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Abstract: Soil surface roughness, denoted by the root mean square height (RMSH), and soil moisture (SM) are critical factors that af-

fect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance (SR). In regards to this 

issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 

3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, 

and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red (675 nm), green 

(555 nm), blue (485 nm), near infrared (845 nm), shortwave infrared 1 (1600 nm), and shortwave infrared 2 (2200 nm). A negative cor-

relation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R2 values were 

selected for stepwise multiple nonlinear regression analysis. Four characterized bands (i.e., blue, green, near infrared, and shortwave 

infrared 2) were chosen as the independent variables to estimate SM with R2 and root mean square error (RMSE) values equal to 0.62 

and 2.6%, respectively. Similarly, the four bands (green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with 

R2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for esti-

mating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores 

the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The 

method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle (UAV) opti-

cal imagery. 
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1  Introduction 

Soil moisture (SM) plays a vital role in governing water 
and energy cycles of the land-atmosphere interface; 
moreover, an accurate estimation of large-scale SM 
plays a crucial role in crop growth, prediction of flood 

and drought events, hydrology, and the global water 
cycle. Additionally, soil surface roughness, indicated by 
root mean square height (RMSH), is a key element in 
the hydrological and erosive behavior of soils (Helming 
et al., 1998) and plays an important role in many proc-
esses, such as infiltration, run-off, detachment of soil 
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due to water or wind, gas exchange, evaporation, and 
heat flux (Huang and Bradford, 1992). But the tradi-
tional methods of acquiring soil surface roughness and 
soil moisture are resource heavy and time-consuming, 
there is still a lack of means to obtain their space-time 
distribution information. 

Satellite remote sensing measures and monitors 
space-time changes in SM and has the potential to pro-
vide data at a fine temporal resolution. Much of the 
work into quantifying SM through remote sensing ap-
proaches has been focused on soil reflectance; it allows 
to obtain quantitative information about several soil pa-
rameters based on high-resolution spectra in relatively 
short periods (Irons et al., 1989). To describe correla-
tions between soil reflectance and soil properties, re-
gression models are built by mainly using laboratory 
spectra and, to a lesser extent, spectra obtained in a field 
or extracted from images (Stevens, 2008). 

However, the estimated accuracy of SM is limited by 
the combined effect of SM and RMSH on spectral re-
flectivity. Therefore, a great number of researches have 
been effectuated to explain the mechanisms of the in-
fluence of RMSH on spectral reflectance (SR); most of 
them were conducted using laboratory-based measure-
ments (Croft et al., 2012a; Dor et al., 2015). It is neces-
sary to broaden the application of those techniques for 
field use so that they can be employed in agricultural 
activities (Wu et al., 2002). The results from laboratory 
reflectance measurements only consider the interaction 
between soil particles; unfortunately, the effects of the 
clods and randomly distributed aggregates on the farm-
land surface are not taken into consideration (Ogun-
tunde et al., 2006; Piekarczyk et al., 2016), thus limiting 
the reliability of SM estimation in a natural farmland. In 
addition, laboratory spectral reflectance is free of at-
mospheric vapor influence, so it should not be used for 
the interpretation of satellite or airborne image data. For 
proper extension of spectral reflectance for soil surface 
assessments, the connection between spectral reflec-
tance and soil parameters under field conditions should 
be inspected. 

The spectral reflectance of bare soils is strongly de-
pendent on SM and RMSH (Bowers and Smith, 1972). 
Generally, an increase in SM causes a decrease in SR. 
Under the circumstances of SM being lower than the 
hygroscopic capacity, changing in soil reflectance re-
sulted by the decrease of SM is not, or only slightly no-

ticed. The soil reflectance drops significantly if the SM 
level increases from the hygroscopic capacity to the 
field capacity; a further increase in the SM to the full 
saturation causes no, or only a slight, change in the soil 
reflectance. When the SM is greater than the field ca-
pacity, water films form on the surface of the bare soil, 
which causes an increase in the soil reflectance (Music 
and Pelletier, 1986; Cierniewski, 1993; Cierniewski et 
al., 2015). A reduction in the reflected energy of wet 
soils is due to a decrease in the relative refractive index, 
which leads to light scattering in the direction of the 
incident radiation and the absorption of more incident 
photons (Croft et al., 2014). 

