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Abstract: Information on the spatial distribution of soil salinity can be used as guidance in avoiding the continued degradation of land 

and water resources by better informing policy makers. However, most regional soil-salinity maps are produced through a conventional 

direct-linking method derived from historic observations. Such maps lack spatial details and are limited in describing the evolution of 

soil salinization in particular instances. To overcome these limitations, we employed a method that included an integrative hierarchi-

cal-sampling strategy (IHSS) and the Soil Land Inference Model (SoLIM) to map soil salinity over a regional area. A fuzzy c-means 

(FCM) classifier is performed to generate three measures, comprising representative grade, representative area, and representative level 

(membership). IHSS employs these three measures to ascertain how many representative samples are appropriate. Through this syner-

getic assessment, representative samples are obtained and their soil-salinity values are measured. These samples are input to SoLIM, 

which is constructed based on fuzzy logic, to calculate the soil-forming environmental similarities between representative samples and 

other locations. Finally, a detailed soil-salinity map is produced through an averaging function that is linearly weighted, which is used to 

integrate the soil salinity value and soil similarity. This case study, in the Uyghur Autonomous Region of Xinjiang of China, demon-

strates that the employed method can produce soil salinity map at a higher level of spatial detail and accuracy. Twenty-three representa-

tive points are determined. The results show that 1) the prediction is appropriate in Kuqa Oasis (R2 = 0.70, RPD = 1.55, RMSE = 12.86) 

and Keriya Oasis (R2 = 0.75, RPD = 1.66, RMSE = 10.92), that in Fubei Oasis (R2 = 0.77, RPD = 2.01, RMSE = 6.32) perform little 

better than in those two oases, according to the evaluation criterion. 2) Based on all validation samples from three oases, accuracy esti-

mation show the employed method (R2 = 0.74, RPD = 1.67, RMSE = 11.18) performed better than the multiple linear regression model 

(R2 = 0.60, RPD = 1.47, RMSE = 14.45). 3) The statistical result show that approximately half (48.07%) of the study area has changed 

to salt-affected soil, mainly distributed in downstream of oases, around lakes, on both sides of rivers and more serious in the southern 

than the northern Xinjiang. To deal with this issue, a couple of strategies involving soil-salinity monitoring, water management, and 

plant diversification are proposed, to reduce soil salinization. Finally, this study concludes that the employed method can serve as an 

alternative model for soil-salinity mapping on a large scale. 
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1  Introduction 

Salt-affected soils are characterized by the presence of 
excess levels of soluble salts (saline soils) in the soil 

solution or at the cation exchange sites. The accumula-
tion of salts in these soils originates in the weathering of 
parent minerals (causing fossil or primary salinity-   
sodicity) or from anthropogenic activities involving the 
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inappropriate management of land and water resources 
(contributing to man-made, or secondary, salinity-     
sodicity). Excessive salinity negatively affects crop 
productivity and eventually results in land degradation. 
Approximately 9.55 × 108 ha of soil has been affected 
worldwide by primary salinization, whereas secondary 
salinization affects approximately 7.70 × 107 ha in irri-
gated areas (Ghassemi et al., 1995). In addition, irri-
gated areas decrease approximately 1% to 2% per year 
because of salt-affected land surface (FAO, 2002) par-
ticularly in arid lands. Uyghur Autonomous Region of 
Xinjiang, in the furthermost area of northwest China, is 
the largest arid region in the country, with a total area of 
approximately 1.66 × 106 km2, in which the saline and 
alkaline soil areas represent 8.48 × 104 km2 (Soil Survey 
Staff of Xinjiang, 1996) and 31.1% of the salt-affected 
soils in arable farmland. Soil salinization in this region 
is a widespread natural phenomenon that constrains 
sustainable agriculture and social-economic develop-
ment. In the future, increasing population pressure will 
require that more drylands be used for agricultural pro-
duction. Most of this expansion of agriculture into dry-
lands will be achieved by expanding irrigation. This can 
exacerbate the problem of soil salinization (Metternicht 
and Zinck, 2003). Regional digital mapping of salt-      
affected soils can help avoid the continued degradation 
of land and water resources by providing policy makers 
with the information they need to make sound policy 
decisions. Soil mapping is a process in which the spatial 
distribution of physical, chemical, and descriptive soil 
properties is evaluated and presented in a form that can 
be understood and interpreted by various users (Sheng et 
al., 2010). 

