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Abstract: Lake monitoring by remote sensing is of significant importance to understanding the lake and ambient ecological and envi-

ronmental processes. In particular, whether lake water storage variation could predict lake surfacial temperature or vice versa has long 

fascinated the research community, in that it would greatly benefit the monitoring missions and scientific interpretation of the lake 

change processes. This study attempted to remotely detect the dynamics of the Aral Sea and pursue the relationships between varying 

lake water storage attributes and surface water temperature by using MODIS LST (Moderate-resolution Imaging Spectroradiometer 

Land Surface Temperature) 8-day composite products, satellite altimeter data, and actual meteorological measurements. Their associa-

tions with lake Surface Water Temperatures (SWT) were then analyzed. Results showed the lake water surface areas and elevations of 

the North Aral Sea tended to increasing trend from 2001 (2793.0 km2, 13.6 m) to 2015 (6997.8 km2, 15.9 m), while those of the South 

Aral Sea showed a decreasing trend during 2001 (20 434.6 km2, 3.9 m) and 2015 (3256.1 km2, 0.9 m). In addition, the annual daytime 

and nighttime lake SWT both decreased in the North Aral Sea, while only the daytime SWT in the South Aral Sea exhibited an increase, 

indicating a rising deviation of diurnal temperatures in the South Aral Sea during the past 15 yr. Moreover, a lower correlation was 

found between variations in the daytime SWT and storage capacity in the South Aral Sea (R2 = 0.33; P < 0.05), no fair correlations were 

tested between lake water storage and daytime SWT in the North Aral Sea nor between lake water storage and nighttime SWT in either 

part of the sea. These results implied that climate change, if any at least during the research period, has no significant effects on lake 

dynamics over the two sectors of the Aral Sea with anthropogenic disturbances. However, climate change and human activities may 

overlap to explain complex consequences in the lake storage variations. Our results may provide a reference for monitoring the spatio-

temporal variations of lakes, increasing understanding of the lake water storage changes in relation to the lake SWT, which may benefit 

the ecological management of the Aral Sea region, in the effort to face the likely threats from climate change and human activities to the 

region. 
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1  Introduction 

Terrestrial water storage (TWS), representing the total 

loading capacity of all water bodies (lakes, rivers, res-
ervoirs, wetlands, soil, and groundwater) above and be-
neath the earth’s surface, plays a key role in regulating 
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global and regional water cycling, climate change, and 
water resource management (Zhang et al., 2011). TWS 
could interact with the atmosphere and oceans in the 
form of vertical and horizontal water or vapor fluxes, 
e.g., precipitation, evapotranspiration, and land sur-
face/underground runoff discharge. Lake storage serves 
as an indicator, revealing the lake water balance, linked 
with lake inflows (e.g., precipitation and external runoff 
recharge) and outflows (e.g., evaporation and runoff 
discharge) (Chen et al., 2017). In addition, it provides 
moisture to the atmosphere, modulates heat dynamics of 
lake waters, irrigates farmlands, feeds household and 
industrial water consumption, and drives hydropower 
generation. Recently, Wang et al. (2018) confirmed the 
prevalent TWS decline over the entire exorheic region 
(–58.44 ± 27.75 Gt/yr, excluding Greenland and Antarc-
tica). Lake water storage has been understood to be an 
essential component of TWS. 

However, under current global warming scenarios, 
serious drought events have frequently occurred, and the 
storage of many lakes on earth have been shrinking, 
resulting in altered regional water cycles and even jeop-
ardizing the utilization of global lakes, especially in the 
arid and semi-arid regions (Crosman et al., 2009; Bai et 
al., 2011). For instance, less storage often means re-
duced evaporation and warmer lake water. On the other 
hand, rising air temperature will heat lake water (espe-
cially the surface water) and increase lake surface 
evaporation, causing higher surface water temperature 
(SWT) and lower water storage (Song et al., 2016). 
Here, the SWT, similar to the land surface temperature 
(LST), is a key index representing the physical or even 
ecological conditions of a lake. Generally, variations in 
SWT can result in alterations in near-surface air turbu-
lence, surface water evaporation, phytoplankton 
evapotranspiration, precipitation, and aquatic biomes of 
a lake and the land nearby; thus, SWT variations may 
affect the ecology, environment, and socio-economic 
development at the localities. Particularly, owing to the 
higher heat capacity of water, annual variations of SWT 
may depict long-term trends of climate and hydrological 
processes of a region (Crosman et al., 2009). In 2015, 
the American Geographical Union reported that SWT 
has been increasing at a rate of about 0.34℃ per decade 
in 235 lakes across the globe during 1985–2009, much 
higher than that in the oceans. Therefore, both SWT and 
the dynamics of lake water storage have been commonly 

considered to develop a viable proxy to examine lake 
ecosystems, lake hydrology, and global change issues 
(Gong, 2012; Luyssaert et al., 2014).  