Besides SM, the surface roughness of the soil also 
has an important influence on SR, especially under dry 
conditions. The most commonly used techniques for 
measuring soil roughness are laser scanner, photogram-
metry, and mechanic profilometer (Bryant et al., 2007; 
Alvarez-Mozos et al., 2009; Marzahn and Ludwig, 
2009). Here, the root mean square height (RMSH) is 
used to describe the roughness of bare soils. Strong cor-
relations have been found between optical directional 
reflectance factors and RMSH for laboratory-produced 
soil states under controlled conditions (Anderson and 
Kuhn, 2008; Croft et al., 2009; 2012b). However, under 
field conditions, the interaction between other soil prop-
erties may perturb the signal from RMSH (Mouazen et 
al., 2006). Potter et al. (1987) observed that soil reflec-
tance decreased when RMSH increased in a fine-loamy 
soil, which is possibly attributed to shadows cast on the 
surface. Matthias et al. (2000) obtained a similar finding 
on Gila fine sandy loam and Pima clay loam. The 
RMSH of soils depends on the agricultural treatments 
and climate; its value is highest after plowing and pro-
gressively decreases with rainfall (Karunatilake and Es, 
2002). Furthermore, it is difficult for indoor measure-
ments to simulate the changes of RMSH, which con-
stricts the studies that focus on the effect of RMSH on 
reflectivity. 

To improve the estimated accuracy of SM from the 
SR of bare soils under natural conditions, the effect of 
both SM and RMSH on the SR of bare soils are investi-
gated here. For achieving this goal, a ground-based 
spectral observation experiments with various SM and 
RMSH levels was carried out, which help to compre-
hend the relationships between SR, SM, and RMSH. On 
this basis, a high precision method for estimating SM 
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and RMSH from SR is developed and analyzed in this 
study. This method will serve for the SM estimation 
with higher accuracy under different RMSH conditions, 
and the retrieval of SM and RMSH at a satellite remote 
sensing scale. 

2  Data and Method 

2.1  Experimental area 
The experiment was carried out on a farmland 
(43°52′59″N, 125°24′05″E) located in Changchun City, 
Jilin Province, China. The soil type in this area is cher-
nozem, with a salt content of 234 mg/kg, an organic 
carbon content of 1.17%, and total nitrogen, phospho-
rus, and potassium contents of 809.26 mg/kg, 395.63 
mg/kg and 22.26 mg/g, respectively. In order to study 
the influence of SM and RMSH on the soil SR, a 108 m2 
area of open farmland was selected as the experimental 
region. This region was divided into 12 sub-regions, 
each with a 3 m × 3 m area (Fig. 1). Prior to experiment 
designing, many field surveys were conducted in 
Northeast China, and the fluctuation range of the soil 
surface roughness under field conditions was measured 
and calculated. The 12 experimental sub-regions were 
set up by imitating farming activities. The designed 
ranges of SM and RMSH were consistent with the re-
sults obtained in field surveys; indeed, the SM values 
were not larger than theoretical field capacity values 
(Deng et al., 2004).  

As shown in Fig. 1, four different RMSH levels were 
set up by artificial plowing and compaction. RMSH1 

 

Fig. 1  Layout of the experimental area. SR1, SR2, SR3 are 
spectral reflectance measured areas in each sub-regions. RMSH1, 
RMSH2, RMSH3, RMSH4 are four surface roughness levels, 
SM1, SM2, SM3 are three soil moisture levels 

and RMSH2 were the smallest areas that were com-
pacted twice and once after plowing, respectively, 
while RMSH3 was the special one in which the biggest 
clods must be broken up after plowing, and RMSH4 
was the biggest one that was only plowed (it was not 
compacted). Although the three plots of one SM level 
have the same surface roughness level, the RMSH of 
each plot was measured instead of adopting a preset 
uniform value to avoid errors caused by the manual 
operation. 

Moreover, three different simulated rainfalls were 
applied to the sub-regions. SM1 had the lowest rainfall 
levels, which mimics the natural state, SM3 had the 
highest rainfall level, which was adequate to produce a 
little water film, and SM2 had a medium rainfall level 
and consisted of half the rainfall level of SM3. Water 
was sprayed with a portable spray bottle, and the water 
flow rate was controlled so that the water was evenly 
and slowly dropped onto the soil to minimize soil sur-
face disturbance. 