In recent decades, the soil-science community has 
expended great effort to develop regional soil databases. 
Most of the maps in these databases were produced by 
digitizing older paper maps or by interpolation without 
sampling current soil resources (Grunwald et al., 2011). 
Moreover, soil bodies are typically represented as dis-
crete, homogeneous entities that lack quantified meas-
ures of uncertainty (Goovaerts and Journel, 1995). De-
spite the shortcomings of conventional soil data, these 
data are difficult to replace by any mechanical model. 
Developing and transitional countries typically lack soil 
information (Mulder et al., 2011) such as the extent and 
characterization of salt-affected soils, on a large scale, in 
China. No soil-salinity maps quantitatively describe the 

soil salinization from the northern to the southern Xin-
jiang after the literature review in the recent 10 years 
However, in the anthropogenic regions, soil change, and 
soil formation and degradation, have also accelerated, 
jeopardizing soil quality and health. The need for 
up-to-date soil and environmental data that characterize 
the physicochemical, biological, and hydrological con-
ditions of ecosystems across continents has intensified 
(Grunwald et al., 2011). 

Digital soil mapping (DSM) and modeling techniques 
have proliferated during the past few decades to address 
these soil-data needs (McBratney et al., 2003; Grunwald 
et al., 2011). Two approaches are used in DSM research 
and practice. One approach aims at truly automatic, ob-
jective, and quantitative mapping, taking advantage of 
techniques in statistics, geostatistics, machine learning, 
and data mining, and relying heavily on dense sampling 
from the field or from existing soil maps. The other ap-
proach tries to fit within the conventional soil survey 
and mapping framework, including the conventional 
process and standard. This approach aims to effectively 
use the soil scientist′s knowledge, while reducing the 
inconsistency and cost associated with the traditional 
manual process (Zhu et al., 2001). For example, Soil 
Land Inference Model (SoLIM) combines the knowl-
edge of local soil scientists with geographic information 
systems (GIS) under fuzzy logic to map soil at higher 
attribute accuracy (Zhu et al., 1997). The major digital 
components of this approach include engineering tech-
niques for knowledge acquisition, knowledge represen-
tation, and knowledge-based inference. Some authors 
have argued that making good use of soil scientists′ tacit 
knowledge is efficient and economical. For instance, 
MacMillan et al. (2010) conducted predictive ecosystem 
mapping by using a knowledge-based fuzzy semantic 
import model to assess soils across 8.2 × 104 ha in Can-
ada. Study cost was approximately Canadian $ 0.34/ha, 
and it had an average accuracy of 69%. Meanwhile, 
there is little doubt that the number of samples needed 
by an experienced soil scientist is considerably less than 
that required by a computationally inductive method. 
Zhu et al. (2008) explores a purposive sampling ap-
proach to improve the efficiency of field sampling for 
digital soil-mapping. These authors believe that unique 
soil conditions (soil types or soil properties) can be as-
sociated with unique combinations (configurations) of 
environmental conditions. The purposive sampling ap-
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proach used the fuzzy c-means (FCM) of classification 
to identify these unique combinations and their spatial 
locations. Liu et al. (2012) indicated that the purposive 
sampling approach was effective for mapping the varia-
tion of soil textures using Moderate Resolution Imaging 
Spectroradiometer (MODIS) images. Later, an improved 
purposive sampling called the integrative hierarchical 
sampling strategy (IHSS) proved more efficient (Yang et 
al., 2012).  

Based on the review mention above, this study em-
ployed an integrated method of IHSS and SoLIM with 
certain repetitive samples to characterize the spatial 
variability of soil salinity. The case study in the Uyghur 
Autonomous Region of Xinjiang of China was used to 
illustrate the efficacy of the employed method at a re-
gional scale. Then the spatial distribution of soil salinity 
was described based on the prediction and strategies for 
amelioration and management of salt-affected areas 
were suggested.  

