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Abstract: China  has  experienced  rapid  urbanizations  with  dramatic  land  cover  changes  since  1978.  Forest  loss  is  one  of  land  cover
changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot regions, the Guangdong-Hong Kong-
Macao Greater  Bay Area (GBA) has  undergone a  dramatic  urban expansion.  To better  understand forest  dynamics  and protect  forest
ecosystem, revealing the processes, patterns and underlying drivers of forest loss is essential. This study focused on the spatiotemporal
evolution and potential driving factors of forest loss in the GBA at regional and city level. The Landsat time-series images from 1987 to
2017 were used to derive forest, and landscape metrics and geographic information system (GIS) were applied to implement further spa-
tial  analysis.  The  results  showed  that:  1)  14.86%  of  the  total  urban  growth  area  of  the  GBA  was  obtained  from  the  forest  loss  in
1987–2017; meanwhile, the forest loss area of the GBA reached 4040.6 km2, of which 25.60% (1034.42 km2) was converted to urban
land; 2) the percentages of forest loss to urban land in Dongguan (19.14%), Guangzhou (18.35%) and Shenzhen (15.81%) were higher
than those in  other  cities;  3)  the forest  became increasingly fragmented from 1987–2007,  and then the fragmentation decreased from
2007 to 2017); 4) the landscape responses to forest changes varied with the scale; and 5) some forest loss to urban regions moved from
low-elevation and gentle-slope terrains to higher-elevation and steep-slope terrains over time, especially in Shenzhen and Hong Kong.
Urbanization  and  industrialization  greatly  drove  forest  loss  and  fragmentation,  and,  notably,  hillside  urban  land  expansion  may  have
contributed to hillside forest  loss.  The findings will  help policy makers in maintaining the stability  of  forest  ecosystems,  and provide
some new insights into forest management and conservation.
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1　Introduction

Urbanization has  experienced  a  remarkable  speed  dur-
ing the past half century, the ratio of urban population to
global  population  increased  from 30% in  1950  to  54%
in  2014  (World  Bank,  2015),  and  it  will  reach  66%  in
2050  (Madanian  et  al.,  2018). The  urbanization  pro-
cessed in Africa and Asia is faster compared with those
in  other  continents,  and  it  is  predicted  they  will  reach
56%  and  64%  by  2050,  respectively  (Madanian  et  al.,
2018). China started to implement its reform and open-
ing up polices in 1978, initiating a socioeconomic trans-
formation process. Over the past 40 years, urbanization
and  industrialization  have  reached  an  unprecedented
rate.  China gradually marched toward a  mid-  and post-
industrialization period,  and  the  urbanization  rate  in-
creased  by  26%  from  1978  to  2009  (NBSC,  2010; Li-
ang et al., 2015). In addition, China experienced an ex-
plosive  population  growth  during  this  period,  the
urban population increased from 210 million in 1982 to
660 million  in  2010,  and  the  corresponding  urbaniza-
tion  rate  increased  from  20.91%  to  49.68%  (NBSC,
2013).  Continual  demands  for  urban  housing,  business
and construction land in rapid urbanization period resul-
ted  in  a  dramatic  conversion  of  land  use/land  cover
types,  and  the  cropland  converted  into  urban  land  has
become the main source of urban lands (Liu et al., 2010;
Liu et al., 2012; Liu et al., 2014).

Forests  are  critical  natural  resources  for  the  survi-
val and development of humankind, and they play an ir-
replaceable  role  in  fighting  global  climate  change  (De-
partment,  2010; FAO, 2012; Wu et al.,  2019; Garcia et
al.,  2020; Seymou, 2020). According to the United Na-
tions  Food  and  Agriculture  Organization  (FAO),  the
global  forest  area  approaches  40  million  km2 and ac-
counts  for  31%  of  the  Earth’s  land  surface.  Forests
provide socioeconomic  benefits  and  invisible  environ-
mental health products for human beings, such as wood
production,  oxygen  and  climate  regulation  (Gao  and
Liu,  2011). However,  forest  ecosystems  are  often  dis-
turbed by dramatic human activities, especially the urb-
anization and industrialization in recent decades (Lele et
al.,  2008; Gao and Liu, 2011; FAO, 2012). The studies
from around the world revealed that  the degradation or
even extinction of forest ecosystems could be largely at-
tributed to anthropologic disturbances (Lele et al., 2008,
Lambin and Meyfroidt, 2010; Liu et al., 2013; Liu et al.,

2016a). The  deterioration  of  forest  ecosystems  is  usu-
ally associated with forest loss and fragmentation (Laur-
ance  et  al.,  2000; Miller,  2012), which  also  have  in-
duced  many  negative  eco-environmental  consequences,
including species degradation or extinction, soil erosion
and sandy storm attacks (Reddy et al., 2013; Carranza et
al., 2015). Notably, rapid urbanization and industrializa-
tion are  currently  the  largest  factor  for  urban  land  ex-
pansion  in  developing  and  developed  countries  of  the
world (Turner II et al., 2007; Liu et al., 2010b; Yang et
al., 2019a; Xu et al., 2020), affecting ecosystems in loc-
al  and  global  scales  (Shen  et  al.,  2008; Yang  et  al.,
2017a; Girardet,  2020).  The  demands  for  commercial
and residential  land development  exacerbate  forest  loss
and fragmentation in rapid urbanization periods (Song et
al.,  2014). Therefore, investigating forest loss and frag-
mentation under the background of rapid urbanization is
essential for  forest  ecosystem management  and  conser-
vation.

