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Abstract: This paper examines city growth patterns and the corresponding city size distribution evolution over long periods of time 

using a simple New Economic Geography (NEG) model and urban population data from Canada. The main findings are twofold. First, 

there is a transition from sequential to parallel growth of cities over long periods of time: city growth shows a sequential mode in the 

stage of rapid urbanization, i.e., the cities with the best development conditions will take the lead in growth, after which the cities with 

higher ranks will become the fastest-growing cities; in the late stage of urbanization, city growth converges according to Gibrat′s law, 

and exhibits a parallel growth pattern. Second, city size distribution is found to have persistent structural characteristics: the city system 

is self-organized into multiple discrete size groups; city growth shows club convergence characteristics, and the cities with similar de-

velopment conditions eventually converge to a similar size. The results will not only enhance our understanding of urbanization process, 

but will also provide a timely and clear policy reference for promoting the healthy urbanization of developing countries. 
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1  Introduction 

The paper investigates the city growth process that oc-
curs as countries develop economically. There are two 
related aspects to this issue: the first concerns how cities 
of different size grow relative to each other, i.e., is it 
sequential where the initially large cities are the first to 
grow fastest, followed by medium and then small cities 
further down in the urban hierarchy, or is it parallel 
where cities of different size grow at similar rates, and 
the second concerns how city size distribution evolves 
and which theoretical distribution provides the best ap-
proximation. Understanding city growth dynamics is 
crucial to advancing our understanding of urbanization 
process and formulating effective policies for develop-

ing countries that face rapid urbanization (Henderson 
and Venables, 2009).  

A large body of literature has been developed to ad-
dress the two issues. Regarding the first aspect, most 
studies suggest that the relative size and rank of cities 
remain stable over time, consistent with the proportion-
ate effect of Gibrat′s law. When studying city growth in 
France (1876–1990) and Japan (1925–1985), Eaton and 
Eckstein (1997) found that the large cities maintained 
their ranking over the entire reference time, which 
means that city growth is parallel, rather than divergent 
or convergent. Other studies that found supports for par-
allel growth are Dobkins and Ioannides (2001), Black 
and Henderson (2003), Sharma (2003), Resende (2004), 
Schaffar and Dimou (2012). But another strand of lit-
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erature has shown that city growth presents sequential 
characteristics (Anderson and Ge, 2005; Henderson and 
Venables, 2009; Sheng and Sun, 2013). Empirically, 
Cuberes (2011) found that the average rank of the fast-
est-growing cities in a large set of countries tends to 
increase over time, indicating cities historically have 
follows a sequential growth pattern. El-Shakhs (1972), 
Wheaton and Shishido (1981), and Junius (1999) re-
ported that urban concentration first increases then de-
creases across countries as income rises. The literature 
delivers contradictory evidence. Under what conditions 
is city growth sequential, and under what conditions 
parallel? Is there a relationship between sequential and 
parallel growth patterns? There is an urgent need for a 
consistency framework to reconcile these two streams of 
literature. 

Turing to the second aspect, the dominating view is 
that the Pareto distribution fits best, which states that 
there is an inverse linear relationship between the loga-
rithmic size of a city and its logarithmic rank. A special 
case of the rank-size distribution with the Pareto expo-
nent q equal to one is known as Zipf′s law (Zipf, 1949). 
Explanation for Zipf′s Law has revolved around two 
lines: one economic (Brakman et al., 2001) and one de-
fined by random process (Gabaix, 1999a; 1999b). 
However, frequent departures from the Zipf′s law have 
also been found (Rosen and Resnick, 1980). Among 
others, Soo (2005) found that only one-third of the sam-
pled countries had a quadratic term significantly close to 
zero, indicating Zipf's law is rejected far more often than 
would be expected based on random chance. Some re-
searchers have also proposed other distribution func-
tions to fit city systems, i.e., double Pareto lognormal 
distribution function (Reed, 2002), lognormal distribu-
tion (Anderson and Ge, 2005), and piecewise functions 
(Garmenstani et al., 2005; Garmenstani et al., 2008). 
While city growth patterns are closely related to city 
size distribution, together constituting different aspects 
of urban system evolution in the urbanization process, 
there is little research explicitly building organic con-
nection between them. It is needed to strengthen the 
study in this field to improve our understanding of urban 
system.  