2  Materials and Methods 

2.1  Study area 
Located in Northwest China, far from oceans, Xinjiang 
is a typical arid area (34°25′–49°10′N, 73°40′– 
96°23′E). There are three mountain ranges in Xinjiang. 
From south to north, these ranges are the Kunlun 
Mountains, the Tianshan Mountains, and the Altay 
Mountains. In the middle, the Tianshan Mountains di-
vide Xinjiang into the northern and the southern parts 
(Fig. 1). Northern Xinjiang has a continental arid and 
semi-arid climate, with a mean temperature of –13℃ in 

winter and 22.2℃ in summer. Southern Xinjiang has a 

continental dry climate, with a winter mean temperature 

of –5.7℃ and a summer mean temperature of 24.4℃. 

The annual precipitation is 210 mm in the northern Xin-
jiang while that in southern Xinjiang is less than 100 mm. 
Because of the dry climate in Xinjiang, evaporation is 
vigorous, with a mean annual pan-evaporation between 
1000 mm and 4500 mm, which is 500–1000 mm greater 
than other places in China at the same latitude (Li et al., 
2011). 

The areas denoted by gray in Fig. 1 were selected for 
study. The study areas are covered by different soil 
types, including Solonchak, Phaeozems, Gleysols, Flu-
visols, and Anthrosols (FAO/UNESCO, 1990). These 
flat areas have experienced dramatic exploitation since 

the 1960s (Zhang et al., 2003), creating soil salinization 
that has been a serious ongoing environmental problem 
(Wang and Li, 2013). In these low-relief areas, each 
drainage basin has similar geomorphic features, con-
sisting of diluvial-alluvial fans, oases in the middle, and 
a flat, low-gradient alluvial-diluvial plain (lower 
reaches) termed a desert-oasis ecotone (Wang and Li, 
2013). Inside the oasis, where the major crops are corn 
and winter wheat, the soil tends to become thicker and 
sandier. The desert-oasis ecotone is dominated by 
non-zonal halophilus vegetation, such as Halocnemum 
strobilaceum, Kalidium foliatum, Haloxylon ammoden-
dron, Reaumuria soongorica, Tamarix chinensis, and 
Nitraria sibirica. The structure of the vegetation is sim-
ple, and its distribution is sparse. 

2.2  Data acquisition  
2.2.1  Environmental data  
It is important to select appropriate environment covari-
ates for mapping soil salinity. Covariates can be selected 
according to scorpan factors, which can be described as 
Sa = f (S, C, O, R, P, A, N). S represents other or previ-
ously measured attributes of the soil at a point; C repre-
sents climatic properties of the environment at a point; 
O represents organisms; R represents topography; P 
represents parent material; A represents a time factor; N 
represents spatial or geographic position. The accuracy 
of digital soil-mapping also relies on the local relation-
ship between the soil properties and their environmental 
factors. After the literature review, an understanding of 
environment factors that may affect (or were affected 
by) the soil-salinity distribution and the availability of 
such spatial environmental information (Dehaan and 
Taylor, 2002; McBratney et al., 2003; Masoud and Ko-
ike, 2006; Hu et al., 2009; Lobell et al., 2010; 
Rodríguez-Pérez et al., 2011; Heil and Schmidhalter, 
2012; Wang et al., 2012; Zhang et al., 2012; Wang et al., 
2013), seven environmental factors were available. 
These included land surface temperature (LST), en-
hanced vegetation index (EVI), near-infrared (NIR), 
slope, topographic wetness index (TWI), and soil tex-
ture (silt and sand). 

The present study made use of the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) LST product 
(MOD11A2), which offers daytime and nighttime 
land-surface temperature data stored on a 1-km grid as 
the average values of clear-sky LST during an 8-day  
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Fig. 1  Distribution of study areas. Study areas (shown in gray) are clipped by soil types that include Solonchak, Phaeozems, Gleysols, 
Fluvisols, and Anthrosols according to the Harmonized World Soil Database (Nachtergaele et al., 2008) 