2.2  Outdoor measurements 
In this experiment, 8 observations were carried out 
throughout the study period; moreover, 96 groups of soil 
SR and the corresponding SM and RMSH values, in real 
time, were collected (Table 1). The RMSH and SM val-
ues ranged between 0.56–5.08 cm and 7.4%–28.2%, 
respectively. Unlike the RMSH values that slightly 
changed among the observations, the SM values no-
ticeably varied. The SM increased after plowing and 
compaction on October 14, 2017 because the soil was 
turned over, which lead to the presence of moist soil on 
the top. Watering was done on the 17th and 30th of Oc-
tober to artificially change the soil moisture content, 
which obviously lead to SM increase. According to the 
range of the soil parameters, RMSH was divided into 
four levels, which are RMSH1 ≤ 1.5 cm, 1.5 cm < 
RMSH2 ≤ 2.5 cm, 2.5 cm < RMSH3 ≤ 3.5 cm, and 
RMSH4 > 3.5 cm. Due to the fluctuating SM values, it 
was divided into four levels, which are SM1 ≤ 10%, 10% 
< SM2 ≤ 15%, 15% < SM3 ≤ 20%, and SM4 > 20%. 
2.2.1  Spectral reflectance measurements of bare soils 
The FieldSpec 4 spectroradiometer was used to measure 
the reflectance of the soil surface in outdoor conditions 
(American ASD Inc.). The experiment time was chosen 
between 11:00 and 13:00 to ensure a suitable solar ele-
vation angle. The measurement locations are indicated 
by SR1, SR2, and SR3 in each sub-region (circles in  
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Table 1  Soil spectral reflectance, soil surface roughness, and soil moisture data 

Date Soil spectral reflectance  Value range of soil surface roughness (cm) Value range of soil moisture (%) 

2017-10-14 36 0.65–4.27 16.2–22.2 

2017-10-16 36 0.65–4.51 13.3–17.4 

2017-10-17 72 0.56–4.31 11.4–27.7 

2017-10-19 36 0.70–4.35 9.4–22.2 

2017-10-21 36 0.62–4.60 9.2–18.0 

2017-10-23 36 0.62–4.60 9.2–18.0 

2017-10-25 36 0.66–5.08 7.4–14.9 

2017-10-30 36 0.69–4.88 7.7–28.2 

 
Fig. 1). During the experiment, the 25° optical fiber 
probe was perpendicular to the soil surface with a height 
of 100 cm. The output spectral reflectance was obtained 
by automatically averaging the 10 original scanned 
spectral reflectance curves, and each sub-region was 
measured 3 times. The measurements were accepted if 
the mean relative difference was less than 1%, other-
wise, the measurements were repeated. 

Due to the instrument’s stability and environmental 
factors, soil spectral reflectance data obtained in outdoor 
farmland require a series of preprocessing (Cierniewski 
et al., 2017). Mean reflectance from the three measure-
ments was calculated, spliced, and smoothed. A set of 
spectral reflectance curves in figure 2 with different soil 
parameters were selected to study the variation of SR 
and SM, as well as SR and RMSH. The spectral reflec-
tance curve is a common way to show how reflectivity 
varies with soil parameters. 

It is clear that the reflectance of the soil spectra 
shows certain fluctuations under different conditions, 
but the overall shape and trend are generally the same 
(Fig. 2). As SM and RMSH increase, the reflectance 
curve moves downward. Significant reduction in SR 
with increasing SM and RMSH was observed (P < 

 

Fig. 2  Spectral reflectance of the soil surface with different 
moisture and roughness levels 

0.01). According to the experimental data (Fig. 2), about 
an 80% increase in SR was associated with a decrease in 
RMSH from 4.31 to 0.56 cm, and a 40% increase in SR 
was associated with a decrease in SM from 27.7% to 
11.4%. 
2.2.2  Soil parameters measurements of bare soils 
The RMSH was measured by a profiler. In each 
sub-region, the profiler was placed vertically on the soil 
surface; a picture was taken with a camera. It must be 
noted that the profiler was placed on a straight line and 
covered the entire sub-region. For accurate RMSH 
readings, the measured length was 40–200 times more 
than the surface correlation length. The profiler images 
were preprocessed and the values of RMSH were calcu-
lated based on the fractal correlation function (Li et al., 
2012; Zheng et al., 2013). In addition, the above steps 
were repeated three times to strictly limit the error of 
RMSH readings within 10% (Taconet and Ciarletti, 
2007). 

The common oven drying method was used to obtain 
the water contents of the soil samples. The surface 0–5 
cm soil samples around the SR1, SR2, and SR3 circles 
(Fig. 1) in each subplot were collected by a cutting ring. 
Triplicate soil samples were taken from each sub-region. 
The soil moisture (SM) was calculated according to 
Equation (1). 

1 2

2

100%
m m

SM
m


             (1) 

where 1m  and 2m  (g) are the soil masses before and 

after drying, respectively. 
It is worth noting that SM and RMSH change fre-

quently in time and space, which are influenced by fac-
tors such as wind, rainfall, and human farming activi-
ties. Therefore, soil parameters were acquired within 
one hour after the surface reflectance measurement. 
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2.3  Characteristic bands selection 
In order to explore the link between the soil spectral 
reflectance and the soil parameters, and to determine the 
characteristic bands of SM and RMSH, correlation 
analysis was used in this study, which was also used in 
other studies (e.g., Music and Pelletier, 1986; Bogel et 
al., 2016). Considering that the estimation model is fur-
ther applied to optical satellite imagery to estimate 
RMSH and SM under field conditions, we summarized 
the spectral range of each band of existing optical satel-
lite sensors (Qi et al., 2018). 