Although SWT and lake storage data are available for 
some lakes, in-situ measurements have been often lim-
ited because of the inaccessibility of faraway lakes and 
inaccuracies in sampling. Naturally, remote sensing has 
provided great opportunity for monitoring and assessing 
the climate and environmental change of an area (Wang 
et al., 2009; Hu et al., 2010; Wang et al., 2012; Shi et al., 
2015; Song et al., 2016; Shi et al., 2019). To date, pre-
vious studies have been mainly focused on monitoring 
lake areas, water levels, and lake storage variations 
(Cretaux et al., 2011), as well as estimating lake SWT 
(Ke et al., 2014). Nonetheless, these studied lakes 
largely reside in the Tibetan Plateau (Zhang et al., 2011), 
Austria (Livingstone et al., 2001), and subarctic Alaska 
(Riordan et al., 2006), where anthropogenic impacts are 
typically weak. Because a lake surface is homogenous, 
spatiotemporal variations in the moderate-resolution 
imaging spectroradiometer land surface temperature 
(MODIS LST) are more stable in monitoring the ther-
mal characteristics of lakes than those of land. Theo-
retically, estimation of lake storage is the integration of 
the difference between water level and bathymetry. As 
lake surface area is significantly correlated with lake 
water storage, satellite radar altimetry could be com-
plementary to determining the effect on lake areas and 
surface elevation through short- and long-term dynami-
cal processes. As lake surface area is often highly corre-
lated with lake storage, using remote sensing to monitor 
lake water storage may be achieved by combining the 
extracted lake water surface area and elevation (Cretaux 
et al., 2011; Wang et al., 2013; Zhang et al., 2014), 
which will decrease the effect of the lakebed morphol-
ogy. Thus, maintaining the integrity of the imagery in 
terms of error analysis and uncertainty reduction is es-
sential. Thanks to the Geoscience Laser Altimeter Sys-
tem (GLAS) on board the Ice, Cloud, and Land Eleva-
tion Satellite (ICESat), lake elevation can be measured 
with higher vertical precision (about 10 cm) (Zhang et 
al., 2011). In short, the MODIS LST data products, 
MODIS reflectance products, and ICESat/GLAS data 
are ready for use in monitoring and evaluating lake dy-
namics at certain spatiotemporal scales. 

Wang et al. (2018) reported that approximately 
two-thirds of the global endorheic water loss (–73.64 ± 
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7.74 Gt/yr) may arise from central Eurasia, where 10% 
of the entire zonal loss was concentrated on the Aral Sea 
Basin (including nearby watersheds receiving transbasin 
diversion). Because of the predominantly periodical 
desiccating climate and intensive anthropogenic im-
pacts, the Aral Sea storage varied significantly, exhibit-
ing substantial shrinking since the 1960s. Consequently, 
the ecology and environment of the Aral Sea region has 
aroused wide public concern. However, previous studies 
were more focused on water levels and sedimentation of 
the Aral Sea (Micklin, 2010), anthropogenic activity 
(Boomer et al., 2009), and hydrologic responses to cli-
mate change and irrigation in the region, while lacking 
data pertaining to quantified temperature variations in 
relation to lake dynamics. Throughout much of history, 
the Aral Sea, together with its feeding rivers, served as a 
cultural and economic provider for the region, which 
made understanding the mere effects of lake dynamics 
and lake surface temperature variations a complicated 
challenge. Thus, long-term monitoring of lake dynam-
ics, including lake area, elevation, and storage capacity 
in relation to SWT of the Aral Sea, might be of much 
help in better understanding and managing the Aral Sea 
ecology and environment. 

Based on the above, this study aimed to: 1) analyze 
the long-term variations in lake area, lake elevation, lake 
storage, and daytime and nighttime SWTs of the Aral 
Sea by using multi-source remote sensing data; and 2) 
elucidate the likely associations between lake parame-
ters and SWTs of the Aral Sea. Results from this re-
search may help disentangle the localized environmental  

and ecological processes, and provide scientific supports 
for regional water resources and ecosystem management 
in similar lake-oriented arid and semiarid regions.  

2  Materials and Methods 

2.1  Study area 
The Aral Sea (43°24′N–46°56′N, 58°12′E–61°59′E), 
lying on the border of Kazakhstan and Uzbekistan, was 
once the world’s fourth largest lake (Fig. 1). It is located 
in the arid continental monsoon climate zone, with a 

mean annual temperature of 9.4℃, and an average an-

nual precipitation ranging from 100 to 440 mm. The 
Aral Sea is a terminal and enclosed lake, fed by certain 
inland rivers such as the Amu Darya River and the Syr 
Darya River. Precipitation and groundwater are the ma-
jor hydrological factors controlling the lake water stor-
age. Before the 1960s, the Aral Sea area (6.8 × 104 km2) 
varied mildly and remained fairly stable, with a lake 
water level of approximately 53 m. Since the 1960s, the 
Aral Sea began shrinking because of the local need for 
agricultural irrigation. As a result, the Aral Sea was 
separated into two parts—the North Aral Sea and the 
South Aral Sea. In 2008, the North Aral Sea was ap-
proximately 3300 km2 in area, and the South Aral Sea 
was about 8200 km2. 

2.2  Data sources and preprocessing 
(1) MODIS products. The National Aeronautics and 
Space Administration (NASA) provides MODIS prod-
ucts for free at http://ladsweb.nascom.nasa.gov/data/  

 

Fig. 1  Location of the Aral Sea. The left map were from Ministry of Natural Resources of the People’s Republic of China 
(http://bzdt.ch.mnr.gov.cn) 
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search.html, with the path number h22v04 for the Aral 
Sea. MODIS products used in this study included land 
surface temperature (MOD11A2) and surface reflec-
tance products (MOD09A1). Particularly, consistent 
data sources can ensure good temporal matching be-
tween lake temperatures and area calculations. 
MOD11A2 can provide daytime and nighttime tem-
peratures at a resolution of 1000 m in an 8-day gridded 
level 3 product, as was used to analyze lake SWTs in the 
Aral Sea. The acquired MOD11A2 8-day composite 
product contained 46 stacked layers, each including 
daytime and nighttime temperature records. After mo-
saicking through MRT (MODIS Reprojection Tool), the 
MODIS LST 8-day composite images were projected to 
Albers in GeoTIFF by using the nearest-neighborhood 
interpolation method. By contrast, MOD09A1 can pro-
vide Band 1 to Band 7 at a resolution of 500 m in an 
8-day gridded level 2 product. The MODIS products 
temporally span 15 yr (from 2001 to 2015). 