 

period (Wang et al., 2005). The MOD11A2 is derived 
from two thermal infrared band channels; that is, 31 
(10.78–11.28 μm) and 32 (11.77–12.27 μm), using the 
split-window algorithm, which corrects for atmospheric 
effects and emissivity using a look-up table based on 
global land-surface emissivity in the thermal infrared 
(Snyder et al., 1998). The MOD11A2 products are vali-
dated over a range of representative conditions, meaning 
the product uncertainties are well defined and have been 
satisfactorily used in a large variety of scientific studies. 
The EVI is satellite data based on measurement of 
vegetation greenness produced using blue (0.459– 
0.479 μm), red (0.620–0.67 μm), and near-infrared 
(0.842–0.872 μm) bands surface reflectance data from a 
MODIS instrument. The dataset MOD13A2 contains 
EVI at 1 km spatial resolution and 16-day frequency. 
This 16-day frequency arises from compositing; that is, 
assigning one best-quality EVI value to represent a 
16-day period. The MODIS NIR was included in 
MOD13A2 dataset. Two MODIS products, LST 
(MOD11A2) and EVI (MOD13A2), and NIR were 
downloaded from https://lpdaac.usgs.gov/lpdaac/get_ 
data/wist for dates between July 26 and August 11, 2012. 

The slope information was derived from a 1-km 
resolution DEM in ArcGIS 9.3. The topographic wet-

ness index was calculated according to the following 
equation (Beven and Kirkby, 1979): ω = ln (α/β), where 
α is the cumulative upslope area draining through a cer-
tain point (per unit contour length) and β is the slope 
gradient at that point. Because the relief of our study 
area is flat, multiple-flow strategy MFD-fg was used to 
calculate the upslope drainage area (α) (Qin et al., 2007).  

The soil texture (silt and sand) was collected from the 
Harmonized World Soil Database, a service that is pro-
vided by the Institute of Soil Science, Chinese Academy 
of Sciences. This soil map was generated based on 8595 
soil profiles from the Second National Soil Survey in 
China. The dataset, with a 1-km resolution, is reliable 
and can be applied to land and climate modeling at a 
regional scale (Wei et al., 2012). 
2.2.2  Field sampling 
The MODIS measurements and other environmental 
datasets reflect the average characteristics of a 1 km × 
1 km pixel; thus, a comparison of the field measure-
ments at individual points requires some assumptions 
about how the two scales relate. In this paper, we used a 
common approach that sampled 16 points at each loca-
tion, which were averaged at each site to produce the 
MODIS co-located 1 km × 1 km soil-salinity assessment. 

The field-observation data (0–10 cm) that were em-
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ployed in this analysis included the soil salt content 
(g/kg) in the depth of 0–10 cm. In the laboratory, the 
composite soil samples were air-dried, ground, and 
sieved, using a 2-mm sieve mesh and then analyzed for 
the soil-salt content. These measurements were per-
formed at the State Key Laboratory of Desert and Oasis 
Ecology, Xinjiang Institute of Ecology and Geography, 
Chinese Academy of Sciences. The primary ionic con-
centrations were measured using Ion Chromatography 
(Dionex 600), following the manufacturer′s protocols. 
The total soil-salt content was defined as the concentra-
tion of the following eight ions: K+, Ca2+, Mg2+, Na+, 
Cl–, SO4

2–, CO3
2–, and HCO3

–. 
A total 94 samples from Fubei Oasis, Kuqa Oasis, 

and Keriya Oasis were considered for validation (Fig. 
2). Samples from Fubei Oasis (24 validation points) 
covered major environmental variations within the 
shortest distance. These were used to evaluate how 
soil-salinity maps capture spatial variation of soil-salt 
content. The purpose of Kuqa Oasis sampling (49 vali-
dation points) was to validate the overall performance in 
predicting patterns of soil salinity at catchment scale. 

Subjective sampling was conducted in Keriya Oasis to 
assess representativeness of points determined by the 
study of Yang et al. (2012), in which 21 subjective 
points were collected. 

2.3  Methods 
2.3.1  Multiple linear regression model  
The multiple linear regression (MLR) model (Flury and 
Riedwyl, 1988), the regression of soil salinity against a 
set of environmental variables, was developed as a ref-
erence to assess the employed method. All of the 94 
field points were used to develop the MLR model by the 
stepwise variable-selection method, with default criteria 
in SPSS 16.0 (i.e., Probability-of-F-to-enter ≤ 0.050 and 
Probability-of-F-to-remove ≥ 0.100).  

2.3.2  Stratifying study area into relatively homogeneous 
To determine the soil-salinity variation through analysis 
of the spatial differences in the soil surface between 
geographic locations, it was necessary to control all of 
the major influencing factors other than the soil condi-
tion. Thus, in this research, the entire study area was 
stratified into vegetation units based on the NDVI. 

