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Abstract: Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or 

ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and 

the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes 

simulation. In this study, daily precipitation data from four datasets (gauge observations, inverse distance weighted (IDW) data, Tropical 

Rainfall Measuring Mission (TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) estimates), 

were applied to drive the Soil and Water Assessment Tool (SWAT) model, and then their capability for hydrological simulation in the 

Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation 

in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency (NSE) val-

ues of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, 

respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain 

gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based 

precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged water-

sheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long 

precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simula-

tion, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequen-

cies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should 

be comprehensively considered in water resources estimation and planning. 
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1  Introduction 

Precipitation is one of the primary controlling factors in 
the hydrological cycle and thus the reliability of hydro-

logical simulations strongly depends on accurate repre-
sentation of spatially distributed precipitation (Gao et 
al., 2017; Worqlul et al., 2017). However, some of the 
currently available rain gauge networks are inadequate 
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to support reliable hydrological modeling, largely owing 
to their sparse spatial coverage, short length of records, 
and high proportion of missing data (Rozante et al., 
2010; Trejo et al., 2016). When simulating hydrological 
processes in large river basins or watersheds with com-
plicated terrain, the sparse and heterogeneous spatial 
distribution of rain gauges often cause weak simulation 
results (Cho et al., 2009). 

In the last decade, satellite precipitation products with 
high temporal and spatial resolution over widespread 
regions have been applied in hydrological analysis and 
simulations, which have provided new information to 
support water resources management globally (Ser-
rat-Capdevila et al., 2014; Jiang et al., 2016). Satel-
lite-based precipitation products could effectively ex-
tend precipitation estimates to regions in which conven-
tional measuring stations are scarce, unevenly distrib-
uted, or erratic, making them especially valuable for 
hydrological simulation in large watersheds in develop-
ing countries or remote locations (Li et al., 2012; Trejo 
et al., 2016; Katiraie-Boroujerdy et al., 2017). More-
over, the choice of the best precipitation data for hydro-
logical model is basin-specific (Tuo et al., 2016), and it 
has been increasingly recognized that the selection of 
precipitation input is more important than the hydro-
logical model (Tobin and Bennett, 2013). 

The Lancang-Mekong River is the eighth largest river 
by discharge in the world (Sabo et al., 2017), and also 
the most important international river in Southeast Asia 
(Wang et al., 2016). Originating from the Tibetan Pla-
teau, the Lancang-Mekong River runs through China, 
Myanmar, Thailand, Lao PDR, Cambodia, and Vietnam, 
and finally enters the South China Sea. The river has a 
length of 4880 km, and the catchment area of the Lan-
cang-Mekong River Basin is about 806 × 103 km2. In 
the Lower Lancang-Mekong River Basin, spatial distri-
bution of precipitation is complex and highly heteroge-
neous, while rainfall stations are sparse and unevenly 
distributed (Wang et al., 2016), and frequently have high 
proportion of gaps in the observations. Moreover, the 
transboundary characteristic of the Lancang-Mekong 
River Basin increases the difficulty and complexity of 
the collection and analysis of precipitation data. 

Satellite precipitation products with high spatial and 
temporal resolution may help to overcome these short-
comings, potentially increasing the accuracy of hydro-
logical modeling in the Lower Lancang-Mekong River 

Basin. More detailed understanding on the strengths and 
weaknesses of satellite-based precipitation products for 
hydrological modeling would be useful for water re-
sources utilization and planning. 

The objectives of this study were to evaluate the ac-
curacy of the satellite-based precipitation data, and to 
study their applicability for hydrological modeling in 
the Lower Lancang-Mekong River Basin. Tropical 
Rainfall Measuring Mission (TRMM) and Climate Haz-
ards Group InfraRed Precipitation with Stations 
(CHIRPS) data were compared with gauge-based pre-
cipitation data. Hydrological processes simulation were 
then conducted using the Soil and Water Assessment 
Tool (SWAT) model driven by rain gauge observations, 
inverse distance weighted (IDW) data, TRMM and 
CHIRPS estimates, and calibration and validation re-
sults at monthly and daily scales were compared to in-
vestigate the impacts of different precipitation input data 
on the hydrological modeling in the Lower Lancang- 
Mekong River Basin. 

2  Materials and Methods 

2.1  Study area 
The mean annual flow of the Mekong River is approxi-
mately 475 × 109 m3. About 16% of the flow comes 
from China and 2% from Myanmar. Most of the re-
mainder comes from Lao PDR, and the major left bank 
tributaries, particularly the tributaries below Nongkhai 
(Mekong River Commission, 2005). The Upper Lan-
cang-Mekong Basin is located from China to Myanmar, 
and the Lower Lancang-Mekong Basin is located from 
Lao PDR to the Mekong Delta. The hydrological boun-
dary between them is generally taken to Chiang Saen 
station on the mainstream. The Upper Lancang-Mekong 
Basin is narrow and topographically steep, while the 
Lower Lancang-Mekong Basin is wide with large tribu-
tary river systems. 

In recent years, hydropower development has altered 
the flow regimes in the Lancang-Mekong River, par-
ticularly after the completion of Xiaowan Dam in 2010 
and Nuozhadu Dam in 2014 in the Upper Lan-
cang-Mekong River Basin (Fan et al., 2015; Li et al., 
2017; Räsänen et al., 2017). To avoid the influences of 
hydropower station operation on hydrological modeling, 
we mainly simulated hydrological processes in the 
Lower Lancang-Mekong River Basin. Chiang Saen sta-
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tion was taken as the inlet of the study area, and Stung 
Treng station with long term flow observations was 
taken as the outlet (Fig. 1). The study area has an area of 
446 × 103 km2, accounting for about 55% of the Lan-
cang-Mekong River Basin. 

The Lower Lancang-Mekong River Basin is affected 
by the rainy southwest monsoon and the dry northeast 
monsoon. The southwest monsoon from the Indian 
Ocean brings precipitation lasted from mid-May to 
mid-October, which account for around 85%–90% of 
annual precipitation. The northeast monsoon causes dry 
weather from mid-October to April (Zhou et al., 2008). 
Despite having relatively high annual precipitation, the 
Lower Lancang-Mekong River Basin is vulnerable to 
increasing droughts (Thilakarathne and Sridhar, 2017). 
Furthermore, the Lower Lancang-Mekong River Basin 
has a total population of approximately 70 million, and 
water resources in the basin contribute greatly to the 
economy as well as to local livelihoods and food secu-
rity (Son et al., 2012). The demand for water resources 
in this region is increasing under rapid population and 
economic growth (Johnston and Kummu, 2012). 