This paper attempts to reconcile the sequential with 
parallel city growth theories to enhance our understand-
ing of the multi-dimensional aspects of city growth dy-
namics. The paper contributes to the debate on city 

growth patterns on three dimensions. First, this paper 
present a stylized fact that cities grow in sequential or-
der until urbanization enters the late stage of develop-
ment, when city growth converges to parallel behavior 
consistent with Gibrat′s law, i.e., there is a transition 
from sequential towards parallel patterns of city growth 
over long periods of time. Second, this paper investi-
gates the linkages between the dynamic behaviors of 
city growth with city size distribution evolution, and 
examines the effect that a country′s urbanization process 
has on its urban hierarchy. Third, this paper relates spa-
tial heterogeneity with the structural properties and 
processes of city size distributions, and introduces finite 
mixture models to investigate the size clusters in urban 
systems.  

2  Model 

2.1  Setup 
The model builds on the Footloose Capital (FC) model, 
which is the Martin and Rogers (1995) adaption of 
Krugman (1991). The great merit of the FC model is its 
ability to deal with exogenous asymmetries such as 
market size and asymmetric production costs. Three 
extensions are made here: 1) the model is combined 
with the assumption that the upper-tier utility is 
quasi-linear rather than Cobb-Douglas drawing on a 
widely used specification (Pflüger, 2004); 2) negative 
feedbacks, or congestion effects, is incorporated to al-
low for the viability of small cities; 3) spatial inho-
mogeneities, which are emphasized by traditional eco-
nomic geography, are taken into account to analyze the 
effects of city specific comparative advantages on city 
growth. The model can be used to study the evolution of 
urban system, which is composed of large and small 
cities.  

The country is composed of four regions, denoted by 
region 1, region 2, region 3 and region 4, two factors of 
production, labor (L) and capital (K), and two sectors, 
agriculture (A) and manufacturing (X). The four regions 
are all one-dimensional bounded location spaces, along 
which lies land of homogeneous quality. The aggregate 
labor force is assumed to be one unit and is partitioned 
between the four regions, of which the size in region 1 is 
1/2, and those in regions 2, 3 and 4 are respectively 1/6 
+2ε, 1/6–ε and 1/6–ε, where the exogenous variable ε (ε

→0) is used to characterize the advantage in market po-
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tential of region 2 relative to regions 3 and 4. In other 
words, region 1 has the largest market potential, while 
regions 3 and 4 are most inaccessible. Capital accumu-
lates over time: the aggregate capital at time t is K(t), 
and capital growth rate is dK(t)/dt = g(t). For simplicity, 
it is assumed that the capital is evenly distributed among 
labor, i.e., the capital in regions 1, 2, 3 and 4 are 1/2, 1/6 
+ 2ε, 1/6–ε and 1/6–ε, respectively. In the long run, 
capital is mobile between regions, while labor is only 
intersectorally mobile. 

Individuals have identical preferences given by:  
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where CX is the manufacturing aggregate; cji is the 
quantity consumed of variety i produced in region j; nj 

(nj = sjK) is the number of varieties in region j; CA is the 
consumption of agricultural good; σ is the elasticity of 
substitution between manufacturing varieties. 

Regions are assumed to have identical technology 
and trade cost. Agriculture production is not mobile and 
is characterized by perfect competition and zero trans-
port costs. The agricultural good is chosen as numéraire. 
It is further supposed that production of one unit of 
agricultural good require one unit of labor such that the 
price of agricultural good and the wage of agricultural 
labor are normalized to 1. The existence of a local, im-
mobile labor force is an important spreading factor be-
cause it ensures that there is always a positive demand 
in each region. 

The monopolistic competitive sector X produces dif-
ferentiated goods with capital as the only fixed input 
and labors the only variable input. For simplicity, the 
cost function C(q) involves one unit of capital and a 
constant marginal cost am, given by:  

  mC q a q       (2) 

where Π is the nominal return on capital, q is the pro-

ducer′s output. The equilibrium price for variety i is pi≡

p = amσ/(σ – 1). Choosing units and letting am = (σ – 
1)/σ, the price of manufactured goods is also normalized 
to unity. The trade of manufactured goods incurs no cost 
within the same region while inhibited by iceberg costs 
between regions. Without loss of generality, it is as-
sumed that cities are set in a hypothetical space where 

any two cities are equidistant. This implies between any 
pair of regions only 1/τ of a unit of a variety arrives for 
consumption and that the price of the imported variety 
rises by τ times, where τ > 1 is a parameter to character-
ize transport costs. 