 

Fig. 2  Location of validation samples 
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Areas with an NDVI of less than 0.3 were considered as 
bare land or land with very sparse vegetation cover-
age (Liu et al., 2012). Four units were then classified 
(Fig. 3). The stratification resulted in relatively homo-
geneous units. Within any given unit, the soil-surface 
differences between the locations could be primarily 
attributed to differences in the soil conditions. 
2.3.3  Integrative hierarchical sampling strategy (IHSS)  
The basic purpose of IHSS was to sample locations 
where the soils were typical of the various soil catego-
ries (Yang et al., 2012). Based on the soil-landscape 
model theory, this method assumed that typical in-
stances of soil classes corresponded to unique environ-
mental conditions. Fuzzy c-means clustering was used 
to identify the unique combinations (or environmental 
classes) that existed in the environmental data set. FCM 
is an unsupervised classification method that optimally 
partitions a dataset into a given set of classes and then 
computes the fuzzy membership of each data element in 

each class (Bezdek et al., 1984). 
For each unit, all the seven environmental variables 

were used for purposive sampling. The hierarchy of a 
representative grade for candidate samples was deter-
mined through a cluster analysis using a fuzzy c-means 
classifier (Bezdek et al., 1984). The FCM classifier was 
performed in multiple iterations, with each iteration 
identifying a different number of clusters. For example, 
FCM could be performed to identify 2 to 20 clusters for 
a given area. The range of clustering iterations had to 
cover both large-scale and local patterns of spatial varia-
tion for a geographic feature in the study area. To find 
an appropriate range, one could test a number of clus-
tering iteration ranges and evaluate the scale ranges of 
the resulting environmental clusters (Yang et al., 2012). 
Two cluster validity measurements, the partition coeffi-
cient and normalized entropy, were employed to deter 
mine the optimal values for this parameter (Bezdek et 
al., 1984). In this case, the optimal value of the 

 

Fig. 3  Stratification of study area into different landform-vegetation units. Unit 1 and unit 3: NDVI < 0.3; unit 2 and unit 4: NDVI > 0.3 
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fuzzy-weighting exponents was 1.75. For unit 1, 4, 5, 7 
and 8 clusters were appropriate. Then, four iterations 
were performed with iteration 1 to identify four clusters 
and with iteration 2 to identify five clusters, and so on. 
Each of these iterations was referred to as an ′x cluster 
iteration′, where x is the number of clusters to be ex-
tracted, such as 4 clusters corresponding with 4 classes. 
A class with high membership values was considered 
most likely to be typical. Points with membership values 
greater than 0.8 were regarded as typical (Liu et al., 
2012) (Fig. 4a). The fuzzy membership maps were then 
reclassified using binary values, where 1 indicates rep-
resentative locations (for any class) and 0 indicated non- 
representative locations. In each iteration, all of the fuzzy 
membership maps were converted to binary maps to 
identify representative locations for each class. Figure 4b 
is a two-valued map showing the representative loca-

tions for this class, with a threshold of 0.8. Then, four 
reclassified binary maps, for example, were overlaid to 
produce one binary map, and then seven maps were 
overlaid to produce the next binary map, and so on. Four 
binary maps were converted. Based on this concept, the 
reclassified binary maps for all iterations were overlaid 
once again to produce a frequency map, with values at 
each location indicating the representative grade. 

The process discussed above was repeated until all 
units were calculated. The grade map is shown in Fig. 
4c. For all areas, as we iterated through the five cluster 
numbers, a value of 5 on the resulting map meant that 
the pixel was representative of environmental clusters in 
all five iterations. The minimum value of a pixel was 0, 
which meant that the pixel was not representative of any 
environmental clusters during any iteration. Samples 
were selected at locations with priority given to the 

 