2.2  Data sources 
2.2.1  Rain gauge data 
Rain gauge data from 311 rainfall stations in the Lower 
Lancang-Mekong River Basin were obtained from the 
MRC historical observation dataset. However, a large 
amount of the gauge data did not encompass full 

 

Fig. 1  Topography and the locations of rainfall and hydrological 
stations in the Lower Lancang-Mekong River Basin 

time series or were low in quality, and therefore could 
not meet the requirements of evaluation and simulation. 
In consideration of the time series of gauge and TRMM 
data, we chose the period from 1998 to 2005 to evaluate 
satellite-based precipitation estimates and calibrate hy-
drological model. In the study area, the entire time se-
ries from 1998 to 2005 were available for only 97 rain-
fall stations, the locations of which are shown in Fig. 1. 
When using the data of rain gauge as the input of SWAT 
model, all available precipitation data are usually ap-
plied directly. However, for each subbasin, SWAT model 
only uses the data of the rainfall station closest to the 
centroid, disregarding other stations (Galván et al., 
2014). The simulation directly using gauge data as input 
will be referred to as gauge-simulation. 
2.2.2  IDW-based precipitation data 
Besides observed precipitation at rainfall stations, IDW- 
based precipitation data were also applied as the input, 
to examine whether spatial interpolation could obtain 
more accurate precipitation data for hydrological mod-
eling in the Lower Lancang-Mekong River Basin. IDW 
assumes that the value of a point is more influenced by 
closer points than by those further away, and corre-
spondingly estimates precipitation at unknown points by 
the weighted average of the observed value at 
neighboring rainfall stations (Ly et al., 2011). In this 
study, average IDW daily precipitation for each sub-
basin was calculated and applied as the input at the cen-
troid of the subbasin, and the corresponding simulation 
will hereafter be referred to as IDW-simulation. 
2.2.3  TRMM data 
TRMM 3B42V7 algorithm combines multiple independent 
precipitation estimates from TRMM Microwave Image 
(TMI), Advanced Microwave Scanning Radiometer for 
Earth Observing Systems (AMSR-E), Special Sensor Mi-
crowave Imager (SSMI), Special Sensor Microwave 
Imager/Sounder (SSMIS), Advanced Microwave Sounding 
Unit (AMSU), Microwave Humidity Sounder (MHS), and 
microwave-adjusted merged geo-infrared (IR). TRMM 
3B42V7 precipitation estimates are at 3-hourly temporal 
resolution and 0.25° × 0.25° spatial resolution. The daily 
accumulated TRMM 3B42 data were calculated and used 
as the SWAT input. For each subbasin, daily precipitation 
was calculated by averaging all TRMM grids within the 
subbasin boundary and then used as the input of SWAT 
model, and accordingly the simulation will be referred to 
as TRMM-simulation. 
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2.2.4  CHIRPS data 
CHIRPS, developed by the U.S. Geological Survey Earth 
Resources Observation and Science Center and Santa 
Barbara Climate Hazards Group at the University of 
California, is a relatively new precipitation product based 
on multiple data sources (Trejo et al., 2016). This data-
base encompasses three kinds of information, including 
global climatologies, satellite estimates and in-situ ob-
servations. Specifically, CHIRPS incorporates monthly 
precipitation climatology (Climate Hazards Group Pre-
cipitation Climatology, CHPClim), quasi-global geosta-
tionary thermal infrared satellite observations, TRMM 
product, atmospheric model precipitation fields from the 
National Oceanic and Atmospheric Administration 
(NOAA) Climate Forecast System (CFS), and observed 
precipitation (Katsanos et al., 2016). The advantage of 
CHIRPS estimates is the high spatial resolution of 0.05° 
× 0.05°, which is expected to capture more representative 
precipitation characteristics (Tuo et al., 2016). Moreover, 
CHIRPS data provide precipitation time series from 1981 
to near present, allowing it to be used for long-term hy-
drological analysis and simulation. The mean daily 
CHIRPS data were calculated for each subbasin and ap-
plied as the input of SWAT model, and the corresponding 
simulation will be referred to as CHIRPS-simulation. 
2.2.5  Other meteorological data 
Besides precipitation data, other meteorological data are 
required to drive SWAT model, including air tempera-
ture, relative humidity, solar radiation, and wind speed. 
In this study, these meteorological data were obtained 
from the Climate Forecast System Reanalysis (CFSR) 
provided by National Centers for Environmental Predic-
tion (NCEP), which was executed as a global, high 
resolution, coupled atmosphere-ocean-land surface-sea 
ice system to provide meteorological estimates. 
2.2.6  Geographical data 
The geographical data used in this study, including digital 
elevation model (DEM), soil type and attribute data, and 
land use and land cover, were all from global public data 
sets. Shuttle Radar Topography Mission (SRTM) provides 

high-resolution digital topographic database, and SRTM30 
data, a 30 arc-second resolution global topography grid, 
was applied to identify topographical characteristics. Soil 
type and attribute data were obtained from Harmonized 
World Soil Database (HWSD), which consists of a 30 
arc-second raster image and an attribute database. In addi-
tion, land use and land cover data were obtained from 
Global Land Cover 2000 (GLC 2000), providing a harmo-
nized land cover database over the whole globe for 2000. 
2.2.7  Flow data 
Flow data were collected from five hydrological stations 
on the main stream, including Chiang Saen, Luang Pra-
bang, Nong Khai, Pakse and Stung Treng station (Fig. 
1). The catchment area and mean annual flow are given 
in Table 1. At Chiang Saen station, the inlet of the study 
area, the catchment area is 189 × 103 km2, with an an-
nual flow of about 85.1 × 109 m3. At Stung Treng sta-
tion, the outlet of the study area, the catchment area is 
635 × 103 km2, and the annual runoff volume is about 
413.1 × 109 m3. The runoff of the study area accounts 
for about 69% of that in the whole Lancang-Mekong 
River Basin. 