2.2  City formation 
We assume that at each point of time, manufacturing 
industries are concentrated in the geographical center of 
each region, called ′cities′. Assume also the proportion 
of capital in cities 1, 2, 3 and 4 is s1, s2, s3 and s4, re-
spectively. Then the numbers of firms and thus varieties 
are s1K, s2K, s3K and s4K in these four cities respec-
tively, and from Equation (2) the population sizes N1, 
N2, N3 and N4 are s1Kam, s2Kam, s3Kam and s4Kam. Let 
the aggregate demand in region m of region j be djm. 
From Equation (1), utility maximization yields the de-
mand functions: 

1
, 1, 2, 3, 4     j

jj
j

s
d j

P           (3a) 

1
     , 1, 2, 3, 4;         1, 2, 3, 4   ;m

jm
m

s
d j m j m

P 



      (3b) 

where, Pj and Pm are the consumer price indexes in re-
gions j and m respectively. 
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where, θ = τ1
–σ (0 ≤ θ ≤ 1) is interregional trade freeness, 

which increases with the decline in τ (lower transporta-
tion costs) or σ (more preferred to diversified products). 
When τ = 1 and θ = 1, interregional trade involves no 

cost; and when τ→∞ and θ = 0, interregional trade cost 

is infinite.  
Two factors affecting city growth are emphasized. 

First, there are differences in the comparative advan-
tages of natural conditions across cities. Many various 
causes have led to the localization of industry, but the 
chief causes have been physical conditions (Marshall, 
1920; Ellison and Glaeser, 1999; Kim, 1999). Specifi-
cally, Ellison and Glaeser (1999) found that the per-
centage of agglomeration that is predicted by the natural 
advantage proxies is roughly 20%.  

Second, the expansion of city size leads to an in-
crease in congestion costs (Brakman et al, 1996). They 
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assert that, compared with the spreading forces origi-
nated from immobile consumption market and increase 
in agriculture product price, congestion effect consti-
tutes a more important spreading factor. This constitutes 
a spreading force for manufacturing activities. A note of 
caution is that the transformation of urban structure 
from monocentric to polycentric pattern to some degree 
eases the pressure of rising rents (Fujita and Ogawa, 
1982; Anas and Small, 1998). And the introduction of 
communication technologies also increases the incentive 
to agglomerate (Desmet and Rossi-Hansberg, 2009). 
Thus, net congestion may have resumed decreasing 
during the past several decades. 

The focus is on analyzing the consequence of city-    
specific comparative advantages and congestions rather 
than their origins. Following Brakman et al. (1996), this 
paper capture the essence by simply assuming Πj =πj/[βi 

g(sj, K)], where πj is the real return on capital, βi > 0 and 
g(sj, K) represent the comparative advantages and con-
gestion-related negative feedbacks in city j, respectively. 
Specifically, suppose that g(sj, K)= φ/[(1+sj)K], where 
φ(φ<(1+s)K) is a constant. Combining the conditions of 
market clearing and zero profit, the real return on capital 
is given: 
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Under FC model context, the profits of capital are all 
repatriated to the regions where their owners reside, thus 
capital flows in the four cities will depend on the real 
returns they can offer. From Equation (5), home market 
effect and comparative advantages are the agglomera-
tion forces, while the immobile agricultural labor and 
congestion effect constitute the spreading forces. In our 
model, it is the interaction of these two opposing forces 
that leads to capital flow and the evolution of city size. 
A long-run equilibrium is only reached when capital 
rewards are equalized. 

2.3  City growth 
It is well-known that this type of model can not be 
solved analytically due to its strong nonlinear nature. 
Nevertheless, basic understanding of city growth and the 
consequent city size distribution evolution can be ob-
tained by means of numerical simulations. In the simu-
lations below, this paper focuses on the parameters θ, ε, 

and β. 
Trade freeness θ increases over time. In agricultural 

society, the transportation costs are high, and the small 
manufacturing sector produces close substitutes, which 
implies that trade freeness remains high and changes 
little. During industrialization, the emergence of modern 
transportation leads to an unprecedented decline in 
transportation costs (Bairoch, 1988). Meanwhile, large- 
scale machine-based production supplants small-scale 
craft production, and eventually dominates manufactur-
ing sector. The spectacular decreases in transportation 
costs and increasing importance of economies of scale 
imply a significant increase in θ. In post-industria-
lization, transport costs remain low with little change, 
and as before the industrial sector is characterized by 
differentiated products and increasing returns to scale, 
which implies trade freedom tends to be stable. This 
paper stimulates the historical change of trade freeness 
by choosing a logistic growth function of θ over time t. 
Specifically, it is assumed that θ = 0.80/[1+e–0.20(t–20)], 
where t is the time variable. 

Parameters β and ε remain constant over time. With-
out loss of generality, it is assumed that ε = 0.008. Pa-
rameter β varies across cities. To investigate the growth 
dynamics of cities with different development condi-
tions, it is assumed that β1 = β2 = β3 = 1, β4 = 0.85. Thus, 
in our model, city 1 represents the city with the largest 
market access and the best development conditions, cit-
ies 2 and 3 represent the cities with similar development 
conditions, and city 4 represents the city with the poor 
development conditions in the fringe areas. 

