AI of forestland occupied less area were mainly dis-
tributed in sub-watersheds No. 14 and 21. According to
the bivariate LISA map on the relationship between soil
conservation  and  LSI  of  forestland,  HL  areas  were
mainly  concentrated  in  the  south  of  BLJW  (such  as  in
sub-watershed  No.  1  and  5)  (Fig.  3).  According  to  the
bivariate  LISA  map  on  the  relationship  between  soil
conservation  and  SPLIT  of  forestland,  LH  areas  were
distributed in sub-watersheds No. 14, 21 and 22. These
maps  revealed  that  soil  conservation  in  sub-basins  No.
1,  5,  14,  20,  21,  22  and  23,  was  closely  related  to  the
forestland  landscape  pattern  of  1990,  2002,  and  2014
(Fig. 3).

Although there  was  a  clear  similarity  of  the  cluster-
ing pattern in 1990, 2002, and 2014 between spatial dis-
tributions of each of the four forestland landscape met-
rics and soil conservation, there was also non-negligible
dissimilarity. The  relationship  between  soil  conserva-
tion and PLAND of forestland showed larger HH areas
distributed in sub-watershed No. 1, 3, 5, 6, 26 and 34 in
2002. In addition, the spatial clustering pattern between
soil conservation and LSI of forestland was different in
each of the three years, and was mainly concentrated in
sub-watersheds No. 33, 34, 35, 36 and 37. This could be
caused  by  the  larger  variation  in  soil  conservation  in
these sub-basins. 

3.3.2　Spatial regression analysis
Spatial regression  analysis  was  used  to  reveal  the  rela-
tionship between  soil  conservation  and  the  four  vari-
ables retained in model 4 by the GeoDA software.  The
OLS results showed that the PLAND, AI, and SPLIT of
forestland  were  highly  significant  at  the  0.05  level  for

 
Table 4    Model coefficients and t-test results for the variables in model 4
 

Variable Standardized coefficients beta T Sig. T
Collinearity statistics

Tolerance VIF

Constant 0.000 5.705 0.000

PLAND 1.079 7.359 0.000 0.266 3.763

AI −1.050 −5.574 0.000 0.161 6.202

LSI −0.356 −4.340 0.000 0.849 1.178

SPLIT −0.463 −4.104 0.000 0.450 2.225

Note: landscape indices were shown in Table 1
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all  soil  conservation  regressions  in  1990,  2002,  and
2014 (Table 5), while the LSI of forestland was not sig-

nificant in 2002. Compared to the adjusted R2 values of
the three regressions, the adjusted R2 value was highest
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Fig. 3    Bivariate LISA maps of soil conservation and forestland landscape indices of the sub-basins in Bailongjiang Watershed in 1990,
2002, and 2014. PLAND, percentage of landscape; AI, aggregation index; LSI, landscape shape index; SPLIT, splitting index
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(0.650)  in  2002,  which  indicated  that  soil  conservation
was explained by 65% of the four forestland landscape
metrics (PLAND, AI, LSI, and SPLIT).

Due  to  the  spatial  dependence  of  soil  conservation
within  the  sub-basin  unit,  it  was  necessary  to  diagnose
the  estimation  results  of  OLS  to  verify  whether  there
was  a  more  reasonable  spatial  regression  model  in  the
three years. The diagnostics of OLS showed that appar-
ent spatial dependence existed in the regression in 1990
(Table  6).  Statistical  diagnostics  showed  that  LMLAG
was more statistically significant than the LMERR, and
that R-LMLAG  was  significant  while R-LMERR  was
not  significant  at  the  0.05  level.  That  is,  SLM  is  more
appropriate.  However,  both R-LMLAG and R-LMERR
were  not  significant  for  the  regression  in  2014,  which
indicated  that  it  is  impossible  to  directly  determine
which regression model (i.e., SLM, SEM, and OLS) was
better.  Four  statistical  parameters  can  be  considered  as
R2,  LogL,  AIC  and  SC.  In  general,  the  larger R2 and
LogL and the smaller AIC and SC, the more reasonable
the  OLS.  Because  the P value  of  all  the  tests  was  far
greater than 0.05 and the adjusted R2 value of OLS was

larger for the regression in 2002 (Table 4 and Table 5),
the spatial regression analysis was not carried out.