2.3  Hydrological model 
In this study, SWAT, a continuous, semi-distributed, and 
process-based model, was used to simulate hydrological 
processes. When applying SWAT model, a watershed is 
partitioned into a number of subbasins, which are fur-
ther subdivided into multiple hydrologic response units 
(HRUs) by topography, soil characteristics, land use, 
and management schemes (Arnold et al., 1998; Neitsch 
et al., 2011; Liu et al., 2014; Abbaspour et al., 2015). 
SWAT has been proven to be an effective tool for hy-
drological simulation and applied extensively and inten-
sively around the world (Arnold et al., 2015; Tuo et al., 
2016; Jin et al., 2018), which was accepted by Mekong 
River Commission (MRC) member countries for water 
resources planning in the Lower Lancang-Mekong River 
Basin and applied in the MRC Decision Support 
Framework (Johnston et al., 2012). 

 

Table 1  Catchment area and mean annual flow (1960–2004) at selected hydrological stations (Mekong River Commission, 2005) 

Hydrological station Catchment area (103 km2) Mean annual flow (m3/s) 

Chiang Saen 189 2700 

Luang Prabang 268 3900 

Nong Khai 302 4500 

Pakse 545 9700 

Stung Treng 635 13100 
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2.4  Evaluation statistics 
2.4.1  Evaluation of satellite-based precipitation esti-
mates 
Two approaches have been widely used to evaluate satel-

lite-based precipitation estimates. The first estimates spatial 

precipitation from gauge-based data by spatial interpola-

tion methods, and then carrying out pixel-to-pixel com-

parisons with satellite-based data. In the second approach, 

the corresponding grid in the satellite-based precipitation 

products is found for each gauge location, and then pre-

cipitation values are extracted to generate the satel-

lite-gauge data pairs for evaluation (Shrestha et al., 2017). 

In this study, there were only 97 rainfall stations with sat-

isfactory data, which would affect the accuracy of spatial 

precipitation interpolation, and the second approach was 

applied to evaluate TRMM and CHIRPS estimates. 

Four evaluation statistics were utilized to evaluate the 

accuracy of the satellite-based precipitation products, 

including Pearson correlation coefficient (r), relative 

bias (BIAS), mean error (ME), and mean absolute error 

(MAE) (Duan et al., 2016). 

2.4.2  Evaluation of hydrological model performance 
The accuracy of hydrological model performance was 
evaluated by coefficient of determination (R2) and three 
statistics recommended by Moriasi et al. (2007), includ-
ing Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), 
and root mean square error (RMSE)-observations stan-
dard deviation ratio (RSR). 

The model performances for monthly time step were 
classified according to the work of Moriasi et al. (2007) 
as follows: unsatisfactory performance (NSE ≤ 0.50, 
|PBIAS| ≥ 25, RSR > 0.70), satisfactory performance (0.50 
< NSE ≤ 0.65, 15 ≤ |PBIAS| < 25, 0.60 < RSR ≤ 0.70), 
good performance (0.65 < NSE ≤ 0.75, 10 ≤ |PBIAS| < 15, 
0.50 < RSR ≤ 0.60), very good performance (0.75 < NSE 
≤ 1.00, |PBIAS| < 10, 0.00 ≤ RSR ≤ 0.50). 

3  Results 

3.1  Evaluation of satellite precipitation data 
3.1.1  Performance measures based on evaluation 
statistics 
The gridded precipitation products (TRMM and 
CHIRPS) were compared with gauge observation data at 
monthly scale, and evaluation of satellite precipitation 

was conducted on the overlapping period (1998–2005). 

The scatterplot of monthly precipitation from gauge ob-

servations against those from TRMM and CHIRPS es-

timates (Fig. 2) indicates good agreements between sat-

ellite-based precipitation estimates and gauge observa-

tions, and slight underestimations for TRMM and 

CHIRPS data on the monthly precipitation. 

The evaluation statistics for monthly precipitation are 

presented in Table 2. TRMM and CHIRPS estimates had 

high correlation coefficients with gauge observation of 

0.862 and 0.820, respectively. The BIAS and ME of 

TRMM and CHIRPS estimates were all relatively low, 

and the MAE were both close to 60 mm. These results 

indicated that TRMM and CHIRPS estimates coincided 

well with in-situ observation in the study area. The ME 

results indicated that the average underestimation for 

TRMM estimates was about –2.4 mm/mon, while 

CHIRPS estimates underestimated by about –11.3 mm/ 

mon, showing the underestimation for TRMM estimates 

was smaller than that of CHIRPS estimates. On the 

whole, TRMM estimates had higher r and lower BIAS, 

ME, and MAE, illustrating that TRMM estimates could 

better represent precipitation distribution than CHIRPS 

estimates. 

 

Fig. 2  Scatterplot of monthly precipitation from gauge observa-
tions against Tropical Rainfall Measuring Mission (TRMM) and 
Climate Hazards Group InfraRed Precipitation with Stations 
(CHIRPS) estimates for 1998–2005 
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Table 2  Evaluation statistics of Tropical Rainfall Measuring 
Mission (TRMM) and Climate Hazards Group InfraRed Precipi-
tation with Stations (CHIRPS) estimates at monthly scale for 
1998–2005 

Statistical metrics TRMM CHIRPS 

r 0.862 0.820 

BIAS –0.016 –0.072 

ME (mm) –2.4 –11.3 

MAE (mm) 56.2 63.2 

Notes: Pearson correlation coefficient (r), relative bias (BIAS), mean error 
(ME), and mean absolute error (MAE) 

 
The mean ME in each month for TRMM and 

CHIRPS estimates were further compared (Fig. 3). For 
TRMM estimates, the mean ME ranged from –9.5 to 5.8 
mm, indicating slight error for monthly precipitation. 
During the rainy season, TRMM data mostly underesti-
mated monthly precipitation. In contrast, the mean ME 
for CHIRPS estimates were between –40.0 and 1.4 mm. 
Except for December, underestimation of precipitation 
occurred in each month, and the mean ME in April, 
June, and August were –25.2, –40.0, and –22.2 mm, 
respectively. In the Lower Lancang-Mekong River Ba-
sin, both TRMM and CHIRPS estimates tend to under-
estimate monthly precipitation in the rainy season, and 
the underestimation of CHIRPS data was much greater 
than that of TRMM data. 
3.1.2  Spatial distribution of precipitation based on 
various precipitation estimates 
At 97 rainfall stations, annual precipitation was between 
841.5 and 4698.5 mm (Fig. 4a). Among them, annual 
precipitation at 64 stations were between 1000.0 and 
2000.0 mm, while 23 stations had annual precipitation 
between 2000.0 and 3000.0 mm. For TRMM estimates, 
annual precipitation in the study area ranged from 1149.8 

 