Figure 1 depicts the evolution of long-run equilibrium 
population shares in the four cities as trade freedom in-
creases. From the dynamic equation of city growth 
[dNj(t)/dt]/Nj=[dsj(t)/dt]/sj + g(t), the growth rate of city 
population depends on the rate of change in population 
shares s1, s2, s3 and s4. It is apparent from Fig. 1 that, at 
the early stages of the urbanization process, city popula-
tion shares are closely related to local market demands; 
with the increase of trade freeness, the landscape of ur-
ban systems undergoes tremendous changes. Our theory 
has four clear-cut and testable predictions for a given 
country.  

First, cities grow in a sequential order. In the early 
stage of industrialization, the agglomeration force of eco-
nomic activity outweighs the spreading force, and manu-
facturing firms are strongly encouraged to concentrate 
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Fig. 1  Evolution of population shares in four cities 
 

production in the location with the best development 
condition. As a result, city 1 becomes the first to grow 
fastest and eventually become the primate city in the 
country. With the deepening of the industrialization 
process, congestion effect starts to dominate the ag-
glomeration force in the primate city. The growth rate of 
the primate city declines, and the cities with relatively 
better development conditions (city 2 and city 3) be-
come the fastest-growing cities. Therefore, the model 
predicts that cities grow sequentially during the evolu-
tion process of urban systems. The result also implies 
that the size distribution of cities against their ranks (at 
least in the upper tail) should become more flatter with 
increase in the level of urbanization. 

Second, city size distribution exhibits structure char-
acteristics. Cities with similar development conditions 
(city 2 and city 3) tend to have similar population sizes, 
and form specific clusters in city size distribution, re-
sulting in clusters in city size distribution. The empirical 
city size distributions have previously been approxi-
mated by single distribution function such as Pareto, 
lognormal, or double Pareto lognormal function, which 
implies a continuous pattern exists across multiple 
scales, and that common processes, or mechanisms 
propagate across a wide range of scales. Nevertheless, 
clustering structures in city size distribution implies that 
there are processes operating at distinct scales, and these 
processes create scale-specific patterns deviating from 
the general rank size rule or Zipf′s law. Individual dis-
tribution function can not effectively capture the discon-
tinuities or lumpy patterns in urban systems, and thus it 
is required to develop mixture distribution functions to 
fit city size distribution. 

Third, city growth eventually converges to patterns 
consistent with Gibrat′s law. In the late stage of urbani-
zation development (stage 3), the forces of agglomera-
tion and spreading are in balance. Cities with favorable 
development conditions have large population size and 
consequent great congestion costs, while cities with 
small market potential index have small population size 
and are less trouble by congestion effects. Eventually, 
the growth rates of these cities tends to be stable (s1, s2, 
s3 and s4 values are no longer changed), and cities of 
different size show growth patterns consistent with the 
law of proportionate effect. Thus, it is plausible to con-
clude that sequential pattern and parallel pattern are 
manifestations of city growth in different stages of ur-
banization process. In other words, when examining the 
dynamics of cities in the accelerated stage of urbaniza-
tion, city growth should show a sequential pattern; when 
examining city growth in the final stage of urbanization, 
Gibrat-like behavior should be detected. The model im-
plies that Gribat′s law is valid for describing city growth 
as a long-run regularity. 

Fourth, city growth exhibits behavior that is charac-
terized via convergence clubs. As trade freeness rises, 
comparative advantages in regional development condi-
tions outweigh home market effect to become the 
dominating factor influencing city growth, leading to 
great divergence in growth trajectories between city 4 
and cities 2 and 3. On the other hand, sequential city 
growth implies that, with the deepening of regional de-
velopment process, the size difference of city 1 from 
cities 2 and 3 will eventually be shrinking, and cities in 
the upper tail of the size distribution show a conver-
gence trend. Thus, when urbanization reaches its final 
stage, these four cities are self-organized into two clubs, 
in which club 1 includes cities 1, 2 and 3, and club 2 
includes only city 4. City growth can manifest multiple 
stable steady states via differential growth rates. Club 
convergence of city growth indicates that, structures in 
city size distribution, or discontinuity between size 
classes, is a stylized fact over the whole urbanization 
process. 