The estimation results  of  the  spatial  regression mod-
els showed  that  SLM  was  better  than  OLS  for  the  re-
gression in 1990, as R2 and LogL increased and AIC and
SC  decreased  (Table  5 and Table  7). R2 and  LogL  are
higher  when  the  regression  model  better  explains  the
variance of the dependent variable. Compared to the R2

and LogL values of OLS, SLM, and SEM of the regres-
sion in 2014,  the results  showed that R2 and LogL val-
ues in SLM were the highest, followed by the SEM and
OLS (Table 5 and Table 7). The lower the AIC and SC
values, the simpler the model, therefore, SLM was used
as a  more  reasonable  regression  model  for  soil  conser-
vation  in  2014,  even  if  the  SC  value  in  SLM  was
slightly  higher.  The  coefficients  of  the ρ variable  in
SLM were significantly  positive at p <  0.05 of  the soil
conservation regressions in 1990 and 2014, which indic-
ated  that  the  soil  conservation  of  1990  and  2014  was
positively influenced by the surrounding environmental
system.  The  coefficient  of  the λ variable  in  SEM  was
not significant at the 0.05 level of the soil conservation

 
Table 5    The estimation results of forestland landscape metrics by Ordinary Least Squares (OLS) in 1990, 2002, and 2014
 

Variable
1990 2002 2014

Coefficient T Sig. T Coefficient T Sig. T Coefficient T Sig. T

Constant 12757.800 2.640 0.013 9756.340 5.308 0.000 33430.400 3.052 0.005

PLAND 10.726 3.397 0.002 9.758 7.742 0.000 18.574 4.261 0.000

AI −127.994 −2.512 0.017 −99.499 −5.184 0.000 −342.983 −3.034 0.005

LSI −21.393 −4.063 0.000 −5.410 −1.784 0.084 −35.327 −3.124 0.004

SPLIT −0.048 −2.278 0.030 −0.038 −3.681 0.001 −0.204 −2.320 0.027

R2 0.457 0.689 0.443

Adjusted R2 0.389 0.650 0.373

LogL −231.372 −212.585 −251.161

AIC 472.743 435.171 512.322

SC 480.798 443.225 520.376

Notes: PLAND, percentage of landscape; AI, aggregation index; LSI, landscape shape index; SPLIT, splitting index

 
Table 6    Diagnostics of Ordinary Least Squares (OLS) model in 1990, 2002, and 2014
 

Test
1990 2002 2014

Value P Value P Value P

Lagrange Multiplier (lag) 6.165 0.013 0.554 0.457 3.095 0.079

Robust LM (lag) 6.208 0.013 0.000 0.994 1.626 0.202

Lagrange Multiplier (error) 2.098 0.148 0.914 0.339 1.673 0.196

Robust LM (error) 2.141 0.143 0.360 0.548 0.205 0.651
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regression in 2014, which showed that the soil conserva-
tion of  2014  was  mainly  influenced  by  the  four  forest-
land landscape  metrics  from  the  perspective  of  land-
scape patterns. 

4　Discussion
 

4.1　Forestland landscape metrics played a vital role
in soil conservation
Pearson  correlation  analysis  shows  that  the  forestland
landscape  indices,  including  PLAND,  LPI,  ED,  LSI,
SHAPE_MN, COHESION, DIVISION, SPLIT, and AI,
played a crucial role in soil conservation. Soil conserva-
tion was positively correlated with PLAND and AI, but
negatively  correlated  with  LSI  and  SPLIT  (Table  1).
The value of  PLAND ranged from 0 to 100,  indicating
the  ratio  of  the  landscape  occupied  by  patch  type.  The
correlation  coefficient  showed  that  there  was  a  strong
positive  correlation  between  soil  conservation  and
PLAND,  indicating  that  the  proportion  of  forestland  in
the sub-basin  played  a  dominant  role  in  soil  conserva-
tion.  Soil  conservation  was  also  positively  correlated
with AI, which indicated that the decrease of forestland
patch  aggregation  resulted  in  reduced soil  conservation
in  the  sub-basin.  The  negative  correlation  between  soil
conservation and LSI  means  that  soil  conservation was
reduced as  the  shape  of  forestland  became  more  com-
plex.  Soil  conservation  was  negatively  correlated  with
SPLIT,  which  indicated  that  human  disturbance  may
have a negative effect on soil conservation.