It can be seen that the wavelength ranges of com-
monly used optical sensors are similar (Table 2). The 
determination of these wavelength ranges is the result of 
long-term theoretical and applied research. Combining 
the above results with our study objectives, six charac-
terized bands were selected according to the center 
wavelength of common optical satellites, which are B 
(blue band, 485 nm), G (green band, 555 nm), R (red 
band, 675 nm), NIR (near infrared band, 845 nm), 
SWIR1 (shortwave infrared 1 band, 1600 nm), and 
SWIR2 (shortwave infrared 2 band, 2200 nm). Subse-
quently, correlation analysis of reflectivity and soil pa-

rameters were made. 
To analyze the contribution of RMSH and SM to SR, 

it is necessary to determine the correlation coefficients; 
the number of variables and system dimensions will be 
reduced accordingly. In general, variables with different 
dimensions cannot be directly compared; indeed, it is 
difficult to judge the effect of independent variables 
with different dimensions on the dependent variables 
using regression coefficients (Dotto et al., 2017). 
Therefore, the correlation coefficients of standardized 
data were calculated to find the bands that are greatly 
related to the soil parameters. This step helped to reduce 
the negative effects of collinearity and to improve the 
stability of the multiple nonlinear regression equations. 
The matrix was calculated by Pearson’s correlation co-
efficient. However, the correlation coefficient is not suf-
ficient to determine whether the variables are correlated; 
therefore, Pearson’s correlation coefficient was coupled 
to the test of significance. 

The correlation coefficients and significance levels 
between the single-band reflectivity of different bands 
and the soil parameters were quite high (Table 3), which 
are consistent with previous conclusions (Liu et al.,  

 

Table 2  The wavelength ranges of commonly used optical sensors (nm) 

Bands of sensors L7-ETM+ L8-OLI Sentinel-2 GF-1_WFV 

B band 450–515 450–515 458–522 450–520 

G band 525–605 525–600 544–578 520–590 

R band 630–690 630–680 650–680 630–690 

NIR band 775–900 845–885 784–900 770–890 

SWIR1 band 1550–1750 1560–1660 1565–1655 – 

SWIR2 band 2090–2350 2100–2300 2100–2280 – 

Notes: ETM+ is Enhanced Thematic Mapper of Landsat 7, OLI is Operational Land Imager of Landsat 8, WFV is wide field of view multispectral sensor of GF-1 
 

Table 3  Pearson’s correlation coefficient of standardized soil parameters and single-band reflectivity data 

Soil parameters Single-band reflectivity 
Standardized data 

SM RMSH B G R NIR SWIR1 SWIR2 

SM 1.000** 0.108 –0.567** –0.548** –0.508** –0.415** –0.443** –0.534** 

RMSH 0.108 1.000** –0.463** –0.471** –0.486** –0.513** –0.441** –0.394** 

B –0.567** –0.463** 1.000** 0.998** 0.990** 0.959** 0.940** 0.939** 

G –0.548** –0.471** 0.998** 1.000** 0.996** 0.972** 0.955** 0.950** 

R –0.508** –0.486** 0.990** 0.996** 1.000** 0.987** 0.972** 0.962** 

NIR –0.415** –0.513** 0.959** 0.972** 0.987** 1.000** 0.986** 0.960** 

SWIR1 –0.443** –0.441** 0.940** 0.955** 0.972** 0.986** 1.000** 0.986** 

SWIR2 –0.534** –0.394** 0.939** 0.950** 0.962** 0.960** 0.986** 1.000** 

Notes: * and ** denote significance at the 5% and 1% levels, respectively. SM: soil moisture. RMSH: root mean square height. B, G, R, NIR, SWIR1 and SWIR2 
represent blue, green, red, near infrared, shortwave infrared 1 and shortwave infrared 2 bands, respectively. 
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2002). Moreover, the soil parameters (i.e., RMSH and 
SM) have a significant influence on SR, which is dem-
onstrated by significant negative correlations. However, 
there is no obvious correlation between SM and RMSH; 
they can be separately treated as two independent vari-
ables. 

2.4  Estimation method of soil moisture and soil 
surface roughness 
Pearson’s correlation coefficient clearly indicated that 
SM and RMSH are negatively correlated with sin-
gle-band reflectivity (Table 3). Based on those results, 
the correlation between single-band spectral reflectance 
and SM under the condition of constant RMSH was 
analyzed by curve fitting method; the correlation be-
tween single-band spectral reflectance and RMSH under 
the condition of constant SM was also analyzed by 
curve fitting method. The fitting trend lines of linear, 
exponential, logarithm, and power forms were used to 
describe the relationship between them, and the fitting 
model with the highest coefficient of determination (R2) 
was eventually chosen. 