3  Empirical Evidence 

3.1  Data description 
Canada is selected to conduct the empirical analysis due 
to its long record of city populations, its large land area, 
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as well as its well-developed market economy system. 
The dataset covers a 115-year period from 1871 to 1986. 
The data are collected from two sources: information 
from 1871 to 1966 is obtained from the historical Can-
ada Yearbook compiled by Statistics Canada (http:// 
www66.statcan.gc.ca/acyb_000-eng.htm); and informa-
tion from 1971 to 1986 is reported in the website created 
by Jan Lahmeyer (http://www.populstat.info/). The term 
city here is defined as urban area. According to Statistics 
Canada, an urban area is a human settlement with a 
population of at least 1000 and a population density of 
no less than 400/km2. According to this definition, Can-
ada′s urbanization rate rise from 19% in 1781 to 76% in 
1986. 

This paper focuses on the growth of cities in the up-
per tail of the distribution. A total of 112 cities with a 
population over 76 000 inhabitants in 1986 are selected 
as the complete sample. At the same time, a balanced 
panel including the 42 most populous cities is also con-
structed to explore the growth pattern of existing cities. 
A parallel study of both the balanced and complete sam-
ples is employed. Figure 2 describes the evolution of 
rank size curves for the complete and balanced samples 
in 1871–1986. It is apparent from Fig. 2a in the acceler-
ated stage of urbanization, the rank size curve shifts 
upward, and becomes more flatter; Fig. 2b in the final 
stage of urbanization, especially in 1971–1986, the 
curves remains almost stable.  

3.2  Sequential city growth 
Relative growth rate is firstly used to analyze the se-
quence of city growth. Relative growth rate is defined as 
the ratio of the population growth of individual cities to 

the average growth of cities in the sample. The distribu-
tions of relative growth rates for the balanced and com-
plete samples are skewed to the right in all five-year 
intervals except for 1976–1981 and 1981–1986 periods, 
indicating some of the cities grow much faster than the 
rest during the transition to the steady state. The evolu-
tion trend of relative growth rates of individual cities is 
further estimated using the following specification:  

[ln(Nj, t+1) – ln(Nj, t)] / [N–1∑(ln(Nj, t+1) – ln(Nj, t))] = 

aj + bjt + εj, t (6) 

where Nj, t is the population size of city j at time t; Nj, t+1 
is the size of the same city in the subsequent period; εj, t 
is the residual. Table 1 reports the estimated coefficients 
for the balanced sample. It is apparent from Table 1 that, 
the relative growth rates of cities with low rankings 
(Montréal, Toronto, and Vancouver) decreases over 
time, while those with high rankings (London, Bramp-
ton, Kitchener, Oshawa, and Guelph) increases.  

To facilitate the interpretation of the finding, Fig. 3 
depicts the evolution of the average relative growth rates 
for different subsamples. As is evident in Fig. 3, in the 
early stage of urbanization, the most populous cities 
grow fastest (Fig. 3a), while in the late stage, the me-
dium-sized cities become the fastest-growing ones (Fig. 
3c). And it can also be found that, the growth rates of 
cities further down in the urban hierarchy remains rela-
tively constant (Fig. 3d). This implies that, in the proc-
ess of urbanization, the low ranked cities grow first, 
followed by a decline in growth rates, and then 
high-ranked cities become the fastest growing ones, 
which constitutes direct evidence of sequential city 
growth hypothesis. 

 

Fig. 2  Rank size plots for Canadian cities, 1871–1986 
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Table 1  Relative growth rates of cities in balanced sample 

Rank City t Rank City t Rank City t 

1 Montréal –0.149* 15 Kitchener 0.097*** 29 Dartmouth –0.008 

2 Calgary 0.160 16 Longueuil 0.145 30 Kamloops 0.106 

3 Toronto –0.135*** 17 Oshawa 0.133*** 31 Chicoutimi 0.077 

4 Winnipeg –0.145 18 Saint Catharines 0.026 32 Peterborough –0.014 

5 Edmonton 0.074 19 Halifax –0.033 33 Verdun –0.335*** 

6 Vancouver –0.208* 20 Sudbury –0.205* 34 Lethbridge 0.113 

7 Hamilton –0.030 21 Sault Sainte Marie –0.034 35 Hull –0.112 

8 Ottawa –0.019 22 Guelph 0.137*** 36 Waterloo 0.216*** 

9 London 0.096*** 23 Saint John –0.518 37 Jonquière –0.071 

10 Windsor –0.086 24 Brantford 0.105 38 Moncton –0.136* 

11 Brampton 0.681*** 25 Sherbrooke –0.089 39 Kingston –0.051 

12 Saskatoon 0.113 26 Niagara Falls 0.002 40 North Bay –0.105 

13 Regina 0.013 27 Saint-Laurent –0.052 41 Trois-Rivières –0.096** 

14 Québec –0.091* 28 Victoria –0.032 42 Sarnia 0.0845 

Note: *, **, and ***denote significance at 0.1, 0.05, and 0.01 level, respectively 