(2) ICESat/GLAS data. The ICESat, launched by 
NASA Earth Science Enterprise, is commonly used to 
measure ice sheet mass balance, cloud and aerosol 
heights, and land topography and vegetation cover. In 
this study, GLAS14 from ICESat was used to calculate 
the elevation of the Aral Sea with a temporal span of 7 
yr (launching in 2003 and ending in 2009). In general, 
ICESat/GLAS provides two types of pulsed laser waves 
(1024 nm and 532 nm) with a spot diameter of ap-
proximately 70 nm and an operating frequency of 40/s. 
The ICESat/GLAS repeats once each eight days. More 
details about ICESat/GLAS can be found in Dessler et 
al. (2006). 

 (3) Meteorological data. The average air tempera-
tures at the three meteorological stations (ARALSK, 
KAZALY, and SAM in Kazakhstan) in the Aral Sea 
area were used to validate the temperature data ex-
tracted from MOD11A2. Then, the air temperatures 
2-m above the ground were obtained for free from the 
website http://www.ncdc.noaa.gov at the National 
Climate Data Center (affiliated with the National Oce-
anic and Atmospheric Administration-NOAA). Like-
wise, at each meteorological station, daily temperatures 
were averaged from ground records. To analyze the 
monthly (i.e., lake freezing and thawing months) and 
annual SWT dynamics of the region, daytime and 
nighttime temperatures during March to October were 
considered. 

2.3  Lake area, elevation, and storage capacity ex-
traction 
2.3.1  Lake water surface area 
Generally, water strongly absorbs light in the 
near-infrared (NIR) band with lower reflectance, while 
the land surface has higher reflectance. For this sake, the 
Normalized Difference Water Index (NDWI) threshold 
method has been commonly used (Song et al., 2016). 
NDWI can well extract the lake water area information 
by analyzing the histogram of NDWI at land-water in-
terfaces to determine an optimal threshold (Sun et al., 
2012). Under fine conditions, a positive NDWI value 
indicates that the land is covered by water and ice, a 
zero value corresponds to rock and soils, and a negative 
value indicates vegetation. McFeeters et al. (1996) re-
ported that choosing the green band could yield better 
performance for NDWI as: 

NDWI = (G – NIR) / (G + NIR) (1) 

where G and NIR represent the reflectance in the green 
band (band 4, 545–565 nm) and NIR band (band 2, 
841–876 nm) for MODIS, respectively.  

In this study, due to the significant area variations in 
the Aral Sea, we determined the thresholds through the 
NDWI histogram and human-computer interaction. 
First, each scene of the MODIS09A1 (in hierarchical 
data format, sinusoidal projection) product was 
re-projected to a more commonly used UTM projection 
(Universal Transverse Mercator, WGS84) with the 
nearest neighborhood re-sampling method in MRT: 1) 
NDWI results were created using Eq. (1) with ‘Band 
Math’ tool in ENVI 5.3 environment. 2) A rule was used 
to identify water bodies and non-water by the tool ‘De-
cision Tree’ with NDWI Gt 1.0 (temporary threshold). 
However, the NDWI thresholds of each image with the 
ratio-based index were sensitive to atmospheric varia-
tions at spatiotemporal scales. Thus, to obtain the opti-
mal threshold for each image, the initial threshold 
(temporary) was determined from wave troughs of wa-
ters and non-waters in the histogram with bimodal dis-
tribution. Then, the initial threshold (temporary) was 
adjusted until a best match between waters and shores 
(MODIS, Red-Green-Blue ‘true-color’ images at a 
resolution 500 m) was obtained for different scenes by 
human-computer interaction. If the NDWI value of a 
pixel agreed well with the rule, the pixel would be clas-
sified as water. Consequently, the thresholds in the water 
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extraction ranged from 0.9 to 1.2 throughout the re-
peated comparisons. 
2.3.2  Lake elevation 
Lake water levels were retrieved from the ICE-
Sat/GLAS orbital measurements with three steps. First, 
latitude, longitude, reflectance, and atmospheric radia-
tion from the ICESat/GLAS14 laser spot were evaluated 
through error correction, with the Global Positioning 
System (GPS) coordination points acquired from file 
batch_read_altimetry.sav in the IDL (Interface descrip-
tion language) procedure. Afterward, the GPS points 
were converted into vectors. Next, the lake water area 
boundary that was identified by MOD09A1 (see Section 
2.3.1) with the ICESat overpass was used to obtain the 
orbital geographical location information. We chose the 
annually smallest area of the Aral Sea (extracted by 
MOD09A1, see Section 2.3.1) for the period March to 
October to build a buffer in terms of avoiding the influ-
ence of the boundary interface between water and land. 
In the meantime, all the lake boundaries were buffered 
by 1000 m to remove the laser spots outside the lake 
range. Then, all the lake elevation measurements of la-
ser spots were extracted according to the smallest area. 
Next, each laser spot including the water surface level 
information from ICESat data was used to remove the 
influence of the geoidal surface. ICESat GLAS data it-
self were provided with a geo-potential model of the 
Earth as EGM96 (Earth Gravitational Model 1996). 
Hence, the water surface level information from each 
laser spot of the ICESat data was represented as the lake 
water level directly. As a result, the lake water level at a 
certain moment (e.g., April 2009) was the average value 
of all the valid laser spots within a least lake area (see 
Section 2.3.2) at the same moment. 