Since  1978,  China  has  experienced  a  transformation
from a  socialism  planned  economy  to  a  market  eco-
nomy.  Large-scale  deforestation  gradually  occurred  in
different cities in China due to commercial timber mar-
ket opening (Liu et al., 2016a). Moreover, local govern-
ments  were  given  the  authority  to  regulate  land  use
types  (e.g.,  agriculture,  building)  through  land  market
reform  (Du  et  al.,  2014).  As  a  result,  many  cities
suffered from persistent forest net loss, because timbers
were harvested for  urban construction (Li  et  al.,  2010).
Be  conscious  of  the  seriousness  of  forest  loss,  the
Chinese government issued a series of policies for forest
recovery  and  conservation,  including  the  ‘Returning
Farmland to Forest’ program (i.e., increasing forest cov-
ers  and  preventing  soil  erosion),  and  the  ‘Grain  for
Green’ policy  in  1999  (i.e.,  conversion  of  farmland  to
forest or grassland) (Cao et al., 2009; Deng et al., 2012;
2014; Van Den Hoek et al., 2014). However, the effects
of  forest  loss  prevention  programs  vary  with  different
cities  and  regions,  due  to  the  interference  of  different
local land use planning policies (Mao et al., 2019; Trac
et  al,  2013; van  Den  Hoek  et  al.,  2014). Therefore,  re-
vealing  the  processes  and  spatiotemporal  patterns  of
forest changes and forest loss in different cities and re-
gions  will  be  helpful  for  understanding  the  dominant
driving forces of forest loss.

The combination of  remote  sensing images  and geo-
graphic information  system  (GIS)  has  been  widely  ap-
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plied in forest dynamic studies, because they can provide
timely  and  cost-effective  information  and  analyze  the
long-time  processes  and  spatiotemporal  patterns  of
forest changes at multiple scales (Xie et al., 2012; Song
et al., 2014; Jia et al., 2015; Lindquist and D’Annunzio,
2016; Lechner et al.,  2020). Landscape metrics provide
new insights in characterizing the detailed patch dynam-
ics of forest changes (Herold et al., 2002; Zengin et al.,
2018; Lv et al., 2019). Landscape indices are employed
to multi-scale or multi-temporal datasets to imply scale
effect and  temporal  variation.  By  combination  of  re-
mote  sensing  images,  GIS  and  landscape  approaches,
the forest  loss  in  various  cities  and  urban  agglomera-
tions  around  the  world  have  been  quantified  (Li  et  al.,
2012; Han  et  al.,  2018).  Considering  various  remote
sensing  images,  high-resolution  satellite  images  show
limitations in geographic coverage and historical archive,
and low-resolution satellite data can not characterize the
detailed  changes  of  forest  loss  (Setiawan  et  al.,  2014).
Landsat  TM  (Thematic  Mapper)  and  OLI  (Operational
Land Imager) can provide images for over four decades
(Li et al.,  2017; Yang et al.,  2019a) with a middle spa-
tial  resolution,  and  they  have  ability  in  mapping  forest
areas at a moderate scale (Kline et al., 2009; Wahyudi et
al., 2018).

Over the past four decades, many researches emphas-
ized the spatiotemporal patterns of forest loss and frag-
mentation  at  a  single  scale  (city  or  individual  region)
(Song et al., 2014; Jia et al., 2015; Xie et al., 2017; Nav-
arro Cerrillo et al., 2019), and few studies were focused
on  the  systematic  analysis  at  multiple  levels  or  cross-
city comparisons with spatially consistent datasets. More-
over, the analysis of forest loss to urban land, which is a
general phenomenon in the rapid urbanization regions of
China,  is  scarce.  The  Guangdong-Hong  Kong-Macao
Greater Bay Area (GBA) is one of the four bay areas in
the world,  and it  has experienced a rapid urban growth
since  1987  (Yang  et  al.,  2019a).  The  population  of  the
GBA accounts  for  only  5%  of  China;  however,  it  cre-
ated 11% of China’s total gross domestic product (GDP)
in  2017.  To  promote  sustainable  development,  the
Chinese  government  issued  the  ‘Development  Plan  for
the  GBA’ in  2019.  According  to  this  plan,  the  GBA
planed  a  world-class  urban  agglomeration  and  a  high-
quality life circle. However, the urbanization process in
the  GBA  may  greatly  affect  its  forest  ecosystem.  The
phenomenon  of  occupying  forests  in  the  urbanization

process in the GBA has been exposed from high-resolu-
tion  Google  Earth  images.  Therefore,  it  is  particularly
urgent and significant to investigate and understand the
processes of forest loss and fragmentation in the GBA at
different scale perspectives, especially for the forest loss
to urban land. This study focused on revealing the spati-
otemporal evolution and underlying forces of forest loss
in the GBA at the regional and city levels by employing
Landsat  time-series  images  (1987–2017),  landscape
metrics and GIS. It is hoped that this study can contrib-
ute to forest management and conservation.

2　Materials and Methods

2.1　Study area
The GBA is located in south China (21°32′N–24°26′N,
111°20′E–115°24′E),  and  it  includes  eleven  cities:  Fo-
shan,  Huizhou,  Shenzhen,  Zhaoqing,  Zhuhai,  Hong
Kong,  Zhongshan,  Dongguan,  Jiangmen,  Guangzhou
and Macao (Fig. 1). The population of the GBA is appro-
ximately 70 million, and it has a total area of 56 000 km2.
The GBA belongs  to  typical  humid subtropical  climate
regions, with a large amount of precipitation in summer
(Yu et al., 2019). The urban land of the GBA has expan-
ded from 605.71 km2 in  1987 to  1996.27 km2 in  1997,
4481.96 km2 in 2007 and 7568.19 km2 in 2017 (Yang et
al.,  2019a; Fig.  1c). The  GBA  contributed  approxim-
ately  11%  of  the  gross  domestic  product  (GDP)  of
China in 2017. The GBA is becoming a world-class bay
area and a well-known urban agglomeration.