Fig. 4  Fuzzy membership map (a) and reclassified two-valued map (b) of certain class in unit 1, and representative grade map in study 
area (c). 1 indicates points with membership values greater than 0.8 and 0 indicates points with membership values less than 0.8 in Figs. 
4a and 4b. Value 5 indicates 5 representative points overlaid in this pixel and 0 indicates no representative point overlaid in Fig. 4c 
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highest representative grade relative to the lower grades 
(Yang et al., 2012). In addition, for locations with the 
same representative grade, those whose environmental 
class covered a larger area (more pixels) had a higher 
priority. In our experiment, no sample was drawn from 
an environmental cluster with less than 40 pixels. 
Thirty-three typical locations were eventually identified. 
Based on the representative soil samples, the soil simi-
larity vectors were then calculated using SoLIM. 
2.3.4  Soil Land Inference Model (SoLIM) 
SoLIM is a predictive approach to soil mapping (Zhu et 
al., 2001). The SoLIM states that if one knows the rela-
tionship between a soil type and its local environment, 
then one should be able to infer what soil might be at 
any particular location by assessing the environmental 
conditions at that location. The non-linear transforma-
tion of the environmental variables by SoLIM could 
help to improve the performance of linear regression 
(Zhu et al., 2010a). This approach has been used suc-
cessfully to map the spatial variation of soil organic 
matter over mountainous areas using topographic vari-
ables (Zhu et al., 2010b). 

The core of SoLIM is similarity (Zhu et al., 1996) in 
representing the soil spatial variation with fuzzy logic. 
The soil similarity vector is given by: 

1 2
, , , , ,( , ,..., ,..., )k n

i j i j i j i j i jS S S S S  (1) 

where n is the number of prescribed soil classes over the 

area; and ,
k
i jS is an index that measures the similarity of 

the local soil at i, j to a representative soil class k. 
This measure was predicted, using fuzzy logic based 

on the similarity between the environmental conditions of 
a representative soil class k, and those at the local site; 
that is, this similarity value was the same as the fuzzy 
membership of the local soil to the soil class. Interested 
readers are referred to Zhu et al. (2001) for details. 
2.3.5  Linearly weighted averaging function 
Finally, a linearly weighted averaging function (Zhu et 
al., 1997) was used to map the spatial variation of the soil 
salinity. The modified function is shown in the following: 
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where ,i jSa is the predicted value of the soil salt content 

at pixel (i, j) within any given landform-vegetation unit; 
kSa is the typical value of the soil salinity of environ-

mental class k; ,
k
i jS is the fuzzy membership value of 

environmental class k at pixel (i, j); and n is the number 
of environmental classes within the unit.  
2.3.6  Accuracy assessment 
The quantitative measurements included the determina-
tion coefficient (R2), root mean square error (RMSE), 
and ratio of prediction to deviation (RPD) which is the 
ratio of the standard deviation (SD) and RMSE to quan-
tify the accuracy of the IHSS-SoLIM method and the 
MLR model. A predictive model was accurate if the R2 
and RPD values were greater than 0.91 and 2.5, respec-
tively. An R2 value between 0.82 and 0.90 and an RPD 
value greater than 2 indicated a good prediction, 
whereas an R2 value between 0.66 and 0.81 with an 
RPD value between 1.5 and 2 indicated an approximate 
prediction. An R2 value between 0.50 and 0.65 indicated 
a poor relationship (Farifteh et al., 2007). 

3  Results and Analyses 

3.1  Accuracy of prediction model 
The diagrams in Fig. 5 showed the predicted soil-salt 
contents with measured soil-salt content for different 
areas and for different soil-salinity classes. The samples 
from Kuqa Oasis and Keriya Oasis resulted in an ap-
proximate relationship (referring to the values of RPD 
and R2) between the predicted and measured values. For 
the Fubei Oasis, the predictions of the soil-salt content 
were little better than Kuqa oasis and Keriya oasis. 
Moreover, the field measurements at these sites were 
further compared with soil subgroups that were obtained 
from different soil-salinity classes (none-saline soil, < 
10 g/kg; slightly saline soil, 8–10 g/kg; moderately sa-
line soil, 10–15 g/kg; severely saline soil, 15–20 g/kg; 
extremely saline soil, > 20 g/kg) (Szabolcs, 1992; Qiao 
et al., 2012). The results indicate that the non-        
saline soil group (R2 = 0.25) had a lower accuracy com-
pared to the saline soil group (R2 = 0.56). 