According to a statistical analysis of lake water ele-
vation during each observational day, some anomalous 
laser spots that exceeded the standard deviations of the 
lake water elevation 0.1 were deleted. As for the omitted 
years (before 2003 and after 2009), lake water level 
elevations were calculated through regression models 
between the area of the cutting laser spots during the 
period 2003–2009 and the corresponding elevations. 
2.3.3  Lake water storage capacity 
Lake water storage capacity refers to the largest volume 
defined by the present horizontal curved water surface 
and certain bed morphology. Generally, differences in 
the relative dynamic storage capacity QC at a specific 

time point can be calculated by using the simultaneous 
area and water elevation of a lake. For instance, if Qt1 
indicates the storage capacity at time point t1, and Qt2 in-
dicates the storage capacity at time point t2, then the dy-
namic capacity QC between t1 and t2 can be described as: 

2 1C t tQ Q Q Q A B       (2) 

where Qt1 is the storage capacity at moment t1, Qt2 is the 
storage capacity at the moment t2; A and B represent 
terrain parameters. If the terrain is unknown, compared 
with the significant variations of lake storage (e.g., the 
Aral Sea), the variations of terrain parameters can be 
ignored, especially in long-time observations (i.e., 2001 
to 2015).  

Combining with the dynamic lake area from 
MODIS09A1 products and lake water level from ICESat 
data, the lake dynamic storage could be presented as: 

1 1 2 2i i

m n

c t t t t
i i

Q P E P E      (3) 

where
1t

P is the area of the signal pixel at moment t1, m is 

the sum of lake pixels at moment t1; 
2t

P is the area of 

the signal pixel at moment t2, n is the sum of lake pixels 

at moment t2; 
1t

E is the water level at moment t1 from 

ICESat data, and 
2t

E is the water level at moment t2 

from ICESat data. 

2.4  Lake surface water temperature extraction 
and validation 
As noted above, the pre-treated MOD11A2 was ex-
tracted in four layers, i.e., daytime LST (overpass time 
was at about 10:30 a.m. in the local time), nighttime 
LST (overpass time was at approximately 22:30 p.m. in 
the local time), and corresponding quality-control (QC) 
images (daytime and nighttime). In reference to the 
method proposed by Ke et al. (2014), we removed the 
suspicious pixels and deduced the valid ones from QC 
information and median filtering in the time-series LST 
data stacks resulting from the presence of cloud con-
tamination. According to the LST data quality flag files 
stored in the QC file, all the pixels with LST errors less 
than 1000 (i.e., QC = 0, 1, 5, 17, 21) were kept, while 
the others were removed. However, pixel values could 
not represent the true LST; therefore, a conversion 
through band operation is often necessary to obtain the 
actual surface temperatures. The band operation formula 
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for LST images was used to transfer DN (Digital Num-
ber) to degrees centigrade as follows: 

T = DN × 0.02 – 273.15 (4)  

where T is the surface temperature value (℃) and DN is 
the gray value of an LST image.  

A total of 704 pieces of images over the Aral Sea 
were acquired during 2001–2015. The data processing 
procedure is shown in Fig. 2. The mean lake SWT was 
derived from all the pixels in the daytime or nighttime 
LST images from March to October. However, dynamic 
lake areas often resulted in an inaccurate retrieval of 
temperatures between water and land. To avoid such 
errors, we selected a fixed common area—the minimum 
lake area in all the years as a range boundary of the used 
MODIS temperature images.  

In addition, the air temperatures acquired from 2-m 
high above the ground over the three meteorological 
stations (ARALSK, KAZALY, and SAM in Kazakhstan) 
were applied to validate the lake daytime and nighttime 
temperatures extracted from MODIS LST. As shown in 
Fig. 3, MODIS LST was in fine agreement with 
monthly average temperatures of the meteorological 
stations, with R2 = 0.73 (KAZALY), 0.69 (SAM), and 
0.64 (ARALSK) (P < 0.01) in the North Aral Sea. 
Likewise, the South Aral Sea was found to have similar 
agreement, with R2 = 0.77 (KAZALY), 0.73 (SAM), and 
0.68 (ARALSK) (P < 0.01). In general, a consistently 
increasing temperature change over the Aral Sea was 
found in terms of air temperature and LST during the 
recent decades. By contrast, the lake MODIS LST better 

reflects the real surface temperature variations than land 
MODIS LST because of the homogeneous lake surface.  

2.5  Statistical analysis 
Regression and correlation analyses were conducted to 
examine the relationships between variables (tempera-
tures from MODIS LST and meteorological stations, 
lake surface water area, lake water level, and lake water 
storage). Statistical differences between variables were 
assessed with analysis of variance (ANOVA) by defin-
ing three significance levels in which no significance is 
represented by P > 0.05, significant corresponds to P < 
0.05, and highly significant corresponds to P < 0.01.  

3  Results 

3.1  Dynamics of lake area, elevation and storage 
capacity 
3.1.1  Lake surface water area 
Fig. 4 demonstrates the annual variations in the exam-
ined Aral Sea areas during 2001 to 2015. According to 
the area extraction by the NDWI method from 
MODIS09A1 (Section 2.3.1), the smallest South Aral 
Sea area was recorded in 2014 (3883.35 km2), and the 
highest record area was recorded in 2001 (21 684.60 
km2). Despite a slight increase in 2010 (9246.80 km2), 
the area decreased throughout 2010 to 2014. By con-
trast, an increase in the lake area was observed in the 
North Aral Sea during the past 15 yr (Fig. 4). In 2006, 
the North Aral Sea increased to 3293.1 km2 in area and 
then remained at a stable level.  