2.2　Data source and pre-processing
The satellite  data  and  products  used  in  this  study  in-
cluded  time-series  Landsat  images,  digital  elevation
model (DEM) and Google Earth high-resolution images.
Thirty-two cloudless or low-cloud Landsat TM and OLI
images covering the GBA around 1987, 1997, 2007 and
2017  were  obtained  from  the  United  States  Geological
Survey  (USGS).  The  time  interval  of  the  satellite  data
was  10  years.  Most  of  the  images  used  in  this  study
were  captured  in  the  dry  season  (October  to  March),
considering the minimal cloud and low vegetation vari-
ations in this season. Therefore, dry season satellite im-
ages  had  better  capacity  in  studying  land  cover  change
analysis (Hasan et al., 2019; Yang et al., 2020). Landsat
images  have  eight  (for  OLI)  or  six  (for  TM)  bands  at
visible to  shortwave  wavelengths,  with  spatial  resolu-

YANG Chao et al. Rapid Urbanization Induced Extensive Forest Loss to Urban Land in the Guangdong-Hong ... 95



tion  of  30  m.  ASTER  GDEM  products  covering  the
GBA  with  a  30  m  resolution  were  also  collected  from
USGS.  The  historical  high-resolution  images  of  forests
in the GBA were obtained from Google Earth Pro®.

The auxiliary data included urban land dataset, eleva-
tion, slope,  socioeconomic  data  (i.e.,  GDP and  popula-
tion data), and vector data of the GBA administrative di-
vision  boundary.  The  spatial  distribution  of  the  urban
land  from  1987  to  2017  was  also  extracted  from  the
aforementioned  Landsat  images,  which  was  detailed  in
Yang  et  al.  (2019a).  Urban  land  dataset  with  a  spatial
resolution of 30 m provides reliable information on urb-
an expansion dynamics in the GBA (Fig. 1c). The eleva-
tion  and  slope  data  were  derived  from ASTER GDEM
using  ArcGIS  10.2  (Figs.  1d and 2e).  Socioeconomic
data were collected from Local Statistical Yearbooks in
1987–2017.  The  projection  system  used  for  the  vector
and satellite  data  was  WGS_84_UTM_49N.  All  Land-
sat  images  and  DEM  data  were  clipped  with  the  GBA
boundary  dataset.  The  software  ENVI  5.3  was  used  to
process the  Landsat  images,  including  band  combina-
tion,  FLAASH  atmospheric  correction,  image  mosaic,
and image clipping.

2.3　Methods
This study  analyzed  the  changing  processes  and  pat-
terns  of  forests  during  a  rapid  urbanization  period  and
revealed  the  spatiotemporal  characteristic  and  driving
forces of forest loss at two scales (the regional level and
city  level)  with  remote  sensing,  landscape  ecology  and
spatial analysis method, including three parts: forest ex-
traction and  accuracy  assessment,  forest  landscape  pat-
tern analysis, and forest loss to urban land dynamic de-
tection.
2.3.1　Forest extraction and accuracy assessment
The forest of the GBA was extracted with an object-ori-
ented support vector machine (O-SVM) in this study. O-
SVM  method  can  combine  the  high  efficiency  of  bi-
level  scale-sets  model  (BSM)  in  processing  large-scale
images  and  SVM’s  high  accuracy  in  applying  small
training  samples  (Foody  and  Mathur,  2004; Li  et  al.,
2010; Hu et al., 2016). Therefore, O-SVM is more effi-
cient  in  forest  extraction  than  other  methods,  and  can
handle  large-scale  images  while  provide  high  accuracy
(Yu et al., 2017; Yang et al., 2019a). The O-SVM meth-
od  was  performed  through  integrating  the  Scale-Sets-
Image-Analysis-Toolkit  (https://github.com/zwhoo/Sca-
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Fig.  1    Typical  regions of  forest  loss  to  urban land in  the GBA (Guangdong-Hong Kong-Macao Greater  Bay Area ):  evidence from
high-resolution Google Earth images
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le-Sets-Image-Analysis-Toolkit)  and SVM algorithm in
this study. The parameters of object segmentation scales
in  O-SVM  were  set  to  30  (for  TM)  and  45  (for  OLI),
and  four  kinds  of  characteristics  for  each  object  were
applied  for  forest  information  extraction,  i.e.,  texture
(Texture-Variance, Texture-Entropy, Texture-Mean and
Texture-Range),  spectral  (Spectral-Max,  Spectral-Min,
Spectral-Mean and Spectral-STD), spatial (Area, Length,
Compactness, Roundness  and  Elongation)  and  normal-
ized  differential  vegetation  index  (NDVI)  (Yang  et  al,
2019a). A radial basis function (RBF) was used to con-
struct  SVM  classifier;  the  SVM’s  Gamma  coefficient
was set to 1/n (n refers to the band number for Landsat
images, i.e., n equals six for TM and eight for OLI, re-
spectively), and penalty cost was 100, suggesting high-
er  extraction  accuracy  (Yu  et  al.,  2017).  Totally,  692
forest  training  datasets  covering  the  GBA  evenly  from
1987–2017 were  selected  directly  from  TM/OLI  seg-
mented  images,  225  samples  in  1987,  150  samples  in
1997,  147  samples  in  2007  and  170  samples  in  2017;
while  226  validation  samples  of  forest  (81  samples  in
1987,  47  samples  in  1997,  42  samples  in  2007  and  56
samples  in  2017)  from  study  area  in  1987–2017  were
chosen  randomly  and  evenly  from Google  Earth  Pro®.
The  forest  extraction  accuracy  was  assessed  using  four
basic metrics (i.e., Overall Accuracy, Kappa coefficient,
User  Accuracyand  Producer’s  Accuracy)  (Congalton,
1991; Yang et al., 2017b; 2019b).
2.3.2　Forest landscape pattern analysis
Four landscape metrics  were used to evaluate the com-
plex degree, contiguous level, and fragmented degree of
forest cover (McGarigal, 2015). Landscape shape index
(LSI) was applied to analyze the landscape complexity,
and  a  larger  LSI  value  indicates  a  greater  complexity
and  implies  a  stronger  impact  of  human  activities  (Li-
ang et  al.,  2015).  Patch cohesion index (Cohesion) was
applied  to  assess  the  contiguous  level  of  forest  at  the
landscape level. Patch density (PD) and mean patch size
(MPS)  were  used  to  quantify  forest  fragmentation.  A
larger PD  and  a  smaller  MPS  indicate  a  higher  frag-
mentation  of  forest  landscape  (Liang  et  al.,  2015).  The
software  FRAGSTATS  4.2  was  employed  to  calculate
these  four  metrics  with  the  eight-neighborhood  rule
(McGarigal and Marks, 1995). The spatial resolution of
forest raster data were set to 30 m in FRAGSTATS 4.2,
which is consistent with original data source. LSI, MPS
(ha), PD (number/100 ha) and Cohesion (%) were calcu-