The  stepwise  regression  analysis  also  indicated  that
soil  conservation  was  negatively  correlated  with  LSI
and  SPLIT,  but  positively  correlated  with  PLAND
(Table  4).  However,  in  contrast  to  the  results  of  the
Pearson  correlation  analysis,  the  stepwise  regression
results  showed  that  soil  conservation  was  negatively
correlated with AI (Table 4). This situation was accept-
able because the Pearson correlation analysis focused on
the relationship between two variables without consider-
ation of the mutual effects of other variables, while the
stepwise regression  placed  emphasis  on  the  mutual  ef-
fects  of  independent  variables,  which  may  change  the
direction  of  the  Pearson  correlation  coefficients  due  to
the collinearity  between  the  independent  variables.  Al-
though  stepwise  regression  is  an  effective  method  for
eliminating the  independent  variables  that  cause  obvi-
ous collinearity, it is still impossible to completely avoid
collinearity.  In  this  study,  the  VIF  values  of  the  four
variables  PLAND,  AI,  LSI,  and  SPLIT  were  <10
(Table  4), indicating  that  there  was  no  apparent  collin-
earity between the four independent variables. However,
the  stepwise  regression  only  changed  the  direction  of
the  Pearson  correlation  coefficients  for  AI,  which  may
be because  the  VIF of  AI  was  slightly  higher  than that
of the other three variables. It did not affect the reason-
ableness of  the  stepwise  regression  analysis  for  water-
shed soil conservation.

The  stepwise  regression  analysis  also  showed  that
four  regression  models  were  acquired  with  adjusted R2

values  of  0.175,  0.217,  0.278  and  0.371,  respectively

 
Table 7    The estimation results of spatial regressions model in 1990 and 2014
 

Variable

1990 2014

Spatial Lag Model (SLM) Spatial Lag Model (SLM) Spatial Error Model (SEM)

Coefficient Z P Coefficient Z P Coefficient Z P

ρ 0.401 2.957 0.003 0.306 2.076 0.038 0.321 1.933 0.053

Constant 7543.650 1.848 0.065 25239.800 2.539 0.011 26076.200 2.527 0.012

PLAND 7.483 2.759 0.006 14.789 3.617 0.000 15.902 3.676 0.000

AI −75.402 −1.758 0.079 −259.338 −2.531 0.011 −267.062 −2.506 0.012

LSI −17.311 −3.899 0.000 −28.589 −2.797 0.005 −28.988 −2.633 0.008

SPLIT −0.028 −1.547 0.122 −0.148 −1.867 0.062 −0.161 −1.967 0.049

R2 0.572 0.509 0.495

LogL −228.100 −249.462 −250.032

AIC 468.199 510.024 510.064

SC 477.865 520.590 518.119

Notes: PLAND, percentage of landscape; AI, aggregation index; LSI, landscape shape index; SPLIT, splitting index
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(Table 2). Apparently, the fourth model was the best one
of the models. The fourth model showed that the forest-
land landscape pattern was closely related to watershed
soil conservation, not only to the forestland area but also
to the forestland shape and aggregation. Because forest-
land is one of the main land-use types in BLJW, optim-
izing  forest  landscape  patterns  can  improve  watershed
soil  conservation  (Zhang  et  al.,  2017, 2019; Gong  and
Xie, 2018). 

4.2　 Spatial  correlations  between  soil  conservation
and forestland landscape pattern
The  bivariate  LISA  maps  indicated  that  the  number  of
sub-basins  with  significant  spatial  correlations  between
soil conservation  and  forestland  landscape  indices  in-
cluding  PLAND,  AI,  LSI,  and  SPLIT  was  15,  19,  and
20  in  1990,  2002,  and  2014,  accounting  for  40.54%,
51.35%, and 54.05% of the total number of sub-basins,
respectively  (Fig.  3). This  showed  that  there  is  a  sci-
entific  basis  for  promoting  watershed  soil  conservation
by  optimizing  the  forest  landscape  pattern  of  the  sub-
basins.  Furthermore, the SLM was superior to the OLS
for  the  regression  in  1990  and  2014,  which  indicated
that soil conservation within the sub-basin unit was spa-
tially  dependent,  while  OLS  was  more  appropriate  for
the regression  in  2002,  which  indicated  that  the  forest-
land landscape  pattern  played  a  greater  role  in  water-
shed soil conservation. 