 

Fig. 2  Processing flow scheme for MODIS LST data. MODIS LST is Moderate-resolution Imaging Spectroradiometer Land Surface 
Temperature; MRT is MODIS Reprojection Tool which could resample and make a reprojection transformation. Quality-control (QC) 
images (daytime and nighttime) of MODIS LST store LST data quality flag files and information. IDL (Interface description language) 
procedure of ENVI 5.2 is aimed to smooth the file null values.  
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Fig. 3  Regression analysis results of monthly averaged temperatures between MODIS LST (Land Surface Temperature) and meteoro-
logical stations (N = 8, March to October) from 2001 to 2015: (a) ARALSK, (b) KAZALY and (c) SAM in the North Aral Sea; (d) 
ARALSK, (e) KAZALY and (f) SAM in the South Aral Sea. The monthly averaged air temperatures at the three meteorological stations 
(ARALSK, KAZALY and SAM) in the Aral Sea watershed were obtained for free from the National Climate Data Center (affiliated 
with NOAA). Also, the monthly averaged MODIS LST included daytime and nighttime values. To be consistent with the temporal 
variations (March to October) of the lake area and levels from MODIS09A1 and ICESat, the temperatures from both MODIS LST and 
meteorological stations were averaged from 2001 to 2015. Thus, the monthly averaged temperatures were acquired throughout March to 
October (N = 8). 

 

Fig. 4  Yearly average area of the North and South Aral Seas 
from 2001 to 2015 

 

3.1.2  Lake water elevation 
To supplement the omitted elevation data during the 
no-record years (because working time was from 2003 
to 2009 for GLAS14), regressions between the lake wa-
ter elevation and areas were constructed for the North 

and South Aral Seas (Fig. 5). A positive quadratic poly-
nomial relationship between the lake area and elevation 
was found for the North Aral Sea (R2 = 0.86; P < 0.01), 
and a linear relationship between lake area and elevation 
was found for the South Aral Sea (R2 = 0.87; P < 0.01). 
In referring to the regression results, water elevation for 
the omitted years was calculated (Fig. 5c). As a result, 
the average water elevation of the South Aral Sea was 
1.76 m during 2001–2015, showing a decreasing trend. 
Likewise, a stable tendency in lake water elevation was 
found in the North Aral Sea, revealing an average water 
elevation of 13.89 m. These results were in line with the 
areal variations of the Aral Sea. 
3.1.3  Lake water storage capacity 
To some extent, lake water area and elevation could re-
flect the dynamics of an entire lake. The lake water 
storage calculated by water area and elevation is shown 
in Fig. 6. In general, the South Aral Sea exhibited higher 
storage capacity variations than the North Aral Sea. In  
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Fig. 5  Elevation variations in the Aral Sea: (a) regression model between lake area and lake elevation at the North Aral Sea during 
2003–2009; (b) regression model between lake area and lake elevation at the South Aral Sea during 2003–2009; (c) elevations of the 
Aral Sea during 2001–2015. Due to the water elevation was extracted from ICE/GLAS (2003–2009), thus the omitted years (e.g., 
2001–2002 and 2010–2015) were calculated by the functions in Figs. 5a and 5b. 
 

 

Fig. 6  Variations of lake storage in the North and South Aral 
Seas (negative values representing a decrease in area over the past 
two years and positive values representing an increase over the 
same period). The variations were calculated by Eqs. (2)–(3). 
2001–2002 represents the variations of lake storage from 2001 to 
2002, and the remaining can be done in the same manner. 
 

particular, the South Aral Sea exhibited huge fluctua-
tions in lake water storage, revealing descending varia-
tions as the lake water area and elevation during 2001 to 
2015. Specifically, higher lake storage variations in the 

South Aral Sea were observed in 2001–2002 (−14 575.5 
m3), 2004–2005 (−17 457.8 m3), and 2006–2007 (−10 
820.8 m3). By contrast, lake storage variations in the 
North Aral Sea revealed milder fluctuations,,with criti-
cal variations observed in 2002–2003 (−5808.8 m3), 
2005–2006 (5563.4 m3), and 2010–2011 (5139.7 m3), 
respectively. 

3.2  Temporal patterns in SWT 
3.2.1  Annual SWT dynamics 
SWTs of the Aral Sea ranged from 14.0  to 20.4  ℃ ℃

during 2001–2015 (Fig. 7). In general, in the North Aral 
Sea, daytime temperature and nighttime temperature 
both showed a consistent trend before 2012. Such re-
sults can also be found in the South Aral Sea before 
2011. To this, Song et al. (2016) suggest that smaller 
diurnal temperature deviations often exist for a lake with 
smaller area and shallower depth. Clearly, our results 
agree well with this conclusion. 
3.2.2  Monthly SWT dynamics 
During 2001–2015, the monthly SWT increased at the 
beginning of each March, with the daytime temperature 
at approximately 11.5  in the North Aral Sea (Fig. 8a) ℃  
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Fig. 7  Average annual temperatures from MODIS LST during 2001–2015 in the North (a) and South (b) Aral Seas 
 

and 12.4  in the South Aral Sea (Fig. 8b), and nigh℃ t-
time temperature at 10.2  in th℃ e North Aral Sea and 
9.8  in the South Aral Sea. In April, the daytime and ℃

nighttime SWTs in the North Aral Sea were 6.6  and ℃

6.2 , respe℃ ctively, while those in the South Aral Sea 
were 10.1  and 9.3 . The highest SWTs emerged in ℃ ℃

June, i.e., 23.1  for dayti℃ me and 22.5  for nigh℃ ttime in 
the North Aral Sea, and 22.1  for daytime and 21.6  ℃ ℃

for nighttime in the South Aral Sea. During this period, 
the lake SWT in the South Aral Sea exhibited higher day-
time/nighttime values than in the North Aral Sea likely 
because of the effect of the lake depth. In addition, this 
warmer period corresponded to greater lake performance. 
At the end of each October, the daytime SWT fell to 
4.1  in the North Aral Sea and 7.1  in the South Aral ℃ ℃

Sea, while the nighttime SWT decreased to 2.3  in the ℃

North Aral Sea and 5.2  in the South Aral Sea. ℃  

3.3  Correlations between SWT and lake dynamics 
3.3.1  Lake SWT vs. lake area 
Regression analysis between the variations in area and 
SWT in the South and North Aral Seas during 
2001–2015 was conducted (Fig. 9). The results indicate 
that there were no fair correlations between daytime 
temperature variations (R2 = 0.05) or nighttime tem-
perature variations (R2 = 0.02) and lake area variations 
for the North Aral Sea (Fig. 9a). By contrast, a weak 
correlation between daytime (R2 = 0.11) or nighttime 
SWT variations (R2 = 0.19) and lake area variations was 
found for the South Aral Sea (Fig. 9b). 