lated according to Eqs. (1)–(4), respectively:

LS I =
0.25E
√

A
(1)

MPS =

∑N

i=1
ai

N
(2)

PD =
N
A
×10 000×100 (3)

Cohension =


1−

n∑
j=1

pi j

n∑
j=1

pi j

√
ai j


/(

1− 1
√

Z

)
×100 (4)

where A is the total area of landscapes, E represents the
total  length (m) of  patch boundary, N is  the  number  of
forest patches, ai is the area of i forest patch, pij means
the perimeter of patch ij in terms of the number of cell
surfaces, aij represents  the  area  of  patch ij in  terms  of
the number of cells, and Z is the total number of cells in
the landscape (McGarigal, 2002; Liang et al., 2015).
2.3.3　Forest loss to urban land dynamic detection
The  original  forest  changed  to  urban  land  was  defined
as ‘forest  loss  to  urban  land’ (Fig.  2).  An  equation
(Equation  (5))  was  proposed  to  quantify  and  detect  the
spatial  distribution  of  forest  loss  to  urban  land  areas  at
the  regional  and  city  level  from  1987  to  2017  in  this
study. In  addition,  the  elevation  and  slope  were  em-
ployed to identify the spatiotemporal evolution of forest
loss to  urban  land  on  different  terrain  conditions,  be-
cause the suburbs of the GBA are hills and mountains.
F = ft∩ut+1 (5)

∩

where F represents the area of forest loss to urban land,
ft is  the forest  area in t period, ut+1 is  the urban land in
t +1 period, and  represents intersection operation.

3　Results

3.1　Forest extraction and accuracy assessment
The results  of  accuracy assessment,  quantitative statist-
ics  and  spatiotemporal  evolution  of  forest  in  the  GBA
are shown in Fig. 3, Table 1, and Figs. 4 and 5, respect-
ively.  The accuracy metrics  were  more than 84%, with
the  all  accuracy’s average  value  of  each  period  ap-
proaching  90% in  this  study  (Fig.  3). Forests  were  ex-
tracted effectively using the O-SVM method (accuracy’s
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average  value  =  88%  in  1987,  90%  in  1997,  89%  in
2007  and  90%  in  2017),  and  the  accuracy  of  all  years
satisfies  the  requirement  of  land  cover  change  analysis
(Foody, 2002; Zhang et al., 2010). Generally, the forest
experienced  a  dynamic  change  at  the  regional  and  city
level from 1987 to 2017, and the spatial  distribution of
forest  was  concentrated  in  urban  suburbs,  hills  and
mountains (Fig. 4 and Fig. 5). At the regional level, the
forest  of  the  GBA  increased  first  then  decreased
(Fig.  4a),  the  area  decreased  from  30  230.26  km2 in
1987 to  26 189.66 km2 in  2017,  and the  total  loss  area
was 4040.6 km2 (Table 1 and Fig. 4b). At the city level,
the trends of forest changes of all cities were consistent
with the  GBA,  except  for  Zhaoqing,  Huizhou  and  Ma-

cao  (Fig.  4a).  Among  the  eleven  cities,  Zhaoqing  had
the  largest  forest  area,  and  the  average  area  exceeded
10 000 km2 in 1987–2017 (Fig. 4a). In contrast, Macao
had the smallest forest area, with an average forest area
of only 3.52 km2 (Fig. 4a). Notably, the total change of
forest  areas  in  Huizhou,  Dongguan  and  Guangzhou
showed  gain,  while  the  forest  areas  of  other  cities
showed loss during 1987–2017 (Fig. 4b and Table 1).