The single-band spectral reflectance of bare soil was 
highly dependent on soil moisture, especially under 
constant soil surface roughness conditions (Fig. 3). A 
decrease in soil surface reflectance was observed with 
increasing soil moisture. Under constant RMSH condi- 

tions, single-band reflectance exponentially decreased 
with increasing SM. The change of SR with SM is 
therefore expressed by a nonlinear equation, according 
to the following equation (Liu et al., 2002). 

e iB SM
i iSR A    (2) 

where SRi is the reflectance, SM is the soil moisture, Ai 
and Bi are regression coefficients, and i is the band ( i = 
B, G, R, NIR, SWIR1, and SWIR2). 

The equation obtained in this study through nonlinear 
regression is consistent with the Beer Law (Deng et al., 
2004). Equation (2) gave an expression of the physical 
mechanisms between SM and SR. Moreover, when the 
SM is significantly smaller than the field capacity, no 
smooth water film is formed on the soil surface, and the 
SM mainly absorbs the incident light. Assuming that the 
SR of bare soils is known, it is not certain that the SM 
can be accurately estimated using SR. In this study, the 
SR of different bands as independent variables was 
taken to build an SM estimation expression; the estima-
tion of SM from reflectance can be achieved by using 
multiple nonlinear regression equations according to the 
above conclusion. 

1 1 2 2ln ln ... lnn nSM a b SR b SR b SR      (3) 

where a and bi are multiple regression coefficients.  

 

Fig. 3  Single-band SR variation with SM under constant RMSH conditions 



992 Chinese Geographical Science 2018 Vol. 28 No. 6 

 

The fitting trend line of linear, exponential, loga-
rithm, and power form was also used to describe the 
correlation between single-band SR and RMSH, and the 
fitting method with the highest R2 was eventually 
adopted. The results in Fig. 4 indicated that RMSH also 
plays an important role in SR. A reduction in sin-
gle-band SR logarithmically decreased with the increase 
of RMSH, which is summarized by Equation (4). 

 lni i iSR C D RMSH     (4) 

where SRi is the reflectance, RMSH is the soil surface 
roughness, Ci and Di are the regression coefficients, and 
i is the band of reflectance (i = B, G, R, NIR, SWIR1, 
and SWIR2). When investigating RMSH estimation 
from reflectance data, the inverse problem must be 
solved. This corresponds to a potential application of 
remote sensing for RMSH assessment; this can be part 
of an assimilation strategy of such data within models 
describing the effects of soil surface structural charac-
teristics on energy. Like SM, RMSH estimating equation 
can be expressed as indicated in Equation (5). 

1 1 2 2( ... )e n nd SR d SR d SRRMSH c      (5) 

where c and di are multiple regression coefficients. 
Prediction models of RMSH and SM, using multiple 

band spectral reflectance, were established. They pro-
vide a method for the prediction of soil parameters 
based on optical spectroscopy and optical imagery. 

3  Results 

In order to estimate SM and RMSH based on multi-band 
spectral reflectance, 64 sets of data were selected from 8 
sub-regions for testing; additionally, 31 sets of data of 
the remaining 4 sub-regions were used for verification. 
By applying the above nonlinear equations (Eqs. (3) and 
(5)), the multiple nonlinear regression was carried out 
by stepwise selecting the characteristic bands according 
to the correlation coefficients and other statistical tests. 

One of the main issues with stepwise multiple 
nonlinear regression is that it searches a large space of 
possible models. Hence, it is prone to overfitting the 
data. To solve multicollinearity problems, it is theoreti-
cally necessary to calculate the tolerance (TOL) and 
variance inflation factor (VIF) corresponding to each 
independent variable. If the VIF and TOL values are less 
than and greater than 10 and 0.1, respectively, the vari-
able is suitable for multiple nonlinear regression. None-
theless, the TOL and VIF values of all the independent 
variables did not meet the empirical standards. There-
fore, in the process of selecting variables, the TOL and 
VIF values were not considered, rather the causal corre-
lation between the independent and dependent variables 
was further investigated. 

This problem can be mitigated if the criterion for 
adding (or deleting) a variable does not cause significant 
changes. So, at each stage in the process, and after a  

 

Fig. 4  Single-band SR variation with RMSH under constant SM conditions 
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new variable was added, a test was made to check if 
some variables can be deleted without significantly in-
creasing the residual sum of squares. The way to test 
errors in models created by multiple nonlinear regres-
sion relied on F-statistic, MSE (mean square error), and 
R2. The procedure was finalized when the R2 signifi-
cantly increased or when the MSE and F-statistic scale 
fell below a critical value. The results are shown in Ta-
ble 4 and Table 5. 