Fig. 3  Mean error (ME) of monthly precipitation for TRMM 
and CHIRPS estimates 

to 3587.0 mm (Fig. 4b), while annual precipitation of 
CHIRPS estimates were between 992.1 mm and 3695.4 
mm (Fig. 4c). The spatial distribution of annual precipi-
tation estimated from TRMM data were similar to that 
from CHIRPS data. As the southwest monsoon crosses 
the low mountains in Thailand and Cambodia, rain falls 
onto the south-western parts of the Lower Lancang-   
Mekong River Basin, and annual precipitation in the 
right bank were mostly less than 2000 mm. More pre-
cipitation occurs when the moisture crosses the Annam-
ese Mountains (Tatsumi and Yamashiki, 2015), and an-
nual precipitation in the left bank were mostly higher 
than 1500 mm.  
3.1.3  Intensity distribution of daily precipitation 
For both the occurrence frequencies and the proportions 
of daily precipitation with different intensities, there 
were considerable differences among gauge observa-
tions, TRMM, and CHIRPS estimates (Fig. 5). The oc-
currence frequencies of rainstorm (daily precipitation ≥ 
50 mm) for gauge observations (2.3%) and TRMM es-
timates (1.6%) were higher than those for CHIRPS es-
timates (0.7%). Though the occurrence frequency is 
relatively low, rainstorm plays an important role in the 
total precipitation in the Lower Lancang-Mekong River 
Basin. The rainstorm amounts for gauge observation and 
TRMM estimates accounted for 32.5% and 22.9% of the 
total precipitation, respectively, which were both much 
larger than that for CHIRPS estimates (9.6%). In con-
trast, for gauge and TRMM data, the occurrence fre-
quencies of moderate precipitation (10 ≤ daily precipita-
tion < 25 mm) were 7.6% and 9.4%, and moderate pre-
cipitation took 23.9% and 29.8% of their corresponding 
total amounts, respectively. Whereas moderate precipi-
tation appeared more frequently for CHIRPS estimates 
(13.1%), which accounted for 43.3% of the total 
amounts. Both TRMM and CHIRPS data tend to under-
estimate rainstorm in the Lower Lancang-Mekong River 
Basin, which should be noticed when using these data. 

3.2  Hydrological modeling results 
3.2.1  Model calibration and validation 
In this study, SWAT models were set up for the Lower 
Lancang-Mekong River Basin with 297 subbasins, and 
the models with four precipitation datasets inputs 
(gauge, IDW, TRMM, and CHIRPS data) were cali-
brated for the streamflow at Luang Prabang, Nong Khai, 
Pakse, and Stung Treng station. Input data from 1998 to  
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Fig. 4  Spatial distribution of annual precipitation in the study 
area based on gauge observations (a), TRMM estimates (b), and 
CHIRPS estimates (c) 
 

2005 were used to calibrate the SWAT model, and the 
data from 2006 to 2012 were applied for validation. As 
the entire time series during 2006 to 2012 were un-
available for some gauge stations, gauge and IDW data 
were not used for validating the model. In addition, 
TRMM data began at 1998, while CHIRPS data com-
menced at 1981. Validation results of CHIRPS-simula-
tion from 2006 to 2012 were compared with those of 
TRMM-simulation, and CHIRPS data from 1981 to 
1997 were also used for validation to further analyze 
their feasibility for hydrological simulation. 

Automatic calibration were performed making use of 
the Sequential Uncertainty Fitting version 2 (SUFI-2) in 
the SWAT Calibration and Uncertainty Programs 
(SWAT-CUP). The results indicated that for the SWAT 
models driven by gauge, IDW, TRMM, and CHIRPS 
data, some similar parameter values could achieve per-
formance close to each best respectively. Hence, consis-
tent physically reasonable parameters were quantified 
for the models driven by different precipitation inputs, 
to eliminate the influences of parameter values on water 
balance components comparison. 
3.2.2  Evaluation of model performances 
The hydrographs of observed and simulated monthly flow 
at Stung Treng station by gauge-simulation (Fig. 6a), 
IDW-simulation (Fig. 6b), TRMM-simulation (Fig. 6c), 
and CHIRPS-simulation (Fig. 6d) during the calibration 
period are presented. Streamflow generation increased in 
May, which was caused by a rapid increase in the precipi-
tation. From May to October, the southwest monsoon from 
the Indian Ocean brought precipitation and produce abun-
dant streamflow. From November to April, dry weather 
influenced by the northeast monsoon caused low river 
flow. For the flow in flood season, especially the maximum 
monthly flow, underestimation usually occurred in TRMM- 
simulation and CHIRPS-simulation at Stung Treng station, 
and the underestimation of CHIRPS-simulation were 
higher than that of TRMM-simulation. 

The performances of the gauge-simulation, IDW- 
simulation, TRMM-simulation, and CHIRPS-simulation 
were compared further using evaluation statistics at 
monthly (Table 3) and daily (Table 4) scales. According 
to the performance classification recommended by 
Moriasi et al. (2007), at monthly scale, the models with 
different precipitation inputs all achieved very good 
performances for NSE and RSR during calibration and 
validation periods, and mostly very good, good, or sat-
isfactory performances for PBIAS. 
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Fig. 5  Occurrence frequencies (a) and proportions (b) of daily precipitation with different intensities for gauge observations, TRMM 
and CHIRPS estimates (1998–2005) 

 

Fig. 6  Calibration results of the gauge-simulation (a), inverse distance weighted (IDW)-simulation (b), TRMM-simulation (c), and 
CHIRPS-simulation (d) at Stung Treng station 
 
Table 3  Monthly evaluation statistics of gauge-simulation, IDW-simulation, TRMM-simulation, and CHIRPS-simulation 

Calibration period (1998–2005) Validation period (2006–2012) Precipitation 
data 

Hydrological 
station R2 NSE PBIAS RSR R2 NSE PBIAS RSR 

Luang Prabang 0.94 0.92 –13.2 0.29 – – – – 
Nong Khai 0.90 0.89 –9.4 0.34 – – – – 

Pakse 0.87 0.81 –20.7 0.44 – – – – 

Gauge 

Stung Treng 0.89 0.86 –15.3 0.37 – – – – 
Luang Prabang 0.95 0.90 –19.1 0.32 – – – – 

Nong Khai 0.91 0.87 –14.9 0.35 – – – – 
Pakse 0.87 0.82 –20.4 0.43 – – – – 

IDW 

Stung Treng 0.89 0.86 –14.9 0.37 – – – – 
Luang Prabang 0.98 0.97 –10.2 0.18 0.97 0.86 –22.3 0.37 