 

Fig. 3  Evolution of average of relative growth rates, panel a includes Montréal, Calgary, Toronto, Winnipeg; panel b includes Edmon-
ton, Vancouver, Hamilton, Ottawa, and London; panel c includes Windsor, Brampton, Saskatoon, Regina, Québec, Kitchener, Longueuil, 
Oshawa, Saint Catharines, Halifax; panel d includes Sudbury, Sault Sainte Marie, Guelph, Saint John, Brantford, Sherbrooke, Niagara 
Falls, Saint-Laurent, Victoria, Dartmouth, Kamloops, Chicoutimi, Peterborough, and Verdun 

 

The evolution of Pareto exponents confirms the pat-
tern revealed in the above analysis. The log-linear equa-
tion is estimated: lnNj = lnA–qln(Rj), where lnA is the 
constant, Nj and Rj are the population and rank of city j. 
The large value of the exponent implies the high degree 

of convergence of population in large cities. For every 
five-year data, the exponents for the complete and bal-
anced sample are estimated respectively to study how 
the population concentration in large cities changes with 
the growth of urban population (Fig. 4). In Fig. 4, Pareto  
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Fig. 4  Evolution of Pareto Exponent, 1871–1986 

 
exponents for the complete sample increases slowly 
from 1.110 in 1911 to 1.172 in 1986, while those for the 
42 most populous cities declines dramatically from 
1.647 in 1871 to 0.952 in 1986. This pattern indicates 
that, while concentration of population towards the up-
per tail of the distribution remains, populations are no 
longer as convergent on large cities after 1871, and 
more populations concentrate on medium size cities 
(their ranks are still within the top 42).  

3.3  Structure in city size distribution 
Finite mixture model (FMM) is used to capture the 
structural characteristics of city size distribution 
(McLachlan and Basford, 1988). Mixtures of normal 
distribution are flexible to accommodate various shapes 
of continuous distributions and able to capture skewed 
and multimodal characteristics of economic data. Thus 
each component in the FMM is assumed to take the 

same form of normal distribution density. The FMM for 
fitting city size distribution with c components is thus 
given by: 
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where qh is the coefficient associated with ln(Rank) in 
component h (Pareto exponent in component h), πh is 
the weight. Table 2 reports the analysis results for the 
complete sample by decade.  

The size distribution of cities in every decade is 
composed of 2–3 components, with the estimated coef-
ficients qh all significant at the 0.01 level. It is worthy to 
note that, there are significant differences in the esti-
mated qh between different components. For instance, in 
1881 the estimated coefficient for the second component 
q2 is less than 16 standard errors away from the estimate 
for the first component q1; in 1921 the estimated q2 ex-
ceeds q1 by 16 times the standard errors, but is less than 
q3 by 2 times the standard errors; in 1981 the estimated 
q2 is more than 5 standard errors away from q1, but less 
than 10 standard errors from q3. The statistical differ-
ence between the estimated coefficients for individual 
components, not only indicates that the overall Pareto 
exponent does not capture evidence of processes affect-
ing city size at a finer scale of analysis, but also that 
Canadian city system exhibits persistent structure char-
acteristics. 

 

Table 2  Regression results for finite mixture models 

Component 1 Component 2 Component 3 
Year 

q1 π1 q2 π2 q3 π3 

1871 1.379 0.206 1.223 0.794   

1881 1.439 0.171 1.090 0.829   

1891 1.415 0.099 1.001 0.261 1.084 0.640 

1901 1.128 0.568 1.078 0.432   

1911 1.048 0.736 1.291 0.175 1.228 0.089 

1921 1.040 0.649 1.168 0.305 1.209 0.045 

1931 1.078 0.741 1.198 0.259   

1941 1.062 0.639 1.188 0.361   

1951 1.012 0.537 1.149 0.463   

1961 1.081 0.497 1.157 0.425 1.139 0.078 

1971 1.105 0.590 1.041 0.083 1.198 0.327 

1981 1.089 0.624 1.025 0.126 1.269 0.250 

Note: all coefficients are significant at 0.01 level 
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3.4  Convergence towards parallel growth 
Parallel growth means cities keep their initial hierarchi-
cal ranks during the growth process. Firstly, two meth-
ods, Rank Mobility Index and Markov chain, are used to 
explore the trends of intra-distributional movements of 
cities. The Rank Mobility Index is formulated as RMI = 
(Rankt+1 – Rankt)/( Rankt+1 + Rankt), where Rankt repre-
sents a city′s rank at time t. The value of RMI varies on 
(–1, 1). When a city moves up (or down) in the urban 
hierarchy, its RMI is negative (or positive). When the 
rank of a city does not change, its RMI is zero. The RMI 
for every city based on its decadal rank change is esti-
mated. Figure 5 illustrates the distribution of RMI of all 
cities using box plots. The range of RMIs between 25% 
and 75% percentiles become very small in recent dec-
ades, indicating the city system has become increasingly 
stable.  