 

Fig. 8  Monthly temperatures of MODIS LST during 2001–2015 in the (a) North and (b) South Aral Seas 
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Fig. 9  Correlations between lake surface water area variations and SWT variations in the (a) the North Aral Sea and (b) the South Aral 
Sea 
 

3.3.2  Lake SWT vs. lake elevation 
Regression analysis linking SWT and lake elevational 
variations in the South and North Aral Seas throughout 
2001 to 2015 are presented in Fig. 10. The results re-
vealed that there was no positive correlation between 
lake elevation and SWT variations during the period in 
the North Aral Sea (R2 = 0.02 for daytime and R2 = 0.01 
for nighttime, Fig.10a). By contrast, though there were 
also no positive correlations between lake SWT and lake 
elevational variations in the South Aral Sea, a weak 
correlation was found between the daytime SWT varia-
tion and the lake elevation variation in the South Aral 
Sea (R2 = 0.22, Fig. 10a).  
3.3.3  Lake SWT vs. lake storage capacity 
Fig. 11 revealed that there existed correlations between 
lake storage variation and daytime SWT variation in the 
South Aral Sea (R2 = 0.33, P < 0.01); the other three 
situations all indicated poorer correlations in the lakes. 
However, this could not be extrapolated to the North 

Aral Sea or nighttime conditions, which may be due to 
certain complicated influences, such as increasing an-
thropogenic activities around the lakes and variations in 
nighttime lake SWT, affected by unknown factors other 
than lake water storage. 

4  Discussion 

4.1  Human activities likely impacting the Aral Sea 
Previous studies reported that over the past three dec-
ades, discharge of feeding rivers significantly varied in 
the Aral Sea region, crucially impacting the lake eleva-
tion (Cretaux, 2013). Since the 1950s, traditional no-
madic herding was converted into cropping regimes in 
the region, owing to the decision of the former Soviet 
central planners that the Mid-Asian countries should be 
a cotton production center. To adapt to such a change, 
many irrigation and water diversion engineering projects 
were established in the Aral Sea region. Before the  

 

Fig. 10  Correlations between lake water elevation variations and lake SWT variations in the Aral Sea. (a) the North Aral Sea; (b) the 
South Aral Sea.  
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Fig. 11  Correlation analysis between lake storage variations and SWT variations. (a) the North Aral Sea; (b) the South Aral Sea. 
 

independence of the five Mid-Asian countries, there 
were 80 reservoirs with each exceeding 10 million m3 of 
water loading capacity, which held a total of 645 billion 
m3 of water load. These reservoirs included the colossal 
Toktogul, Kayrakkum and Chardara in the Syr Darya 
River watershed, and the Nurek Hydroplant in the Amu 
Darya River watershed. In particular, build-up of the 
many large canals and water diversion projects in the 
Aral Sea watershed had expanded the irrigation area of 
the five countries to 8.1 million ha (Gafurov et al., 
2010). In the 1960s, the Aral Sea shrank significantly, 
and our results showed the lake elevation and area in the 
South Aral Sea continued to decrease during 2001–2015 
(Fig. 3). Before the 1960s, the Aral Sea was a contin-
uum, then was separated into two parts as Kazakhstan 
and Uzbekistan over-consumed the lake water to meet 
the demands of agriculture and industry in the basin. 
These anthropogenic activities and long-lasting droughts 
caused many ecological and environmental concerns 
such as lake shrinkage, land salinization, fishery crisis, 
and soil and vegetation deterioration. 

After 1991, the Aral Sea countries decided to have a 
fund for ecology and conservation of the region. In par-
ticular, the Kazakhstan government initiated specific 
policies to conserve the North Aral Sea and began har-
nessing the Syr Darya River. To maintain the water level 
of the North Aral Sea, a dam was built in the sector, 
leading to a rising water table, salinity reduction, and 
rejuvenation of fishery. However, this also led to re-
duced water supply to the South Aral Sea. Fortunately, 
runoffs of the Syr Darya River were sufficient to main-
tain the water level of the North Aral Sea. However, due 
to anthropogenic activities with manipulated discharge 

and feeding, watercourses and exits of the lakes changed 
the nature of the sea. This may account for why the lake 
area and water level were relatively stable in the North 
Aral Sea (Figs. 4 and 5). At present, the North and South 
Aral Seas are occasionally connected either by ground-
water dynamics or manipulative reservoir discharge.  

A water crisis still existed owing to the financial defi-
cit of Uzbekistan, leading to the desiccation of the arti-
ficial channels that connects the North and South Aral 
Seas. As a result, the lake area, water elevation, and lake 
storage of the South Aral Sea decreased during 
2001–2015 (Figs. 4, 5 and 10). Cretaux et al. (2013) 
found that many river courses had been used for irriga-
tion in Kazakhstan and Uzbekistan, and the lake eleva-
tion of the Aral Sea fell from about 53 m in 1989 to 30 
m in 2014. A transboundary water resource management 
strategy for the Aral Sea region had been initiated by the 
Interstate Commission for Water Coordination in Cen-
tral Asia (ICWC), but little has changed for the region 
after many years have passed. In addition, the national 
water resource management agencies had been merged 
with the agricultural department, such that the ICWC 
was presented with the role of implementing ecological 
conservation and water resource management. All these 
factors may add to put the situations of the Aral Sea 
more complex to explain. 