Nong Khai 0.97 0.96 –7.6 0.20 0.94 0.90 –14.1 0.31 
Pakse 0.97 0.96 –6.4 0.20 0.96 0.95 –5.8 0.22 

TRMM 

Stung Treng 0.95 0.93 –3.5 0.26 0.95 0.93 –12.5 0.27 
Luang Prabang 0.97 0.96 –9.5 0.21 0.96 0.90 –16.9 0.31 

Nong Khai 0.96 0.95 –7.2 0.22 0.93 0.90 –12.8 0.31 
Pakse 0.94 0.92 2.8 0.28 0.95 0.94 –6.5 0.24 

CHIRPS 

Stung Treng 0.92 0.91 –0.5 0.30 0.93 0.82 –26.9 0.43 

Notes: Coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and root mean square error (RMSE)-observations standard devia-
tion ratio (RSR). Inverse distance weighted (IDW) 
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Table 4  Daily evaluation statistics of gauge-simulation, IDW-simulation, TRMM-simulation, and CHIRPS-simulation 

Calibration period (1998–2005) Validation period (2006–2012) Precipitation 
data 

Hydrological 
station R2 NSE PBIAS RSR R2 NSE PBIAS RSR 

Luang Prabang 0.85 0.82 –13.1 0.43 – – – – 

Nong Khai 0.78 0.74 –9.3 0.51 – – – – 

Pakse 0.77 0.68 –20.7 0.56 – – – – 

Gauge 

Stung Treng 0.78 0.75 –15.2 0.50 – – – – 

Luang Prabang 0.89 0.84 –18.9 0.40 – – – – 

Nong Khai 0.82 0.77 –14.8 0.48 – – – – 

Pakse 0.78 0.71 –20.3 0.54 – – – – 

IDW 

Stung Treng 0.79 0.76 –14.8 0.49 – – – – 

Luang Prabang 0.92 0.91 –10.1 0.30 0.90 0.79 –22.2 0.46 

Nong Khai 0.88 0.87 –7.6 0.37 0.83 0.78 –14.0 0.46 

Pakse 0.86 0.86 –6.3 0.38 0.85 0.83 –5.7 0.41 

TRMM 

Stung Treng 0.81 0.81 –3.4 0.43 0.84 0.80 –12.4 0.44 

Luang Prabang 0.91 0.90 –8.8 0.31 0.89 0.82 –16.7 0.42 

Nong Khai 0.87 0.86 –6.5 0.38 0.82 0.78 –12.7 0.47 

Pakse 0.84 0.83 4.2 0.41 0.82 0.80 –6.4 0.44 

CHIRPS 

Stung Treng 0.78 0.78 0.8 0.47 0.80 0.64 –26.7 0.60 

Note: Meanings of all abbreviations are shown in Table 3 

 
During the calibration period, the mean monthly and 

daily NSE values of gauge-simulation were 0.87 and 
0.75, respectively, which were close to those of IDW- 
simulation (0.86 and 0.77). For TRMM-simulation, the 
mean monthly and daily NSE values were 0.95 and 0.86, 
respectively, and these values for CHIRPS-simulation 
were 0.93 and 0.84, respectively. Moreover, the R2, 
PBIAS, and RSR of TRMM-simulation and CHIRPS- 
simulation were also much better than those of gauge- 
simulation and IDW-simulation. Whether at monthly or 
daily scale, gauge-simulation and IDW-simulation 
showed similar simulation performances, and TRMM- 
simulation and CHIRPS-simulation produced improved 
results. During the validation period, TRMM-simulation 
also achieved better performance than CHIRPS- simula-

tion. It was clear that TRMM and CHIRPS data were 
superior for hydrological modeling at both monthly and 
daily scales, and TRMM data performed better than 
CHIRPS data in the Lower Lancang-Mekong River Ba-
sin. 

Besides the period of 2006–2012, CHIRPS data for 
1981–1997 were also utilized to further validate SWAT 
model. At monthly and daily scales, CHIRPS-simulation 
showed consistent good performances in flow simula-
tion during 1981–1997 (Table 5), and the mean 
monthly and daily NSE values were 0.93 and 0.81, 
respectively. During the period without TRMM data, 
CHIRPS estimates could provide useful precipitation 
information in the Lower Lancang-Mekong River 
Basin. 

 
Table 5  Evaluation statistics of the simulation with CHIRPS data during 1981–1997 

Monthly scale Daily scale Hydrological 
station R2 NSE PBIAS RSR R2 NSE PBIAS RSR 

Luang Prabang 0.97 0.94 –11.8 0.25 0.91 0.88 –11.7 0.35 

Nong Khai 0.94 0.93 –9.7 0.27 0.84 0.82 –9.6 0.42 

Pakse 0.93 0.93 –3.8 0.27 0.80 0.80 –3.6 0.45 

Stung Treng 0.92 0.91 –7.6 0.30 0.77 0.76 –7.5 0.49 

Note: Meanings of all abbreviations are shown in Table 3 
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3.2.3  Water balance components analysis 
Besides flow hydrographs and evaluation statistics, wa-
ter balance components were also analyzed to further 
examine the effects of precipitation inputs on hydro-
logical simulation. According to the above simulation 
results from 1998 to 2005, comparisons of water bal-
ance components are presented in Table 6. 

The water balance components for gauge-simulation, 
TRMM-simulation, and CHIRPS-simulation showed 
remarkable differences, especially for the surface runoff. 
For gauge-simulation, the mean annual surface runoff 
was 467.8 mm, which was much greater than that of 
TRMM-simulation and CHIRPS-simulation. However, 
the mean annual groundwater of CHIRPS-simulation 
(476.8 mm) was higher than that of the gauge-simula-
tion and TRMM-simulation. Precipitation inputs would 
affect not only model performance, but also simulated 
water balance components. 

4  Discussion 

4.1  Performances of TRMM and CHIRPS esti-
mates 
The evaluation results showed that in the Lower Lan-
cang-Mekong River Basin, the monthly precipitation 
estimates for both TRMM and CHIRPS products corre-
lated well with gauge observations, and TRMM esti-
mates performed better than CHIRPS estimates. Both 
TRMM and CHIRPS data tended to underestimate 
monthly precipitation, and CHIRPS data mostly under-
estimated monthly precipitation much more than 
TRMM data, especially in the rainy season. 