As the number of used bands increased, the adjusted 
R2 increased and the MSE values significantly decreased 

(Fsig < 0.01), as indicated in Table 4 and Table 5. When 
more than four bands were used, the adjusted R2

 and 
MSE were generally constant. After repeated compari-
son and analysis, four different bands were used for pre-
dicting soil moisture and soil surface roughness. The 
verification results are shown in Fig. 5. 

The test parameters of the simulation equation used 
in Fig. 5 clearly show that all the equations were satis-
fied and of high reliability. When the four bands were 
used, the R2 reached the maximum and the MSE no 
longer decreased. After comparative analysis, the four 

 
Table 4  Regression statistics models for estimating soil moisture based on multi-band spectral reflectance 

Model coefficients Overall statistics 
Model Reflectance of different bands

 a b1
 

b2
 

b3
 

b4
 

b5
 

b6
 

R2

 

Fsig MSE 

M1-1 B, G  –0.38 –0.42 0.28 － － － － 0.39 3.6301E–07 0.0019

M1-2 B, G, NIR  –0.04 0.90 –1.59 –0.72 － － － 0.68 2.2798E–14 0.0010

M1-3 B, G, SWIR2, NIR 0.00 0.62 –1.22 –0.11 0.72 － － 0.70 1.8939E–14 0.0009

M1-4 B, G, SWIR2, NIR, SWIR1 –0.03 0.58 –1.11 –0.23 0.55 0.24 － 0.70 6.7612E–14 0.0009

M1-5 B, G, SWIR2, R, NIR, SWIR1  –0.07 0.72 –1.59 –0.26 0.47 0.39 0.29 0.70 2.4623E–13 0.0009

 
Table 5  Regression statistics models for estimating soil surface roughness based on multi-band spectral reflectance 

Model coefficients Overall statistics 
Model Reflectance of different bands

c d1
 

d2
 

d3
 

d4
 

d5
 

d6
 

R2

 

Fsig MSE 

M2-1 NIR, R 13.16 –66.69 63.66 － － － － 0.48 5.0798E-09 0.2024

M2-2 G, SWIR1, NIR 7.90 72.47 44.55 148.57 － － － 0.72 7.9942E-16 0.1085

M2-3 NIR, R, G, SWIR1 6.80 –135.62 –61.06 130.02 45.44 － － 0.72 4.7816E-15 0.1094

M2-4 NIR, R, G, SWIR1, B 5.79 –135.97 –30.28 14.59 46.05 95.38 － 0.71 2.6021E-14 0.1106

M2-5 NIR, R, G, SWIR1, B, SWIR2 5.70 –149.48 –9.19 11.85 53.07 84.60 4.89 0.71 1.2689E-13 0.1120

Notes: R2 is the squared adjusted multiple correlation coefficient and Fsig
 
is the probability of F statistic. All models were significantly different for Fsig < 0.001. 

MSE is the mean squared error 

 

Fig. 5  Predicted and measured soil moisture and soil surface roughness  
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characterized bands, which are B (485 nm), G (555 nm), 
SWIR2 (2200 nm) and NIR (845 nm), were selected as 
the independent variables to estimate soil moisture. It 
was found that the predicted SM values were strongly 
correlated with in-situ SM (Fig. 5), and the R2

 and root 
mean square error (RMSE) values were 0.62 and 2.6%, 
respectively. Using NIR (845 nm), R (675 nm), G (555 
nm), and SWIR1 (1600 nm) as independent variables to 
estimate the soil surface roughness resulted in weaker 
correlations; the R2

 and RMSE (root mean square error) 
values were 0.48 and 0.69 cm, respectively. 

For soil moisture and soil surface roughness predic-
tions within 7.4%–28.2% and 0.56–5.08 cm, respec-
tively, using the characteristic bands of reflectivity, 
Equations (6) and (7) are proposed. 

B G SWIR2 NIR0.62ln 1.22ln 0.11ln 0.72lnSM SR SR SR SR   
 (6) 

 NIR R G SWIR1135.62 61.06 130.02 45.446.8 e SR SR SR SRRMSH     
 (7) 

where the used characteristic bands of soil moisture are 
blue, green, SWIR2, and NIR, and the characteristic 
bands of soil surface roughness are NIR, red, green, and 
SWIRl. These two equations provide a new way to pre-
dict surface roughness and moisture of bare soils using 
spectral reflectance measured under field condition. 