4.3　Spatiotemporal change of soil conservation ser-
vice and its response to landscape pattern in BLJW
The soil  conservation  service  in  BLJW  initially  de-
creased and then increased from 1990 to 2014. There is
higher  soil  conservation  in  the  western  parts  and  the
lower  reaches  of  BLJW  (Diebu,  western  Zhouqu  and
Wenxian). The  areas  with  lower  soil  conservation  ser-
vice were mostly located along the Bailongjiang valley
and eastern parts of BLJW. The results also showed that
the sub-watersheds  with  higher  soil  conservation  ser-
vices were mostly located in the lower reaches of BLJW
with higher forest vegetation coverage, and the sub-wa-
tersheds  with  lower  soil  conservation  service  were
mostly distributed along Bailongjiang valley with lower
forest coverage and intensive human activities (e.g., in-
dustry  and  agricultural  production,  urbanization,  road
construction).  This  is  similar  to  the  research  results  of
Xie  (2015), Gong  and  Xie  (2018) and Gong  et  al.

(2021).  The  sub-watershed  with  high  soil  conservation
service was also characterized by single landscape types
composition,  non-uniform  distribution  among  different
landscape types, dominant patches, and a low degree of
landscape separation. The low degree of landscape sep-
aration was also found by Zhang et  al.  (2019), who in-
dicated  that  the  landscape  pattern  design  and  planning
would play a key role to prevent soil erosion, especially
in the afforestation/ecological restoration projects in the
future.

The soil conservation service can control soil erosion
and retain sediment,  and therefore generate positive ef-
fects  on  land  productivity  and  many  other  ecosystem
services that ensure human welfare (Fu et al., 2013; Liu
et  al.,  2019; Zhang et  al.,  2019). Studies  found that  af-
forestation and vegetation restoration play a vital role in
controlling  soil  loss  and  enhance  the  soil  conservation
service  by  decreasing  runoff  and  soil  erosion  (Long  et
al., 2006; Xu et al., 2006; Mehri et al., 2018; Jiang et al.,
2020; Wang  et  al.,  2020).  Some  previous  studies  have
also revealed  vegetation  as  the  most  important  influ-
ence  factor  against  soil  erosion  (Jiang  et  al.,  2020;
Zhang and Wei, 2021). For example, Mehri et al. (2018)
highlighted that  forest  cover  plays  a  vital  role  in  redu-
cing  rainfall  erosivity  and subsequent  soil  erosion. Sun
et al. (2014) found that the erosion rate and susceptibil-
ity  of  soil  loss  were  obviously  decreased  by  forest  and
dense grassland due to the increasing of vegetation cover.

The landscape  pattern  has  an  important  role  in  land-
scape management, nature conservation, ecosystem ser-
vice  provision,  and human well-being (Wu and Hobbs,
2002; Chazdon,  2008; Ouyang et  al.,  2010; Turner  and
Gardner,  2015; Kindu  et  al.,  2016; Erbaugh  and
Oldekop,  2018; Rieb  and  Bennett,  2020). Jiang  et  al.
(2020) found  that  properly  fragmented  landscapes  can
effectively  reduce  soil  erosion  in  the  Loess  Plateau.
Landscape  heterogeneity  and  landscape  structure  also
generally lead  to  variations  in  ecological  and  hydrolo-
gical conditions which alter sediment production, trans-
portation,  and  connectivity  (Ai  et  al.,  2015; Li  et  al.,
2019; Sun et al., 2019). Our study showed that the four
forestland  landscape  indices,  including  PLAND,  AI,
LSI,  and SPLIT,  were vital  for  soil  conservation in  the
typical  ecotone  watershed,  BLJW,  in  western  China.
That  is,  landscape  types’ diversity  and  evenness  were
the most  important  indicators  affecting  soil  conserva-
tion in the mountainous area. Therefore, the soil conser-

860 Chinese Geographical Science 2021 Vol. 31 No. 5



vation service can be enhanced by forestland landscape
pattern  optimization  and  management  (Fu  et  al.,  2013;
Liu,  2017; Gong  and  Xie,  2018; Zhang  et  al.,  2019;
Rieb and Bennett, 2020). 