The quantitative measurements were calculated using 
all 94 validation samples from three oases, by compar-
ing the IHSS-SoLIM model and MLR model, as shown 
in Fig. 6. Five variables (NIR, sand, TWI, LST, and 
EVI) were selected based on stepwise regression model 
to build the MLR model (Table 1). 
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Fig. 5  Comparison of observed and predicted salinity values in different areas and saline-soil classes 

 

Fig. 6  Comparison of observed and predicted salinity values calculated by IHSS-SoLIM method (a) and MLR model (b) 

 
Table 1  Selection of variables based on stepwise regression model 

Model R R2 Adjusted R2 Equation S.E. of estimate 

1 0.63 0.40 0.39 y = –220.28 × NIR + 82.17 18.83 

2 0.75 0.56 0.55 y = –174.35 × NIR + 0.580 × Sand + 43.69 16.18 

3 0.80 0.65 0.64 y = –159.56 × NIR + 0.438 × Sand – 49.86 × EVI + 64.76 14.52 

4 0.84 0.71 0.70 y = –154.34 × NIR + 0.436 × Sand – 44.99 × EVI – 27.12 × Slope + 68.47 13.26 

5 0.87 0.75 0.74 y = –111.06 × NIR + 0.381 × Sand – 42.93 × EVI – 28.86 × Slope + 1.24 × LST + 10.74 12.26 

Notes: NIR is near-infrared; Sand is soil texture (percentage of sand); EVI is enhanced vegetation index; Slope is topographic index (°); LST is land surface tem-

perature (℃); S.E. is standard error 
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There is no large-scale soil-salinity map that can be 
used for this aim in the study area. Meanwhile, only a 
few works in the literature refer to the quantitative study 
of soil salinity using MODIS data. In the study of Lobell 
et al., 2010, Pearson correlation coefficients were com-
puted between the average-summer 7-year EVI data 
(MODIS product MOD13Q1 with 250 m resolution) 
and soil salinity using 118 field points. The result indi-
cated that the multi-year average of EVI was able to 
explain one-half (R2 = 0.53) of field-measured variations 
in salinity across Kittson County. In addition, the paper 
by Bouaziz et al. (2011) established the regression em-
pirical model based on the green, red, and near-infrared 
bands of MODIS Product (MOD09A1 with 500 m 
resolution), using 112 samples. The R2 value in the re-
gression output indicated that only 41% of the total 
variation of the predicted soil salinity can be explained 
by the predictor variables used in the model. In spite of 
using MOIDS product and having similar size of valida-
tion samples, the study took place in different environ-
mental conditions and used different predicted variables. 
Therefore, it is little difficult to make the comparison 

fairly.  
In order to compare this result, MLR model was con-

structed based on 23 representative soil samples. For all 
94 samples, R2 is between 0.66–0.81 and RPD value is 
greater than 1.5, which indicated an approximated pre-
diction inferred by the IHSS-SoLIM method (Fig. 6a). 
From Fig. 6b, we can see that the explanatory variables 
based on SoLIM explain more of the variation in the soil 
salinity than those (five environmental variables) based 
on the MLR model. Furthermore, Fig. 6b shows some 
negative soil-salt content values which relate to the un-
wanted extrapolation of the regression model (Zhu et 
al., 2010a). 

3.2  Predicted map of soil salinity 
From Fig. 7 and Fig. 8, several main characteristics of 
salt-affected soil were identified in a regional perspective. 
First, using the Tianshan Mountains as the dividing line, 
the area of soil salinization tended to increase from the 
northern to the southern Xinjiang. This feature was also 
proved in the study of Wang et al. (2009). In addition, the 
area around both sides of the Eritx River, located in 

 

Fig. 7  Predicted map of soil-salt content by ISHH-SoLIM model 
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Fig. 8  Distribution of different soil-salinity classes in northern Xinjiang (a) and southern Xinjiang (b), China 
 

the northern Junggar Basin, had lower levels of saliniza-
tion due to the low degree of water mineralization in the 
Ertix River (Zhu et al., 2011) (Fig. 7). The northern and 
southern piedmonts of Tianshan Mountains were the 
main areas of soil salinization. The problem of secon-
dary soil salinization in the oases was more serious in 
downstream than upstream. This is consistent with the 
result analyzed in the paper by Qiao et al. (2011). Se-
verely saline soils (due to anthropogenic activities) ap-
peared around terminal lakes (such as Ebinur Lake and 
Manas Lake) (Shi et al., 2008; Liu et al., 2011) (Fig. 8) 
and on both sides of rivers (Tarim River, Hotan River, 
and Keriya River) (Qiao et al., 2011) (Fig. 7). Large 
amounts of residual Solonchak soil were distributed in 
the southern Xinjiang but were only sporadically present 
in the northern Xinjiang, as shown in the Xinjiang part 

of the Harmonized World Soil Database (Nachtergaele 
et al., 2008) (Fig. 8). 