4  Discussion 

4.1  Performance of SM and RMSH estimation 
model 
The difference between an indoor and outdoor experi-
ment is that the RMSH of the screened and ground soil 
samples measured in the laboratory is of uniform 
roughness, while the fluctuation range of RMSH under 
field conditions is relatively large. To demonstrate the 

influence of RMSH on SM estimation model and to 
analyze the applicability of the RMSH models, SM and 
RMSH were re-fitted at four levels. The fitting results 
obtained by multiple nonlinear regression analysis using 
these data, and based on Equation (6) and Equation (7), 
are shown in Table 6 and Table 7. 

According to Table 6, the form of logarithmic equation 
clearly yielded results very similar to Equation (6), and 
there were no significant differences for R2 and MSE, but 
the regression coefficients varied for different RMSH lev-
els. To study the influence of RMSH on SM estimation 
models, soil SR of three larger RMSH levels were intro-
duced into the estimation model of RMSH1; the introduced 
RMSH levels were RMSH2, RMSH3, and RMSH4. Addi-
tionally, the obtained R2 and RMSE of the fitting equation 
between the estimated and the verified data were 0.83 and 
2.7%, 0.81 and 3.0%, and 0.55 and 3.6% for the levels 
RMSH2, RMSH3, and RMSH4, respectively. R2 de-
creased when the correlation of RMSH1 was individually 
adjusted on RMSH2, RMSH3, and RMSH4. Neverthe-
less, RMSE increased with intensely increasing the 
RMSH level. The performances of RMSH1 soil moisture 
estimation for high RMSH levels (i.e., RMSH4) were so 
poor that RMSE reached 3.6% and R2 was as low as 0.55. 
This proved that the SM estimation model is sensitive to 
RMSH and the correlation between SR and SM obtained 
under a single roughness condition cannot be applied to 
other roughness levels. The SM estimation accuracy of 
this method in practical application is therefore limited. 
According to the actual situation of the farmland surface, 
various soil surface roughness conditions were designed 
in this study; the correlation between SM and SR based 
on these data is more applicable. In other words, within a 
certain range (0.56–4.31 cm), the soil moisture can be 
estimated based on Equation (6) without considering the 
effect of soil surface roughness. 

 
Table 6  Regression statistics models for estimating soil moisture based on the same RMSH level 

Model coefficients Overall statistics 
Model 

a b1
 

b2
 

b3
 

b4
 

R2

 

Fsig MSE 

Equation (6) 0.00 0.62 –1.22 –0.11 0.72 0.70 1.89E–14 0.0009 

RMSH1 level 0.01 0.72 –1.39 –0.09 0.79 0.83 3.38E–07 0.0006 

RMSH2 level 0.06 0.20 –0.89 –0.24 0.98 0.86 5.51E–08 0.0006 

RMSH3 level 0.01 0.20 –0.72 –0.20 0.71 0.84 2.95E–07 0.0006 

RMSH4 level –0.13 0.18 –0.65 –0.10 0.54 0.57 2.30E–03 0.0014 
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Table 7  Regression statistics models for estimating soil surface roughness based on the same SM level 

Model coefficients Overall statistics 
Model 

c d1
 

d2
 

d3
 

d4
 

 
R2 Fsig MSE 

Equation (7) 6.80 –135.62 –61.06 130.02 45.44  0.72 4.78E–15 0.1094 

SM1 level 4.65 –45.98 –185.04 174.07 35.46  0.90 3.96E–08 0.0391 

SM2 level 9.44 –239.34 276.42 –134.47 45.30  0.52 9.84E–04 0.2409 

SM3 level 8.71 –160.97 –172.48 294.66 54.84  0.81 1.51E–05 0.0976 

SM4 level 3.09 –62.59 –322.47 376.84 42.13  0.56 6.00E–02 0.3467 

 
The RMSH under different SM conditions were esti-

mated by using multiple nonlinear regression. The form 
of the exponential equation fitting is similar to Equation 
(7) and the difference between R2 and MSE was not sig-
nificant (Table 7). To study the influence of SM on 
RMSH estimation model, soil spectral reflectance with 
three larger soil moisture levels were introduced into the 
estimation model of SM1; the introduced SM levels 
were SM2, SM3, and SM4. Moreover, the obtained R2 
and RMSE of the fitting equation of the estimated data 
and the verified data were 0.20 and 1.29 cm, 0.81 and 
1.07 cm, and 0.53 and 0.91 cm for the levels SM2, SM3, 
and SM4, respectively. RMSE increased with the in-
creasing SM level. This indicates that the RMSH esti-
mation model is sensitive to SM and the regression 
equation between SR and RMSH obtained under con-
sistent moisture condition cannot be applied to other 
moisture levels. Therefore, the soil surface roughness 
can be estimated based on Equation (7) within a certain 
soil moisture range (7.4%–28.2%). 