There were some differences in precipitation intensity 
distribution for different precipitation data. The occur-
rence frequency and precipitation amount of rainstorms 
for gauge observations were much greater than those for 
TRMM and CHIRPS estimates. The rainfall stations had 
recorded a large number of rainstorms. However, some 
of these rainstorms had not been represented by TRMM 
and CHIRPS data. Previous studies have showed that 
TRMM estimates tend to underestimate high rates of 

precipitation. In the process of producing TRMM V7 
data, when removing bias at the monthly scale, some 
negative effects may be introduced on daily precipita-
tion, which would affect the accuracies of the estima-
tions on the high rates of precipitation (Yong et al., 
2015; Wang et al., 2017). 

TRMM and CHIRPS products could effectively rep-
resent the spatial distribution of precipitation, and ob-
servation data are more accurate for high rates of point 
precipitation. Both gauge observation and satellite-based 
precipitation data have respective advantages and dis-
advantages, which should be considered comprehen-
sively in the processes of hydrological analysis and 
simulation. 

4.2  Feasibility of TRMM and CHIRPS data in 
hydrological simulation 
The variability of the orography in the Lower Lan-
cang-Mekong River Basin leads to the heterogeneity in 
precipitation distribution, and the representation of pre-
cipitation pattern is critical for accurate hydrological 
simulation. However, most available rainfall stations in 
the study area are located along the riverside, and 
high-attitude areas are generally data-scarce regions. In 
addition, precipitation data in some rainfall stations 
could not meet the requirements of hydrological analy-
sis and simulation because of their short length and un-
satisfactory data quality. Furthermore, the Lancang- 
Mekong River passes through several countries, making 
the collection of observed precipitation data more diffi-
cult. Spatial precipitation distribution from rain gauges 
could not be represented accurately because of hetero-
geneous orographic effects and sparsely distributed 
rainfall stations. Spatial precipitation interpolations also 
have limitations affected by data scarcity and unsatisfied 
quality, and most interpolation methods tend to underes-
timate spatial variability (Haberlandt, 2007). 

The sparsity and uneven distribution of gauges make 
observed rain data less representative and worsen hy-
drological simulation performance in the Lower Lan-
cang-Mekong River Basin. Satellite-based precipitation 

 
Table 6  Comparison of the water balance components among hydrological simulations driven by gauge, TRMM, and CHIRPS data 

Precipitation data 
Precipitation 

(mm/yr) 
Surface runoff 

(mm/yr) 
Groundwater 

(mm/yr) 
Evapotranspiration 

(mm/yr) 

Gauge 1933.1 467.8 445.5 927.8 

TRMM 1874.2 356.3 441.3 976.5 

CHIRPS 1837.9 288.8 476.8 969.7 
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estimates provide opportunity to improve hydrological 
modeling, and the SWAT model driven by TRMM and 
CHIRPS data performed much better than that by gauge 
and IDW data in the study area. TRMM and CHIRPS 
products, with high spatial and temporal resolution, 
could help to overcome the shortcoming of sparsely and 
unevenly distributed rainfall stations, and provide more 
accurate precipitation information for hydrological 
simulation compared to gauge data in the Lower Lan-
cang-Mekong River Basin. Furthermore, in international 
river basins, transboundary data sharing is a challenge 
(Thu and Wehn, 2016), and precipitation data collection 
and quality assurance are usually cumbersome. Alterna-
tively, the near-real-time availability makes satellite- 
based data more suitable for hydrological simulation 
and water resources management. 

CHIRPS precipitation estimates has a 0.05° × 0.05° 
spatial resolution, which is much finer than TRMM data 
(0.25° × 0.25°). However, in the Lower Lancang-Mekong 
River Basin, CHIRPS estimates mostly underestimated 
monthly precipitation to a greater extent than TRMM 
estimates, making TRMM data superior to CHIRPS data 
in hydrological simulation. According to the World Me-
teorological Organization, at least 30 years of historical 
meteorological data are required for climate studies 
(Mushore et al., 2016). Although TRMM data per-
formed better than CHIRPS data in representing the 
spatial distribution of precipitation and driving the 
SWAT model in the Lower Lancang-Mekong River Ba-
sin, the relatively short length of TRMM data partly 
limits its application in hydrological analysis and simu-
lation (AghaKouchak and Nakhjiri, 2012). CHIRPS es-
timates were also shown to have good agreement with 
observed precipitation and satisfactory capability in 
flow simulation, indicating that CHIRPS data undoubt-
edly a good choice of alternative precipitation input for 
hydrological modeling in the Lower Lancang-Mekong 
River Basin, especially during the period lacking 
TRMM data. 

4.3  Effects of precipitation input on simulation 
results of water balance components 
Though the SWAT models driven by TRMM and 
CHIRPS data achieved good performances on hydro-
logical simulations in the Lower Lancang-Mekong 
River Basin, there were also some shortcoming, such as 
the underestimation of the flow in flood season, espe-

cially the maximum monthly flow, should be discussed. 
In the study area, rainstorms played an important role in 
the total precipitation, and TRMM and CHIRPS data 
tend to underestimate rainstorms. Rainstorms generate 
considerable surface runoff, which contribute largely to 
the flow in flood season. The underestimation on rain-
storms would directly result in lower simulated surface 
runoff, leading to the flow in flood season of TRMM- 
simulation and CHIRPS-simulation less than the ob-
served values. 

The error in the occurrence frequencies and amounts 
of daily precipitation with different intensities would 
affect simulation results of surface runoff, groundwater, 
and evapotranspiration, and different precipitation data 
could lead to different amounts and proportions of 
simulated water balance components. Satellite precipita-
tion error may propagate to runoff simulation, and the 
transformation process is nonlinear. Hydrological mod-
els could tolerate a relatively small error in precipita-
tion, but the error with high magnitudes may be ampli-
fied (Mei et al., 2016). In order to apply satellite-based 
precipitation data more appropriately for hydrological 
simulation, it is need to improve retrieval algorithms 
and error-correction schemes in future works (Niko-
lopoulos et al., 2013). 