4.2  Lake dynamics and SWT 
The intensive agricultural activities occurring in the Aral 
Sea region since the 1950s have resulted in the 
over-consumption of the lake water, posing serious 
challenges to maintaining the lake storage at a stable 
level. In this study, we found that the lake area and ele-
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vation of the South Aral Sea showed a persistent de-
crease throughout 2001 to 2015, and lake storage varia-
tions presented slight fluctuations in the North Aral Sea 
but higher variations in the South Aral Sea, consistent 
with Peneva et al. (2004).  

Water storage of the lakes could be modulated by 
weather conditions and runoff scenarios. Micklin (2010) 
found that the water levels of the Aral Sea had dropped 
about 13 m, and the area shrank by 40% during 
1960–1987. Peneva et al. (2004) reported that the sea 
volume decreased from 270 to 130 km3, and the surface 
water area decreased from 35 000 to 22 000 km2 during 
1993–2000. Yoshihiro et al. (2007) also documented that 
the sea level in the Aral Sea fell about 4.5 m during 
1993–2001, about 60 cm down per year. In short, these 
studies all depicted a similar course of sea level fall in 
the Aral Sea with respect to the lake volume or area. 
Desiccation of the Aral Sea has been recognized as one 
acute ecological challenge that may alter the water bal-
ance of the region. 

Likewise, the daytime temperature and nighttime 
temperature showed a consistent tendency in the Aral 
Sea, especially in 2009, 2011, and 2013 (Fig. 7). A lake 
with a deeper depth can provide a higher heat capacity; 
thus, the lake area, elevation, and storage capacity are 
often correlated with the average lake depth (Gorham, 
1964). Our results revealed that the lake storage varia-
tions had weak linear correlations with the daytime 
SWT in the South Aral Sea, and no robust relationships 
for nighttime SWT in the North Aral Sea, implying there 
may be complicated factors determining the associations 
(R2 = 0.33, P < 0.01). Furthermore, for the MODIS LST 
products, daytime temperature variations were divided 
into three groups (> 1.1°C; > 0.8°C; > 0.4°C) in the 
South Aral Sea (Table 1). The daytime temperature 
variations of the South Aral Sea > 1.1°C (average LST: 
1.38°C) showed moderate correlations with lake storage 
variations (R2 from 0.53 to 0.33). Our results were also 
in line with Wang et al. (2018), despite of weak rela-
tionships. Regarding this subject, Yoshihiro et al. (2007) 

suggested that both regional climate change and irriga-
tion regimes contributed to lake dynamics of the Aral 
Sea. Furthermore, according to the 2015 report by the 
United States Geographical Union Congress, lake sur-
face temperatures from gauge measurements indicated a 
rising trend at a rate of 0.34  per decade during ℃

1985–2009. Likewise, we found that the daytime tem-
peratures showed an increase in the South Aral Sea in 
the past 15 yr, with a larger diurnal temperature differ-
ence. Also, land-use types of the arid Aral Sea region 
were mainly saline-alkaline, which might be prone to 
increase the near-ground air temperatures. Accordingly, 
higher diurnal temperature differences might result in 
smaller areas or shallower depths in the Aral Sea. Fur-
thermore, the increased daytime SWT in the South Aral 
Sea may be a fair predictor of the decreased lake storage 
capacity, reflecting the co-variation in lake areas and 
elevation despite the increased contribution from an-
thropogenic activities (see Section 4.1). With the possi-
bility of a warmer and drier future at the locality, the 
increased SWT in relation to complicated environmental 
factors may also account for the shrinking of the South 
Aral Sea.  

4.3  Effectiveness of MODIS LST and ICE-
Sat/GLAS products application 
Lake surface water temperature is essential for indicat-
ing lake stability and regional climate features. Using 
measurements from ground meteorological stations, 
previous studies had verified that the MODIS LST 
products were proper for long-term remote sensing 
analysis of temperature (Sima et al., 2013). Ke et al. 
(2014) found that the MODIS LST products for water 
bodies were better than that for the land surface in that 
the water bodies have a homogeneous surface, larger 
specific heat capacity, and fine spatiotemporal variabil-
ity. Our results indicated that positive correlations ex-
isted between gauged temperatures and the MODIS LST 
(R2 = 0.64; P < 0.01), consistent with Wan et al. (2002). 
This indicated that there existed some errors for remote  

 
Table 1  Regression equations of lake storage variations (x) and MODIS LST variations (y) during 2001 to 2015 (P < 0.01) 