Markov chain is then used to estimate the in-
tra-distributional dynamics of the individual cities over 
the periods of 1911–1961 and 1971–1986, respectively. 
The use of Markov chain techniques requires the discre-
tization of the distribution by assigning each city to one 
of a predetermined number of groups based on its rela-
tive size (Quah, 1993; Eaton and Eckstein, 1997; 
Anderson and Ge, 2005). Following Eaton and Eckstein 
(1997), the chosen intervals were based on 0.30, 0.50, 
0.75, 1 and 2 times the sample mean at each time. Each 
transition probability, mij, in the transition matrix is es-
timated by maximum likelihood, i.e.  

   1 1
, 11 1

/
T T

ij it jt itt t
m n n

 
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      (8) 

where nit, jt+1 denotes the number of cities moving from 
the group i in the five-year interval to group j in the 
subsequent five-year interval, nit is the number of cities 
in group i in the period t. Panels A and B in Table 3 re-
port the average transition matrix, each element of 
which is the probability that a city initially in the cell 
corresponding to its column will join the cell corre-
sponding to the row in the subsequent period. The most 
striking result is that where in early stage of urbaniza-
tion the all off-diagonal elements are significantly dif-
ferent from zero, the pattern changes in the late stage of 
urbanization when almost all off-diagonal elements are 
not significantly different from zero. This movement can 
be seen as evidence of a convergence tendency of the 
distribution toward Gibrat-like pattern of growth 
through time, suggesting all cities eventually grow at the 
same rates stating at different levels. 

Secondly, the following logarithmic specification of 
Gibrat′s law is estimated to examine the relation be-
tween city growth rates and their initial sizes:   

ln(Nj, t+1) – ln(Nj, t)=at + btln(Nj, t) + εj, t (9) 

where the estimated coefficient bt is the key indicator: if 
bt = 0, then the growth rate and initial size are inde-
pendently distributed and Gibrat′s law is in operation; 
by contrast, if bt < 0, smaller cities grow at a systemati-
cally higher rate than do their larger counterparts, while 
the opposite is the case if bt > 0. The estimate results are 
shown in Table 4. The results for the balanced sample 
reveal that, prior to 1971, the estimated bt is signifi-
cantly negative except for the period of 1931–1941, but 
after 1971, it is not statistically different from zero. The  

 

Fig. 5  Distributions of Rank Mobility Index (RMI) of cities: a) the complete sample; b) the balanced sample 
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Table 3  Average decade transition matrix for complete sample 

Panel A: Early stage of urbanization (1911–1961) 

 N<0.3u 0.3u<N<0.5u 0.5u<N<0.75u 0.75u<N<u u<N<2u N>2u 

N<0.3u 0.870 0.130 0 0 0 0 

0.3u<N<0.5u 0.141 0.718 0.127 0.014 0 0 

0.5u<N<0.75u 0 0.188 0.687 0.125 0 0 

0.75u<N<u 0 0 0.222 0.500 0.278 0 

u<N<2u 0 0 0 0.091 0.818 0.091 

N>2u 0 0 0 0 0.133 0.867 

Panel B: Late stage of urbanization (1971–1986) 

 N<0.3u 0.3u<N<0.5u 0.5u<N<0.75u 0.75u<N<u u<N<2u N>2u 

N<0.3u 0.980 0.010 0.010 0 0 0 

0.3u<N<0.5u 0.084 0.874 0.032 0.011 0 0 

0.5u<N<0.75u 0 0.026 0.947 0.026 0 0 

0.75u<N<u 0 0 0.235 0.735 0.029 0 

u<N<2u 0 0 0 0.133 0.833 0.033 

N>2u 0 0 0 0 0.027 0.973 

Notes: N denotes population size of a particular city; u is sample mean 

 
Table 4  Regression results of urban growth on their initial sizes 

Time interval Balanced sample Complete sample Time interval Balanced sample Complete sample 