5  Conclusions 

In this study, we investigated the feasibility of four dif-
ferent precipitation inputs, including gauge observa-
tions, IDW data, TRMM estimates, and CHIRPS esti-
mates, on hydrological simulation in the Lower Lan-
cang-Mekong River Basin. The application of TRMM 
and CHIRPS data were found to improve hydrological 
model performances at monthly and daily scales. The 
model using TRMM data showed more accurate simula-
tions during the calibration and validation periods, 
whereas CHIRPS data could provide longer precipita-
tion time series for hydrological simulation. Thus, 
TRMM and CHIRPS products are both favorable 
choices for the hydrological modeling in the Lower 
Lancang-Mekong River Basin. In addition, the differ-
ences in intensity distribution for different precipitation 
inputs could result in varying simulated water balance 
components, and the underestimation on rainstorm for 
TRMM and CHIRPS data may affect the simulated re-
sults of surface runoff. 
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Precipitation controls the water balance, and the rep-
resentation of spatial and temporal distribution of pre-
cipitation is critical for accurate hydrological simula-
tion. However, rain gauge stations are sometimes sparse 
and inadequate to capture the spatial distribution char-
acteristics of precipitation. For large data-poor or un-
gauged watersheds, there are usually several satellite- 
based precipitation datasets available besides gauge ob-
servations, which are potential to be suitable data 
sources for hydrological simulation, and comparing the 
performance of hydrological models driven by different 
precipitation data is important. In the processes of hy-
drological simulation, the implications of satellite-based 
precipitation data should be taken into account compre-
hensively, and further study need to avoid their disad-
vantages effectively. 

References 

Abbaspour K C, Rouholahnejad E, Vaghefi S et al., 2015. A 
continental-scale hydrology and water quality model for 
Europe: calibration and uncertainty of a high-resolution large- 
scale SWAT model. Journal of Hydrology, 524: 733–752. doi: 
10.1016/j.jhydrol.2015.03.027 

AghaKouchak A, Nakhjiri N, 2012. A near real-time satellite-based 
global drought climate data record. Environmental Research 
Letters, 7: 044037. doi: 10.1088/1748-9326/7/4/ 044037 

Arnold J G, Srinivasan R, Muttiah R S et al., 1998. Large area 
hydrologic modeling and assessment part : Ⅰ model developm-
ent. Journal of the American Water Resources Association, 
34(1): 73–89. 

Arnold J G, Youssef M A, Yen H et al., 2015. Hydrological 
processes and model representation: impact of soft data on 
calibration. Transactions of the American Society of Agricul-
tural and Biological Engineers, 58(6): 1637–1660. doi: 10. 
13031/trans.58.10726 

Cho J, Bosch D, Lowrance R et al., 2009. Effect of spatial 
distribution of rainfall on temporal and spatial uncertainty of 
SWAT output. Transactions of the American Society of 
Agricultural and Biological Engineers, 52(5): 1545–1555. doi: 
10.13031/2013.29143 

Duan Z, Liu J, Tuo Y et al., 2016. Evaluation of eight high spatial 
resolution gridded precipitation products in Adige Basin (Italy) 
at multiple temporal and spatial scales. Science of the Total 
Environment, 573: 1536–1553. doi: 10.1016/j.scitotenv. 2016. 
08.213 

Fan H, He D, Wang H, 2015. Environmental consequences of 
damming the mainstream Lancang-Mekong River: a review. 
Earth-Science Reviews, 146: 77–91. doi: 10.1016/j.earscirev. 
2015.03.007 

Galván L, Olías M, Izquierdo T et al., 2014. Rainfall estimation in 
SWAT: an alternative method to simulate orographic precipi-

tation. Journal of Hydrology, 509: 257–265. doi: 10.1016/j. 
jhydrol.2013.11.044 

Gao J, Sheshukov A Y, Yen H et al., 2017. Impacts of alternative 
climate information on hydrologic processes with SWAT: a 
comparison of NCDC, PRISM and NEXRAD datasets. Catena, 
156: 353–364. doi: 10.1016/j.catena.2017.04.010 

Haberlandt U, 2007. Geostatistical interpolation of hourly preci-
pitation from rain gauges and radar for a large-scale extreme 
rainfall event. Journal of Hydrology, 332: 144–157. doi: 10. 
1016/j.jhydrol.2006.06.028 

Jiang Shanhu, Ren Liliang, Yong Bin et al., 2016. Evaluation of 
latest TMPA and CMORPH precipitation products with 
independent rain gauge observation networks over high-latitu-
de and low-latitude basins in China. Chinese Geographical 
Science, 26(4): 439–455. doi: 10.1007/s11769- 016-0818-x 

Jin Xin, He Chansheng, Zhang Lanhui et al., 2018. A modified 
groundwater module in SWAT for improved streamflow 
simulation in a large, arid endorheic river watershed in 
Northwest China. Chinese Geographical Science, 28(1): 47– 
60. doi: 10.1007/s11769-018-0931-0 

Johnston R, Kummu M, 2012. Water resource models in the 
Mekong Basin: a review. Water Resources Management, 26(2): 
429–455. doi: 10.1007/s11269-011-9925-8 

Katiraie-Boroujerdy P S, Asanjan A A, Hsu K et al., 2017. 
Intercomparison of PERSIANN-CDR and TRMM-3B42V7 
precipitation estimates at monthly and daily time scales. 
Atmospheric Research, 193: 36–49. doi: 10.1016/j.atmosres. 
2017.04.005 

Katsanos D, Retalis A, Michaelides S, 2016. Validation of a 
high-resolution precipitation database (CHIRPS) over Cyprus 
for a 30-year period. Atmospheric Research, 169: 459–464. 
doi: 10.1016/j.atmosres.2015.05.015 

Li D, Long D, Zhao J et al., 2017. Observed changes in flow 
regimes in the Mekong River basin. Journal of Hydrology, 551: 
217–232. doi: 10.1016/j.jhydrol.2017.05.061 

Li X, Zhang Q, Xu C, 2012. Suitability of the TRMM satellite 
rainfalls in driving a distributed hydrological model for water 
balance computations in Xinjiang catchment, Poyang lake 
basin. Journal of Hydrology, 426–427: 28–38. doi: 10.1016/j. 
jhydrol.2012.01.013 

Liu Miao, Li Chunlin, Hu Yuanman et al., 2014. Combining 
CLUE-S and SWAT models to forecast land use change and 
non-point source pollution impact at a watershed scale in 
Liaoning province, China. Chinese Geographical Science, 
24(5): 540–550. doi: 10.1007/s11769-014-0661-x 

Ly S, Charles C, Degré A, 2011. Geostatistical interpolation of 
daily rainfall at catchment scale: the use of several variogram 
models in the Ourthe and Ambleve catchments, Belgium. 
Hydrology and Earth System Sciences, 15: 2259–2274. doi: 
10.5194/hess-15-2259-2011 