4.2  Estimation uncertainty of SM and RMSH 
based on single soil type 
In this study, it was concluded that SR correlates to soil 
parameters for a single soil type, which is consistent 
with other studies (Croft et al., 2012b). But the influ-
ences of different soil types with varying biochemical 
properties on multiple nonlinear regression have not yet 
to be considered in this study. As the experimental plots 
had the same soil type, there was no obvious variation in 
SR curves as a result of different absorption features. 
However, differences might exist among fields for the 
estimation of soil parameters in large areas. Croft et al. 
(2012b) pointed out that there are clear differences in 
reflectance spectra for different soil types; the differ-
ences were observed in baseline reflectance and more 
surface-specific, the wavelength dependent absorption 
features. The reflectance of a soil does not only change 

as a function of soil moisture and soil surface roughness, 
but is affected by main soil properties, such as soil or-
ganic matter (SOM) contents and texture (Irons et al., 
1989). 

Generally, there are many ways to classify soils, one 
is texture. The impact of soil texture on soil SR is 
mainly reflected by two aspects. On the one hand, tex-
ture affects the water holding capacity; indeed, rela-
tively large particles can hold more air and water, which 
affects the soil SR. On the other hand, the size of soil 
particles has a significant influence on the soil SR; rela-
tively small particles are tightly bound which creates a 
smooth soil surface of relatively high reflectivity. The 
chemical composition of soil particles with different 
grain sizes also affects soil spectral reflectance. Wight et 
al. (2016) suggested that texture is the principal charac-
teristic that interferes with the model’s accuracy, and it 
affects the spectral reflectance in the entire Vis-NIR re-
gion. As a result, soil texture must be considered as a 
driving factor for modeling soil moisture, which leads to 
improved modeling according to each soil category. 

Mouazen et al. (2006) found that the interaction be-
tween other soil properties may perturb the signal under 
field conditions based on RMSH. Soil spectra are com-
plex, and soil properties interact in complex ways, 
masking the correlations between specific spectral re-
flectance signatures and a specific soil property. Lobell 
and Asner (2002) concluded that soil surface moisture 
and soil organic carbon (SOC) contents have a similar 
impact on reflectance as soil surface roughness, 
whereby baseline reflectance is reduced with relatively 
higher soil moisture and SOC contents. These spectral 
variations present a challenge for the estimation of soil 
moisture and soil surface roughness when different soil 
types are considered. The directional index approach has 
been used for acquiring soil surface roughness (Croft et 
al., 2009; 2012a), and the impact of soil biochemical 
variations was neglected and more accurate soil surface 
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roughness was retrieved across different soil types.  
In this study, the models were developed under field 

conditions and the soil type was the same for all the 
sub-regions (chernozem); But the variations caused by 
soil types must be considered in future studies. 

5  Conclusions 

This study focused on the prediction of SM and RMSH 
of farmland bare soils using SR. An experimental area 
of three soil moisture levels and four soil surface 
roughness levels was set up to analyze the correlation 
between SR and RMSH, and SR and SM. Compared 
with previous laboratory studies, this paper also focused 
on the clods and aggregates randomly distributed on the 
farmland surface. Agricultural treatments and rainfall 
were fully considered by experimental area selection 
and data observations during each experiment. Signifi-
cant negative correlations were observed from the col-
lected spectral reflectance curves between SR and 
RMSH, and between SR and SM. It was concluded from 
the spectral reflectance curves that an 80% increase in 
reflectance was associated with a decrease in soil sur-
face roughness (from 4.31 to 0.56 cm) and a 40% de-
crease in reflectance was associated with an increase in 
soil moisture (from 11.4% to 27.7%).  

According to the correlations between single-band 
reflectance and the soil parameters, soil moisture and 
soil surface roughness were each determined as two in-
dependent variables. The characteristic bands that were 
used to predict soil surface roughness were determined 
by stepwise multiple nonlinear regression methods. Four 
characterized bands were selected to estimate the SM, 
which are B (485 nm), G (555 nm), SWIR2 (2200 nm), 
and NIR (845 nm). The predicted soil moisture values 
were strongly correlated with measured values, and the 
adjusted R2 and RMSE values were equal to 0.62 and 
2.6%, respectively. Using NIR (845 nm), R (675 nm), G 
(555 nm), and SWIR1 (1600 nm) as variables to esti-
mate the RMSH resulted in correlations of adjusted R2 
and RMSE values equal to 0.48 and 0.69 cm, respec-
tively. It was found that soil moisture and soil surface 
roughness can be accurately estimated by multi-band 
spectral reflectance under field condition.  

The characteristic bands used for the predicting 
model coincide with the center wavelength of the com-
monly used optical satellite sensors. Finally, under-

standing these correlations and developing their basis 
correction methods can be applied for the prediction of 
soil parameters based on the satellite and UAV optical 
image for precision agriculture in the future. 
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