3.2　Forest landscape pattern analysis
Fig.  6 shows  the  features  and  trends  of  four  landscape
metrics for the forest area changes of the GBA and elev-
en  cities  in  1987–2017. Generally,  a  disparity  of  land-
scape  responses  to  forest  area  changes  was  observed
during the  study  period.  For  the  GBA  level,  the  frag-
mentation  degree  of  forest  cover  showed  a  trend
of  first  increasing  (1987–2007)  and  then  decreasing
(2007–2017);  the  increased  PD  and  decreased  MPS  of
forest  cover  indicated  that  the  forests  were  becoming
scattered  patches  in  1987–2007  (Figs.  6a and 6b).
Moreover,  the  forest  cover  of  the  GBA had  the  largest
fragmentation  degree  in  2007,  which  can  be  inferred
from the maximum PD value (0.067/100 ha) and minim-
um MPS value (724.57 ha)  (Figs.  6a and 6b).  Notably,
the first decreasing trend (1987–2007) and then increas-
ing trend (2007–2017)  of  LSI  in  the  GBA showed that
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the human disturbance to forests increased first and then
decreased  (Fig.  6c).  The  decreasing  Cohesion  of  the
GBA  also  indicated  that  the  connections  among  forest
patches  became  increasingly  weaker  in  1987–2007
(Fig.  6d).  On  the  contrary,  the  increasing  Cohesion  of
the GBA indicated the strong connections among forest
patches in 2007–2017 (Fig. 6d).  The Cohesion changes
also demonstrated the fragmentation variations of forest
covers.  The  Cohesion  decreased  by  0.023% from 1987
to  2007  in  the  GBA (Fig.  6d),  suggesting  that  forest

patches’ spatial  distribution  tended  to  be  scattered  and
decentralized. The exploitation of construction environ-
ment during 1987–2007 likely contributed to this trans-
formation to a certain extent.

From the  perspective  of  city  level,  the  PD of  forests
in different cities presented first increasing and then de-
creasing  trend  during  1987–2017,  except  for  Zhuhai,
Huizhou  and  Jiangmen  (Fig.  6a).  The  trends  of  MPS
were contrary to those of PD in all cities (Fig. 6b). The
trends of PD and MPS in Zhaoqing, Zhongshan, Guang-
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Table 1    Forest  area and forest  area changes in the GBA (Guangdong-Hong Kong-Macao Greater  Bay Area) and eleven cities  from
1987 to 2017 (km2)
 

Study areas
Forest area Forest area changes

1987 1997 2007 2017 1987–1997 1997–2007 2007–2017 1987–2017

GBA 30230.26 35176.35 26975.70 26189.66 4946.09 –8200.65 –786.04 –4040.60

Foshan 752.17 1151.59 787.62 535.05 399.42 –363.97 –252.56 –217.11

Huizhou 6594.42 9360.21 6376.80 7259.95 2765.79 –2983.41 883.16 665.53

Jiangmen 4996.75 6832.38 4395.81 2489.26 1835.63 –2436.57 –1906.54 –2507.49

Zhaoqing 12406.50 9720.70 9056.87 10776.80 –2685.80 –663.83 1719.93 –1629.70

Zhuhai 479.59 635.02 368.60 266.06 155.43 –266.41 –102.54 –213.52

Zhongshan 344.26 373.70 352.31 244.67 29.44 –21.38 –107.64 –99.59

Hong Kong 629.09 657.67 676.29 470.32 28.57 18.62 –205.97 –158.77

Macao 5.33 4.78 1.19 2.78 –0.55 –3.59 1.59 –2.55

Dongguan 445.82 990.46 595.32 451.69 544.64 –395.14 –143.63 5.88

Shenzhen 908.83 921.11 728.55 727.30 12.28 –192.56 –1.25 –181.53

Guangzhou 2656.73 4517.96 3627.60 2956.75 1861.23 –890.36 –670.85 300.01
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zhou  and  Shenzhen  were  consistent  with  those  of  the
GBA during 1987–2017, but the values of PD and MPS
were  different  (Figs.  6a and 6b).  The  PD  values  of
Zhaoqing  were  lower  than  those  of  the  GBA,  and  the
MPS  values  of  Huizhou  were  higher  than  those  of  the
GBA (Figs. 6a and 6b). It is noteworthy that Macao had
the lowest MPS, LSI and Cohesion values in all cities in
1987–2017  (Figs.  6b, 6c and 6d),  suggesting  that  the
patch areas, patch numbers and complexity of forests in
Macao were smaller than those in other cities.

3.3　Forest  loss  to  urban land dynamics  from 1987
to 2017
Fig. 7 and Table 2 show the spatiotemporal characterist-
ics  of  forest  loss  to  urban  land  at  the  regional  and  city
level. Generally, the forest area loss to urban land was a
dynamic  process  during  study  period,  and  the  spatial
feature of forest loss to urban land was mainly concen-
trated  in  the  regions  with  low elevations  (<  80  m)  and
gentle slopes (< 5°) (Fig. 8, Tables 3 and 4). However,
some  patches  of  forest  loss  to  urban  land  were  tran-
sitioned  from  lower-elevation  and  gentle-slope  terrains

to higher-elevation (80–400 m) and steep-slope (5°–30°)
terrains  over  time,  especially  for  Jiangmen,  Zhaoqing,
Shenzhen and Hong Kong (Fig. 8, Tables 3 and 4). The
changes  of  forest  loss  to  urban  land  at  different  ele-
vations and slopes may result from the urbanization and
industrialization  in  suburbs.  At  the  regional  level,  the
forest  loss  to  urban  land  experienced  a  first  increase
then  declining  trend  during  1987–2017  (Fig.  9a),  and
reached the maximum value (585.27 km2) in 1997–2007.
In addition, the total area of forest loss to urban land in
the GBA was 1034.42 km2 during 1987–2017 (Table 2).