Mei Y, Nikolopoulos E I, Anagnostou E N et al., 2016. Evaluating 
satellite precipitation error propagation in runoff simulations of 
mountainous basins. Journal of Hydrometeorology, 17: 
1407–1423. doi: 10.1175/JHM-D-15-0081.1 

Mekong River Commission, 2005. Overview of the Hydrology of 



 LUO Xian et al. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower... 25 

the Mekong Basin. Vientiane: Mekong River Commission. 
Moriasi D N, Arnold J G, Van Liew M W et al., 2007. Model 

evaluation guidelines for systematic quantification of accuracy 
in watershed simulations. Transactions of the American Society 
of Agricultural and Biological Engineers, 50(3): 885–900. doi: 
10.13031/2013.23153 

Mushore T D, Manatsa D, Pedzisai E et al., 2016. Investigating 
the implications of meteorological indicators of seasonal 
rainfall performance on maize yield in a rain-fed agricultural 
system: case study of Mt. Darwin District in Zimbabwe. 
Theoretical and Applied Climatology, 129(3): 1–7. doi: 
10.1007/s00704-016-1838-2 

Neitsch S L, Arnold J G, Kiniry J R et al., 2011. Soil and Water 
Assessment Tool: Theoretical Documentation (Version 2009). 
Texas: Grassland, Soil and Water Research Laboratory, Agri-
cultural Research Service, Blackland Research Center, Texas 
Agricultural Experiment Station. 

Nikolopoulos E I, Anagnostou E N, Borga M, 2013. Using high- 
resolution satellite rainfall products to simulate a major flash 
flood event in northern Italy. Journal of Hydrometeorology, 14: 
171–185. doi: 10.1175/JHM-D-12-09.1 

Räsänen T A, Someth P, Lauri H et al., 2017. Observed river 
discharge changes due to hydropower operations in the Upper 
Mekong Basin. Journal of Hydrology, 545: 28–41. doi: 
10.1016/j.jhydrol.2016.12.023 

Rozante J R, Moreira D S, de Goncalves L G G et al., 2010. 
Combining TRMM and surface observations of precipitation: 
technique and validation over South America. Weather and 
Forecast, 25: 885–894. doi: 10.1175/2010WAF2222325.1 

Sabo J L, Ruhi A, Holtgrieve G W et al., 2017. Designing river 
flows to improve food security futures in the Lower Mekong 
Basin. Science, 358: eaao1053. doi: 10.1126/science.aao1053 

Serrat-Capdevila A, Valdes J B, Stakhiv E Z, 2014. Water 
management applications for satellite precipitation products: 
Synthesis and recommendations. Journal of the American Water 
Resources Association, 50(2): 509–525. doi: 10.1111/ jawr.12140 

Shrestha N K, Qamer F M, Pedreros D et al., 2017. Evaluating 
the accuracy of Climate Hazard Group (CHG) satellite rainfall 
estimates for precipitation based drought monitoring in Koshi 
basin, Nepal. Journal of Hydrology: Regional Studies, 13: 
138–151. doi: 10.1016/j.ejrh.2017.08.004 

Son N T, Chen C F, Chen C R et al., 2012. Monitoring 
agricultural drought in the Lower Mekong Basin using MODIS 
NDVI and land surface temperature data. International Journal 
of Applied Earth Observation and Geoinformation, 18: 
417–427. doi: 10.1016/j.jag.2012.03.014 

Tatsumi K, Yamashiki Y, 2015. Effect of irrigation water 

withdrawals on water and energy balance in the Mekong River 
Basin using an improved VIC land surface model with fewer 
calibration parameters. Agricultural Water Management, 159: 
92–106. doi: 10.1016/j.agwat.2015.05.011 

Thilakarathne M, Sridhar V, 2017. Characterization of future 
drought conditions in the Lower Mekong River Basin. Weather 
and Climate Extremes, 17: 47–58. doi: 10.1016/j.wace.2017. 
07.004 

Thu H N, Wehn U, 2016. Data sharing in international transboun-
dary contexts: the Vietnamese perspective on data sharing in 
the Lower Mekong Basin. Journal of Hydrology, 536: 351– 
364. doi: 10.1016/j.jhydrol.2016.02.035 

Tobin K J, Bennett M E, 2013. Temporal analysis of Soil and 
Water Assessment Tool (SWAT) performance based on remo-
tely sensed precipitation products. Hydrological Processes, 27: 
505–514. doi: 10.1002/hyp.9252 

Trejo F J P, Barbosa H A, Peñaloza-Murillo M A et al., 2016. 
Intercomparison of improved satellite rainfall estimation with 
CHIRPS gridded product and rain gauge data over Venezuela. 
Atmósfera, 29(4): 323–342. doi: 10.20937/ATM.2016.29.04.04 

Tuo Y, Duan Z, Disse M et al., 2016. Evaluation of precipitation 
input for SWAT modeling in Alpine catchment: a case study in 
the Adige river basin (Italy). Science of the Total Environment, 
573: 66–82. doi: 10.1016/j.scitotenv.2016.08.034 

Wang W, Lu H, Yang D et al., 2016. Modeling hydrologic processes 
in the Mekong River Basin using a distributed model driven by 
satellite precipitation and rain gauge observations. PLoS ONE, 
11(3): e0152229. doi:10.1371/journal.pone. 0152229 

Wang W, Lu H, Zhao T et al., 2017. Evaluation and comparison 
of daily rainfall from latest GPM and TRMM products over the 
Mekong River Basin. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 99: 1–10. 
doi: 10.1109/JSTARS.2017.2672786 

Worqlul A W, Yen H, Collick A S et al., 2017. Evaluation of 
CFSR, TMPA 3B42 and ground-based rainfall data as input for 
hydrological models, in data-scarce regions: The upper Blue 
Nile Basin, Ethiopia. Catena, 152: 242–251. doi: 10.1016/j. 
catena.2017.01.019 

Yong B, Liu D, Gourley J J et al., 2015. Global view of real-time 
TRMM multisatellite precipitation analysis: implications for its 
successor global precipitation measurement mission. Bulletin 
of the American Meteorological Society, 96: 283–296. doi: 
10.1175/BAMS-D-14-00017.1 

Zhou M C, Ishidaira H, Takeuchi K, 2008. Comparative study of 
potential evapotranspiration and interception evaporation by 
land cover over Mekong basin. Hydrological Processes, 22: 
1290–1309. doi: 10.1002/hyp.6939 

 