Variations of Daytime LST  
of South Aral Sea ( )℃  

Averaged 
daytime LST ( )℃  

Regression equation R2 

> 1.1 1.38 y=4e–05x+1.05 (N=5) 0.53 

> 0.8 0.93 y=4e–05x+0.92 (N=10) 0.35 

> 0.4 0.61 y=5e–05x+0.74 (N=14) 0.33 
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sensing applications because of the spatial scaling dif-
ference and diverse physical properties between mete-
orological stations and MODIS footprints. Wan et al. 
(2002) reported that the major sources of uncertainties 
in the LST validation resided in the spatial variations in 
the surface temperature and emissivity within a MODIS 
pixel (1000 m). In particular, it might be unlikely to ac-
curately measure the air temperature at the MODIS 
pixel resolution with field instruments. Meteorological 
measurements might be affected by lying landscapes 
and measuring errors of the instruments in the study 
area, posing certain disparities between the meteoro-
logical measurements and the MODIS LST. On the 
other hand, radiation, as a critical factor dominating the 
balance of energy coming into and leaving from the 
Earth-atmosphere system, could impact the land surface 
temperatures. This may be related to the differences 
between averaged daytime and nighttime MODIS LST 
(Fig. 7). In the daytime MODIS LST imagery, many 
clear sky grids with lower surface emissivity values 
could be observed. In addition, datasets from other sta-
tions also showed certain disparity, partly due to the fact 
that MODIS LST is an eight-day composite product 
while the meteorological measurements are daily. Fi-
nally, the essential requirements for MODIS LST prod-
uct validation included adequate temperature measure-
ments, effective MODIS pixels, homogeneous underly-
ing surface, precise instrumentation, and less interfer-
ence. However, the MODIS LST products can merely 
reflect variations in the lake surface water temperature. 
Although Xiao et al. (2013) indicated the presence of 
errors between satellite and actual observations, the 
MODIS LST were still considered fine for investigating 
lake thermodynamics. 

Because the ICESat/GLAS was originally designed 
for the polar areas, the data for canopy and biomass es-
timates were limited in the case area (Huang et al., 
2011; Zhang et al., 2011). Particularly, for those lakes 
with deeper lakeshores, the ICESat/GLAS provided ac-
curate elevations with the best accuracy (Zhang et al., 
2011). Nevertheless, the ICESat/GLAS data for remote 
lakes with shallow lakeshores may have substantial er-
rors, despite the buffering analysis that was conducted in 
rows for the MODIS LST. In addition, the service time 
of ICESat that was used to obtain lake elevations was 
limited in 2003–2009, and the supplements through re-
gressions in the South and North Aral Seas during the 

omitted years may result in uncertainties in estimating 
lake elevation and storage, compared to the actual ele-
vation.  

4.4  Research uncertainties 
Long-term lake dynamics can help unveil the climate 
and ecological changes of a region. In this study, varia-
tions in lake area, elevation and storage were examined, 
as well as the SWT. However, there were still many un-
certainties associated with the remote sensing of lake 
dynamics and SWT. First, in this study, we identified the 
stable shared boundary of the lake in each year by ex-
traction from the MODIS temperature imagery. How-
ever, this process often neglected the influence of sea-
sonal lake area changes between seasons (rainy or dry 
season) that implied the alterations of SWT. Second, 
although the SWT extracted from MOD11A2 had a 
consistent temporal resolution (8-day gridded products), 
with MOD09A1 used for extracting the area of the Aral 
Sea, the relatively lower spatial resolutions between 
MOD11A2 (1000 m) and MOD09A1 (500 m) were dif-
ferent, which may have affected the final results. In ad-
dition, the mixed pixels at the land/water interfaces for 
the MODIS 8-day composite images could result in po-
tential uncertainties in the observations of the long-term 
dynamics. Cai et al. (2016) reported that for Poyang 
Lake and Dongting Lake, the differences between the 
MODIS- and Landsat-delineated inundation areas (high 
resolution: 30 m) were 10.31% and 11.53%, respec-
tively. These uncertainties should be lower for bodies of 
water with larger areas or storage on account of the rela-
tively slight influences of mixed pixels. Next, obtaining 
the lakebed topography of the Aral Sea is difficult by 
remote sensing, which makes error-free estimates of the 
water storage virtually impossible (Cai et al., 2016). As 
a compromise, area and level-based power relationships, 
and MODIS-delineated inundation areas were proposed 
to estimate the lake storage. The Aral Sea has certain 
unique properties, including specific lake bed morphol-
ogy, ice coverage, frozen length, and watershed land 
cover; each may influence the air temperature and SWT 
of the lake. Apart from the above, this study merely 
considered the influence of lake dynamics on SWT in an 
arid region; however, lake-ice duration, water salinity, 
groundwater, lakebed morphology and water color or 
phytoplankton existence, as well as watershed anthro-
pogenic activities may also affect the lake SWT. There-
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fore, fusion of multi-source remote sensing data may be 
needed to improve the spatiotemporal recognition of the 
mission in future studies. 

5  Conclusions 

Lake dynamics have been recognized as important in-
formation for quantifying climate variations and guiding 
environmental management at localities. Using MODIS 
LST (daytime and nighttime) products, MODIS reflec-
tance, and ICESat observations, we examined the lake 
surface water temperature, area, elevation, and water 
storage of the Aral Sea during 2001–2015. Our results 
showed that there existed slight deviations between 
MODIS LST and field-measured air temperatures in the 
Aral Sea region, and the MODIS LST could be em-
ployed for tackling the lake thermodynamics. 

Dynamics in the area and elevation of the Aral Sea 
have been observed. The area and elevation of the North 
Aral Sea peaked in 2006 and exhibited relative stability 
afterward, indicating the likely effects of regional water 
resource regulation and conservation efforts in the basin. 
By contrast, lake area, elevation, and storage of the 
South Aral Sea shrank due to intensive irrigation, 
droughts, and financial deficit. 

Furthermore, lake surface daytime and nighttime tem-
peratures in the North Aral Sea exhibited a decrease, 
while the daytime temperatures in the South Aral Sea 
revealed an increase, with a higher diurnal temperature 
difference. The correlations between SWT and lake dy-
namics (area and elevation) were all weak (P > 0.05). A 
weak correlation was also found between the daytime 
temperature variations and lake storage variations (R2 = 
0.33, P < 0.05) in the South Aral Sea. This demonstrated 
that climate change and anthropogenic impacts may 
overlap to yield complicated consequences in the Aral 
Sea. 
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