At  the  city  level,  the  trends  of  forest  loss  to  urban
land  were  also  first  increasing  then  decreasing  during
1987–2017, except for Guangzhou, Foshan and Zhong-
shan (Fig. 9b). Shenzhen had the largest transformation
area of forest to urban land (reaching 47.05 km2, almost
50% of the GBA during 1987–1997 (Table 2), resulting
from rapid urbanization. During 1997–2017, the maxim-
um transformation areas of forest to urban land were ob-
served  in  Dongguan  (1997–2007)  and  Guangzhou
(2007–2017),  and  reached  145.41  km2 and  92.56  km2,
respectively.  Moreover,  the  total  areas  of  forest  loss  to
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urban  land  in  Dongguan,  Guangzhou  and  Shenzhen
ranked as  the top three of  the GBA in 1987–2017,  and

their  percentages  accounted  for  19.14%,  18.35%,  and
15.81%, respectively (Table 2). In contrast, this percent-
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age was less than 0.1% in Macao, which was the lowest
among all  eleven  cities  (Table  2).  It  is  noteworthy  that
the spatial distribution of patches of forest loss to urban
land  in  Shenzhen,  Dongguan,  Zhongshan  and  Foshan

were  distributed  evenly  over  time,  and  the  process  of
urban  growth  occupied  many  suburban  forest  (Fig.  7),
suggesting that the urbanization and industrialization of
suburbs were extensive and decentralized.
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Table 2    Forest loss to urban land at regional and city level in GBA from 1987 to 2017 / km2
 

Region 1987–1997 1997–2007 2007–2017 Total loss

GBA 92.97 585.27 356.18 1034.42 (100.00)

Foshan 2.34 32.40 58.77 93.51 (9.04)

Huizhou 2.87 90.33 20.15 113.35 (10.96)

Jiangmen 2.67 64.43 43.04 110.14 (10.65)

Zhaoqing 11.29 17.80 17.04 46.13 (4.46)

Zhuhai 4.80 18.85 6.09 29.74 (2.88)

Zhongshan 3.42 18.67 25.71 47.8 (4.62)

Hong Kong 3.31 25.28 12.66 41.25(3.99)

Macao 0.09 0.76 0 0.85 (0.08)

Dongguan 9.04 145.41 43.57 198.02 (19.14)

Shenzhen 47.05 79.93 36.56 163.54 (15.81)

Guangzhou 6.10 91.19 92.56 189.85 (18.35)

Note: The figures in brackets indicate the proportion of the total loss of each city to the total loss of GBA / %
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Table 3    Forest loss to urban land at different elevations from 1987 to 2017 in the GBA / km2
 

Region
Forest loss to urban land during 1987–1997 Forest loss to urban land during 1997–2007 Forest loss to urban land during 2007–2017

< 80 80–200 200–400 400–600 > 600 < 80 80–200 200–400 400–600 > 600 < 80 80–200 200–400 400–600 > 600

GBA 78.10 12.64 1.35 0.68 0 550.66 23.72 9.69 1.51 0 332.30 19.47 2.53 1.40 0.43

Foshan 2.25 0.03 0 0 0 32.17 0 0 0 0 58.22 0.52 0.03 0 0

Huizhou 2.46 0.38 0.03 0 0 81.91 7.27 1.05 0 0 16.74 2.75 0.64 0 0

Jiangmen 2.44 0 0.22 0 0 62.49 1.53 0.06 0 0 39.58 1.98 0.38 0.68 0.43

Zhaoqing 9.49 0.15 0.93 0.68 0 16.38 0.97 0.31 0.01 0 11.40 4.40 0.61 0.63 0

Zhuhai 4.78 0 0 0 0 18.71 0.16 0 0 0 5.38 0.71 0.01 0 0

Zhongshan 3.46 0 0 0 0 18.72 0.06 0 0 0 25.50 0.20 0 0 0

Hong Kong 2.90 0.38 0 0 0 9.95 7.06 7.19 1.35 0 11.39 0.66 0.50 0.10 0

Macao 0.09 0 0 0 0 0.52 0.23 0 0 0 0 0 0 0 0

Dongguan 8.36 0.64 0 0 0 145.34 0.40 0 0 0 43.33 0.23 0 0 0

Shenzhen 36.50 10.38 0.14 0 0 74.39 5.33 0.25 0 0 30.63 5.66 0.28 0 0

Guangzhou 5.36 0.68 0.04 0 0 90.07 0.71 0.82 0.15 0 90.12 2.34 0.10 0 0

 
Table 4    Forest loss to urban land at different slopes from 1987 to 2017 in the GBA / km2
 

Region
Forest loss to urban land in 1987–1997 Forest loss to urban land in 1997–2007 Forest loss to urban land in 2007–2017

< 5 5–10 10–20 20–30 > 30 < 5 5–10 10–20 20–30 > 30 < 5 5–10 10–20 20–30 > 30

GBA 63.04 18.40 9.07 1.90 0.36 468.55 69.03 36.99 10.09 0.92 255.33 65.17 29.62 5.31 0.69

Foshan 1.42 0.49 0.29 0.06 0.01 26.14 5.02 0.90 0.09 0.01 48.31 7.59 2.55 0.27 0.05

Huizhou 1.58 0.64 0.56 0.09 0 67.65 10.98 9.84 1.69 0.07 13.74 3.09 2.65 0.63 0.02

Jiangmen 1.98 0.40 0.23 0.05 0 51.90 7.95 3.29 0.83 0.12 27.06 9.67 5.04 0.10 0.28

Zhaoqing 7.88 1.66 1.26 0.31 0.14 11.01 3.60 2.19 0.67 0.20 6.11 5.14 4.52 1.18 0.10