4.4　 Application  for  afforestation  and  watershed
landscape management in the mountainous areas
Since the late 1970s, China has carried out four national
key  afforestation/reforestation  programs  to  protect  the
environment and restore the degraded ecosystems, espe-
cially  affecting  western  China.  These  projects  include
1)  the  Three-North  Shelter  Forest  Program,  which  was
initiated in 1978 and is known as the ‘Green Great Wall’,
2)  the  Yangtze  River  Shelter  Forest  Projects,  launched
in  1989  to  combat  floods  and  soil  loss,  3)  the  Natural
Forest  Protection  Project,  which  was  initiated  in  1998
for biodiversity conservation, reduction of soil loss and
flood  risk,  and  combat  the  natural  disasters  associated
with deforestation, 4) the Grain for Green Program, also
known  as  China’s  Sloping  Lands  Conversion  Project,
was  initiated  in  1999  and  has  enhanced  the  change  of
croplands  in  hilly  areas  to  forests.  Recent  studies  have
identified that the implementation of the national ecolo-
gical restoration  projects  and  soil  and  water  conserva-
tion programs has improved ecosystem services like soil
conservation,  biodiversity  protection,  water  retention
(Ouyang et al., 2016; Wang et al., 2016; Lu et al., 2018;
Jiang  et  al.,  2020; Wang  et  al.,  2020).  However,  there
are still  challenges  to  implementing  the  key  afforesta-
tion/reforestation projects  more  productively  and  effi-
ciently for not only local, but also global ecological res-
toration  and  sustainability  (Ma,  2005; Xu  et  al.,  2006;
Chazdon,  2008; Elmqvist  et  al.,  2015).  What  has  been
especially  challenging  is  determining  how  to  carry  out
nature-based afforestation  design,  planning,  and  man-
agement,  with  particular  consideration  of  the  ecotones
with a fragile natural system, intensive human activities
and  frequent  landslide  and  debris  events  in  western
mountainous areas. Such design, planning, management
policy, and interventions with specific solutions require
a  better  understanding  of  the  local  environmental  and
social  and human dimensions of mountainous contexts.
The concepts  of  nature-based solutions (NBS) (Almen-
ar et al., 2021) and multi-functional landscapes (Peng et
al.,  2015)  have  recently  emerged  with  the  potential  to
supply  multiple  ecosystem  services  (Peng  et  al.,  2015;

Almenar et  al.,  2021). Silviculturist  and landscape eco-
logists must therefore integrate a landscape science per-
spective  when  spatially  planning  a  contemporary
strategy, designing  new  forestry  socio-ecological  sys-
tems adapted to local areas, and addressing the develop-
ment  and sustainability  challenges  at  the  regional  scale
(Liu et al., 2007; Dale et al., 2013; Chopin et al., 2017;
Gong and Xie, 2018; Wu et al.,  2020). Moreover, agri-
cultural  expansion  is  inevitable  in  most  mountainous
areas  with  fragile  environments  and  heavy  populations
for  food.  Consequently,  spatial  land-use trade-offs  may
be inevitable  among  reforestation,  agricultural  expan-
sion,  and  other  land  uses  (Gong  and  Xie,  2018; Liu  et
al.,  2020).  Therefore,  it  is  obligatory  to  maintain  crop
yields  and  conserve  lands  through  rational  agricultural
management. Conservation agriculture has been proven
to be a win-win way to meet this goal (Liu et al., 2020).
The future planning and management of ecological res-
toration,  including  afforestation  and  revegetation,
should  focus  more  on  scientific  planning  to  strengthen
the nature-related aspects in spatial  planning and integ-
rated  landscape  management  (Frank  et  al.,  2012; Zeng
et al.,  2017; Mann et  al.,  2018; Jiang et  al.,  2020; Her-
sperger et al., 2020; Rieb and Bennett, 2020). The stra-
tegic spatial  plans  and  implementation  refer  to  land-
scape functioning,  soil  and  water  conservation  agricul-
ture, economic forestry and fruit industry, and contribu-
tion  of  forest  landscapes  to  well-being  (Zeng  et  al.,
2017; Gong and Xie, 2018; Jiang et al., 2020; Liu et al.,
2020; Gong et al., 2021).