1871–1881 –0.267*** –0.210** 1951–1956 –0.053*** –0.020* 

1881–1891 –0.031 –0.096** 1956–1961 –0.085** 0.003 

1891–1901 –0.109** –0.103** 1961–1966 –0.078** –0.008 

1901–1911 –0.157** –0.123*** 1966–1971 –0.097*** 0.000 

1911–1921 –0.031 –0.054** 1971–1976 –0.063 0.009 

1921–1931 –0.055** –0.041** 1976–1981 0.008 0.012 

1931–1941 –0.008 –0.003 1981–1986 0.015 0.018 

1941–1951 –0.082*** –0.023*    

Note: *, **, and ***denote significance at 0.1, 0.05, and 0.01 level, respectively 
 

results for the complete sample show similar pattern 
with bt significantly negative prior to 1956 (except for 
1931–1941 period) and not significant from 1971 on-
wards. It indicates that, the growth of Canadian cities 
display a consistent convergence trend, until the final 
stage of urbanization when they converges to the paral-
lel patterns consistent with Gibrat′s law. The puzzling 
debate about cities growth patterns is thus recomposed: 
although sequential patterns can be detected when con-
sidering the overall evolution of cities in the process of 
urbanization, Gibrtat′s law is an accurate description of 
the city growth in the long run. 

3.5  Club convergence in city growth 
In order to analyze the transitional behavior of cities and 
detect the convergence club, the log t test developed by 

Phillips and Sul (2007) is applied. The test focuses on 
the ultimate convergence of city sizes allowing for tran-
sitional divergence and heterogeneity in convergence 
speed across panel members. The following regression 
is estimated:  

      0 0 1log / 2log log log   t tH H t t    (10) 

where Ht is the transition distance in period t, defined by 
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where hjt is the relative transition path tracing out the 
trajectory of city j to the average, Njt is the population size 
of city j at time t, and M denotes the number of cities.  
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The complete sample is used to address this issue. 
Because the test is based on balanced panel data, a little 
data transformation is carried out by assigning a popula-
tion of 1 to the cities that did not exist in the very early 
years. The transformation means that theses cities have a 
zero log-population when they did not exist. Phillips and 
Sul have recommended that, the initial observation in 
Equation (10) should be [rT] with r = 0.3, so that the log 
t test regressions are based on time series data in which 
the first 3% of the data is discarded. Considering the 
structure of our sample, the analysis is conducted using 
the city sample after 1911, i.e., H0 is the transition dis-
tance in the base year 1911.  

The null hypothesis of convergence is rejected at 5% 
level if the t statistic of the coefficient on log (t) term in 
Equation (10) is less than –1.65. If convergence is re-
jected for the overall sample, the clustering mechanism 
test procedure is applied to determine if there exists club 
convergence. Following the above procedure, 4 conver-
gence clubs are finally identified. Club 1 consists of 39 
large cities, such as Montréal, Calgary, Toronto, Winni-
peg, and Edmonton; club 2 includes 39 cities, such as 
Sherbrooke, Victoria, Peterborough, Verdun and Hull; 
club 3 is compose of 32 cities, such as Outremont, 
Westmount, Lindsay, Pembroke and Lauzon; and club 4 
includes only 2 cities of Trail and Yarmouth. Figure 6 
shows the relative transition paths of the 4 convergence 
clubs from 1871–1986. Therefore, the club convergence 
hypothesis of city growth passes the test. 

4  Conclusions 

The paper′s findings can be summarized as follows. The 
first is that cities grow in a sequential order in the early 
and accelerated stages of urbanization process, with cit-
ies with the most favorable conditions the first to grow  

 

Fig. 6  Average relative growth paths of the four size clubs 

rapidly. Second, the growth of cities (at least in the up-
per tail of the distribution) converges to parallel patterns 
consistent with Gibrat′s law of proportionate effect in 
the final stage of urbanization. Third, cities tend to 
self-organize into discrete size classes, leading to per-
sistent structures, or discontinuities, in cities size distri-
bution. Finally, the growth of cities exhibits behavior 
that is best characterized via convergence clubs, in 
which cities with similar developmental conditions have 
similar development paths and converge to similar sta-
ble sizes, resulting in multiple steady states. 

The findings give evidences that reconcile the se-
quential city growth theories with parallel growth theo-
ries, showing that there exists a transition from sequen-
tial towards parallel growth patterns and Gibrat′s law is 
a reflection of a steady state condition of urban growth. 
Additionally, the two stylized facts of structures in size 
distribution and club convergence of city growth pre-
sented in this paper would presumable be valuable in-
puts to develop new theories of urban growth or ex-
tending existing ones to improve their goodness of fit. 
These findings are also valuable to policy makers, espe-
cially in countries that are urbanizing rapidly. For ex-
ample, our study suggests that large cities should be 
supported in priority in regional development, and then 
policy focus should be shifted to the lower-ranked me-
dium-sized cities. And the clustering structure and in-
verted U-shaped evolutionary path of city size distribu-
tion should also be fully considered. Policy makers can 
thus make informed decisions on where and when to 
invest in urban infrastructure. 
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