Zhuhai 3.93 0.60 0.22 0.03 0 15.80 1.67 1.12 0.27 0.01 3.18 1.13 1.29 0.45 0.03

Zhongshan 2.30 0.89 0.26 0.01 0 16.37 1.84 0.53 0.04 0 20.95 3.36 1.22 0.15 0.03

Hong Kong 1.36 0.87 0.88 0.14 0.01 5.35 4.62 9.95 5.25 0.38 9.44 1.69 1.01 0.40 0.11

Macao 0.05 0.03 0.01 0 0 0.17 0.16 0.30 0.14 0 0 0 0 0 0

Dongguan 6.08 1.74 1.00 0.16 0.03 135.39 8.47 1.64 0.19 0.06 37.14 5.09 1.20 0.14 0

Shenzhen 33.58 9.53 3.20 0.63 0.09 64.55 11.44 3.54 0.39 0.05 22.86 9.14 4.05 0.49 0.02

Guangzhou 2.87 1.56 1.17 0.41 0.08 74.23 13.26 3.70 0.54 0.03 66.55 19.26 6.08 0.62 0.05
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4　Discussion

4.1　Driving forces of forest loss and fragmentation
China  has  experienced  remarkable  urbanizations  since
1978,  especially  in  the  GBA  (Zhang  and  Weng,  2016;
Zhang et al., 2016; Yang et al., 2019a). The urban land
in the GBA expanded from 605.71 km2 to 7568.19 km2

(a  total  expansion  of  6962.48  km2)  in  1987–2017,  and
the GBA is  experiencing a rapid transition period from
urbanization  to  suburbanization  (Yang  et  al.,  2019a).
The forest loss to urban land in the GBA was 1034.42 km2

during  1987–2017,  and  14.86%  of  total  urban  growth
area in the GBA was obtained from forest  loss.  During
this period, urbanization and rural industrialization have
induced  large-scale  transformation  of  land  use  types
(Jordan  et  al.,  2007; Liang  et  al.,  2015),  one  of  which
was the transformation of low-altitude forests to built-up
lands  (Li  et  al.,  2010).  In  the  early  stage  of  the  reform
and opening-up, the eco-environmental problems caused
by forest  loss  were not  taken into account  in  economic
development.  Low-altitude  flat  forests  also  became  the
primary choice for urban construction, due to their ideal
terrain.  Extensive  infrastructure  constructions  occupied
a  large  area  of  forests  in  Shenzhen,  which  led  to  the
maximum transformation area of forest to urban land in
1987–1997.  It  is  worth  noting  that  local  governments
developed  many  satellite  towns  and  industrial  parks  to
control urban sprawl and evacuate overcrowded popula-
tion  and  industries  in  the  original  urban  core  (NDRC,
2014; Zhang et al., 2016; Yang and Li et al., 2019), and
thus industrial parks and satellite towns arose in the sub-
urbs  of  Guangzhou,  Shenzhen,  Foshan,  Zhongshan,
Dongguan  and  Zhuhai  in  1997–2017. However,  satel-
lite towns and industrial parks inevitably occupied some
forests,  resulting  in  a  large  forest  loss  to  urban  land  in
the suburbs in the GBA during 1997–2017 (585.27 km2

for  1997–2007  and  356.18  km2 for  2007–2017).  Some
studies prove that the growing urban transportation net-
works could divide the landscape formed by land cover
into countless small patches, resulting in landscape frag-
mentation  (Gobattoni  et  al.,  2011; Liang  et  al.,  2015).
Therefore, forest  fragmentation  in  the  GBA  can  be  at-
tributed to rapid urban sprawl and industrialization to a
certain extent.

Urban  expansion  always  prefers  to  choose  farmland
for development  because  generally  the  terrain  of  farm-
land is plains and the development costs are low. China

has  converted  extensive  farmlands  into  urban  lands
since reform and opening-up (Liu et al., 2014; Liu et al.,
2015; Liu et al., 2016b; Hu et al., 2018). Being aware of
the seriousness  of  farmland  loss,  the  Chinese  govern-
ment issued a series of policies, such as China’s Nation-
al General Land Use Plan (1997–2010 and 2006–2020),
to prevent the loss of farmland (Zhong et al.,  2014; Xu
et  al.,  2015).  The  high-quality  cultivated  land  (Class  I
and II types) in China is distributed in flat regions with
slopes  of  0°–6°,  and  most  of  them  belong  to  the  basic
farmland,  which  can  not  be  developed.  The  mandatory
measures and requirements of strict farmland conserva-
tion  policies  push  local  governments  to  develop  urban
lands on hillsides or mountains with low elevations and
gentle slopes. A large amount of high quality farmlands
in the plain areas were converted into urban lands in the
early stage of  the reform and opening up (1987–1997).
Therefore, it is not surprising that the areas of forest loss
to  urban  land  gradually  moved  towards  hillsides  in  the
GBA during 1997–2017, especially for hilly cities with
less farmland, such as Shenzhen and Hong Kong.

It  is  worth  noting  that  urban  development  and  GDP
growth are  closely  associated  with  political  achieve-
ments  in  China  (Liu  et  al.,  2014c). The  local  govern-
ments  within  the  GBA  tended  to  develop  industrial
clusters in pursuit of high GDP growth to reach politic-
al achievements;  however,  the  basic  farmland  protec-
tion regions were forbidden for development, which res-
ulted  in  a  large  number  of  industrial  parks  in  suburbs
and hillsides  being developed during 1997–2017, espe-
cially for Dongguan, Foshan, Zhongshan and Shenzhen.
The development of industrial clusters usually occupies
some forests, resulting in eco-environment degradation.
These results suggest that more attentions to forest con-
servation are needed.