Although the  implementation  of  the  national  ecolo-
gical restoration  programs  can  improve  ecosystem  ser-
vices (Wang et al., 2016, 2020; ;Ouyang et al., 2016; Lu
et al., 2018; ), the approach of optimizing landscape pat-
terns  to  enhance  ecosystem  services  cannot  be  ignored
because it is easier to implement and less costly (Zhang
et  al.,  2019; Rieb  and  Bennett,  2020).  Increasing  the
proportion of forestland, simplifying the shape of forest-
land, and reducing human disturbance on forestland will
improve the  soil  conservation  service  in  BLJW.  Integ-
rated landscape management has become a new strategy
for  landscape  governance  to  address  the  growing  land-
use conflicts in response to the multifunctional manage-
ment  of  landscapes  worldwide  (Freeman  et  al.,  2015;
Mann et al., 2018). 
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4.5　Uncertainties and outlooks
The soil conservation service is a vital component of re-
gional  ecosystem  services  and  human  welfare.  Our
study results  provide  the  scientific  basis  for  afforesta-
tion planning and integrated landscape management, es-
pecially  for  the  fragile  ecotones  facing  the  dilemma  of
ecological restoration and economic development due to
limited  land  resources.  However,  there  inevitably  are
some uncertainties due to the complexity of soil erosion,
the intricate relationship between soil conservation, and
the landscape pattern. First, model outputs, like InVEST-
SDR and  landscape  metrics,  always  carry  uncertainties
related to input data due to spatial variability, data avail-
ability  and  many  other  factors  (Diwediga  et  al.,  2018;
Sharp  et  al.,  2020).  This  might  be  pertinent  for  the
BLJW, especially  with  the  recurrent  scarcity  of  meas-
ured data and reference studies. Second, uncertainties in
the  data  sources  and  methods,  especially  the  InVEST-
SDR models and landscape metrics,  are still  worth dis-
cussing, and future applications of soil conservation as-
sessments and  landscape  pattern  design  and  manage-
ment  should  be  emphasized.  With  long-term  in  situ
monitoring,  the  growing  availability  of  remote  sensing
data,  advanced  analytical  tools  (machine  learning,
coupled  ecological  process-hydrological  modeling)
within a systematic context could improve the quantitat-
ive analysis of soil conservation and landscape in BLJW
(Gong and Xie, 2018; Zhang and Wei, 2021). Third, it is
evident  that  large-scale  afforestation  in  water-limited
areas will inevitably exacerbate water scarcity, while af-
forestation  in  energy-limited  environments  will  help  to
decrease flood risk (Calder,  2007).  For  example,  large-
scale reforestation programs in the semi-arid Loess Plat-
eau  in  China  caused  substantial  streamflow  reductions
that  led  to  approach  water  resource  limits  (Feng  et  al.,
2016).  Therefore,  afforestation  and  management  must
be designed  and  planned  with  full  consideration  of  fu-
ture  climate,  water  consumption  and  availability,  and
hydrological regime,  as  well  as  topography  and  water-
shed size. There are still many challenges that afforesta-
tion and  multifunctional  landscape  planning  and  man-
agement face in enhancing ecosystem services and resi-
lience  of  the  mountainous  socio-ecological  system.
More attention should be paid to these challenges in fu-
ture research. 

5　Conclusions

Forest landscape  patterns  played  a  vital  role  in  water-
shed soil  conservation in Chinese western mountainous
areas.  Nine  forestland  landscape  indices,  including
PLAND, LPI, ED, LSI, SHAPE_MN, COHESION, DI-
VISION,  SPLIT,  and  AI,  were  significantly  correlated
with soil conservation. Moreover, PLAND, AI, LSI, and
SPLIT  of  landscape,  especially  for  forestland,  were
more important for soil conservation.

In 1990 and 2014, SLM was superior to OLS for soil
conservation regression,  which  indicated  that  soil  con-
servation within  the  sub-basin  unit  was  spatially  de-
pendent. However, in 2002, OLS was more appropriate
for  the  regression,  which  indicated  that  the  forestland
landscape pattern  had  a  strong  effect  on  soil  conserva-
tion. Furthermore, the number of sub-basins with signi-
ficant spatial correlations between soil conservation and
forestland landscape indices,  such as PLAND, AI, LSI,
and SPLIT, was considerable, that is, there is a scientif-
ic  basis  for  promoting  soil  conservation  by  optimizing
the forestland landscape pattern of the sub-basins. Integ-
rated landscape management can enhance both soil con-
servation and  regional  sustainable  development,  espe-
cially in  mountainous  areas.  Future  planning  and  man-
agement of  ecological  restoration,  including  afforesta-
tion  and  revegetation,  should  focus  more  on  strategic
spatial  planning  and  integrated  landscape  management
to strengthen nature-related aspects with full considera-
tion of future climate, water consumption and availabil-
ity, and hydrological regime, as well as topography and
watershed size.
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