4.2　Landscape responses to forest dynamics
Our results revealed that the effects of forest changes on
the  landscape  varied  at  regional  and  city  level.  For  the
regional  level,  we  found  that  forest  fragmentation  and
complexity  increased  in  the  early  stage  (1987–2007),
which confirmed the general  observation that  urbaniza-
tion  leads  to  increasing  landscape  fragmentation  and
complexity (Collinge, 1996; Chen et al., 2007). However,
a  decreasing  trend  of  forest  landscape  fragmentation
was observed in 2007–2017, suggesting that a reduction
of  human  disturbance  and  a  growth  of  environmental
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protection  awareness  can  adjust  forest  distributions  to
avoid  the  acceleration  of  landscape  fragmentation  and
complexity.  In  addition,  the  landscape  responses  to
forest changes are not always monotonic, but vary with
spatial and temporal scale. For the city level, forest dis-
tributions in most  cities  presented a decreasing suburb-
to-central  urban  areas  gradient  (i.e.,  the  farther  away
from the city centers, the more forests were distributed),
which is similar to the general observation in the GBA.
Moreover,  we  found  that  a  higher  fragmentation  and
lower  contiguous  degree  of  forests  appeared  in  the
farther mountainous  regions,  confirming  that  the  dis-
turbance of anthropologic activities in forests is  mainly
concentrated in highly urbanized areas.  The fragmenta-
tion  trends  of  Zhaoqing,  Zhongshan,  Guangzhou  and
Shenzhen were  consistent  with  those  of  the  GBA  dur-
ing  1987–2017,  while  the  fragmentation  trends  of
Zhuhai,  Huizhou  and  Jiangmen  were  different  from
those of  the  GBA,  moreover  their  fragmentation  de-
grees  were  different.  These  results  suggested  that  the
urbanization levels  and volumes of  forest  resources  for
these cities were different in 1987–2017. Therefore, the
landscape  responses  to  forest  changes  at  the  city  level
were also not monotonic, but varied according to space
and time scale.

4.3　Limitations and future works
There are some limitations in our  study,  which need to
be further explored.  The GBA has a wide geographical
coverage and heavy rainfall in summer, which makes it
difficult to obtain enough cloudless Landsat images in a
same  season.  The  resolution  of  Landsat  images  is
30  m,  which  makes  it  difficult  to  obtain  more  precise
forest  boundaries;  thus,  high-resolution  images  may
hold  potential  in  improving  forest  loss  to  urban  land
studies.  This  study  was  focused  on  the  forest  loss  and
forest loss to urban land of the GBA in 1987–2017, and
the  forest  recovery  was  not  analysed  in  depth.  Forest
change is  a  dynamic process,  and the forest  area in the
GBA had a recovery period in 1987–1997, with a restor-
ation  area  of  4946.09  km2.  Among  the  eleven  cities,
Huizhou, Jiangmen  and  Guangzhou  had  more  restora-
tion areas than other cities, which could be attributed to
the  reforestation  project  ‘Greening  Guangdong  in  10
Years’ initiated in 1985 and the mountainous terrain of
these three cities (Trac et al., 2013; Hasan et al., 2019).
Therefore,  the  forest  recovery  in  the  GBA  needs  to  be

discussed in depth in the future. In order to balance the
contradiction of urban growth and eco-environment pro-
tection, studying the ecological effects of forest loss and
the correlation  between  urbanization  and  forest  land-
scape changes is urgently required by local governments.

5　Conclusions

This  study  first  extracted  forest  boundaries  of  GBA
from 1987 to 2017 using Landsat time-series images by
object-oriented  support  vector  machine  method,  and
then  revealed  the  spatiotemporal  features  of  forest  loss
to  urban  land,  landscape  patterns  of  forest  dynamics  at
regional and city level by combining landscape metrics,
and GIS techniques. The main conclusions were as fol-
lows: 1)  The  spatial  distribution  of  forest  was  concen-
trated in urban suburbs, hills and mountains of the GBA.
Forest  of  the  GBA  increased  first  then  decreased,  and
the trends of forest changes of all cities were consistent
with the  GBA,  except  for  Zhaoqing,  Huizhou  and  Ma-
cao.  2)  Landscape  responses  to  forest  change  varied
with spatial and temporal scale. Forests became increas-
ingly fragmented in 1987–2007, and then fragmentation
decreased in 2007–2017 at the regional level, which was
consistent with  that  in  Zhaoqing,  Zhongshan,  Guang-
zhou  and  Shenzhen.  3)  The  total  urban  growth  area  in
the  GBA  was  6962.48  km2, of  which  14.86%  was  ob-
tained  from  forest  loss.  The  total  area  of  forest  loss  in
the  GBA  reached  4040.6  km2 in  1987–2017,  of  which
25.60% was converted to urban lands.  The percentages
of  forest  loss  to  urban  land  in  Dongguan  (19.14%),
Guangzhou  (18.35%)  and  Shenzhen  (15.81%)  were
higher than those in other cities. 4) Urbanization and in-
dustrialization  drove  forest  loss  to  urban  land.  Hillside
urban land  expansion  contributed  to  mountain  or  hill-
side forest loss in the GBA. These findings will be help-
ful  to  policy  makers  for  maintaining  the  stability  of
forest  ecosystem,  and  provide  some  new  insights  into
forest  management  and  conservation.  Our  results  also
suggest that urban lands on hillsides are at risk, because
the  changes  of  regional  topographic  features  at  higher-
elevation  and  steeper-slope  terrains  may  cause  surface
subsidence and deterioration of ecological quality.
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