From a catchment scale, we used the Kuqa Oasis as 
an epitome that qualitatively illustrates the spatial pat-
terns of the predicted soil-salt content, by comparing the 
land use and the soil type (Fig. 9). The observations 
demonstrated that the major patterns in the predicted 
results had corresponding changes to the surface fea-
tures of land use and soil type. Generally, the pattern of 
surface-soil salinity matched the expected spatial varia-
tion of the soil-salt content well, based on our local 
knowledge (Ding et al., 2011) and on a field survey. 

The area of different soil-salinity classes was deter-
mined based on Fig. 8. In the study area, non-saline soil 
covered 98 845 km2, accounting for 48.07% of the total 
study area. Salinization affected 106 781 km2 of the 
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Fig. 9  Predicted map of soil salt content by ISHH-SoLIM method (a), land use type (b) and soil type (c) in Kuqa Oasis, Xinjiang 

 
study area. Among the soils, slightly saline soil covered 
2.21%; moderately saline soil covered 4.11%; severely 
saline soils (the largest area) covered 26.94%; and ex-
tremely saline soils covered 18.67%. 

4  Discussion 

4.1  Model performance  
The IHSS-SoLIM method can characterize most of the 
variation in the soil-salt content over the study area (Fig. 
7). The results from three oases provide a promising 
illustration of the power of combining different envi-
ronmental data on the variation of soil salinity with 
IHSS-SoLIM method. The outcome from Fubei Oasis 
indicates the IHSS-SoLIM method can capture soil-       
salinity variation over short distances. The spatial pat-
tern of soil salinity in Kuqa Oasis was also described 
appropriately. The Keriya Oasis is situated away from 
the main distribution of typical points; however, the re-
sult was satisfactory, showing that the representative 
locations derived from the study of Yang et al. (2012) 

was helpful and efficient. 
The employed method can make full use of auxiliary 

soil-related environmental factors to improve the accu-
racy of the soil-salinity map, with respect to the MLR 
model. Moreover, a comparison of the MLR model and 
the IHSS-SoLIM method indicates that the transforma-
tion of simple environmental characteristics to more 
complicated fuzz membership values, via SoLIM′s 
fuzzy inference engine, increases the predictive power 
of those variables (Zhu et al., 2010a). 

The deficiency of the IHSS-SoLIM method is that the 
variation of soil salinity was not better distinguished 
within non-saline soil compared to the saline soil. This 
is due to the variation of salinity in salt-affected soils is 
higher than farmland which tends to be more similar or 
homogeneous (Lobell et al., 2010). In addition, the soil 
conditions in this area were not reflected by the remote 
sensing at a particular time, due to the overlying vegeta-
tion when salts are present during the growing season. 
The outlier occurred in the non-saline soil (Fig. 5) partly 
because the area that is affected by salts surrounds 
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farmland, rather than transitional landscapes, and seems 
to be non-saline soil. It is difficult to formalize explicit 
rules for the environmental conditions of an ecotone 
(Shi et al., 2009). This salt-affected soil was mainly dis-
tributed at high variables in the ecotone, which acts as 
an interactive zone between irrigated farmland and the 
natural desert ecosystem (Wang and Li, 2013). To solve 
this problem in future work, additional variables will 
also likely be considered to improve the yield predic-
tions, with information on surface hydrology and depth 
to groundwater, two potentially useful variables. More-
over, the low spatial resolution limits the discriminating 
power of the geographic features. The spatial resolution 
of the environment variables used in this study is not 
fine enough to describe the role of micro-scale variation, 
and subsequently to identify transitional landscapes, to 
create a typical feature. Hence, inadequate resolution of 
predictors is partially responsible for the unexplained 
variation. Furthermore, in this research, the temporal 
difference between the field-plot measurement and re-
mote sensing image is another problem. Ideally, to 
strengthen the field-to-image correlation, field data and 
remote sensing data should be collected at the same 
time. It was not possible for us to collect all the require 
field data at the time the remote sensing image was ac-
quired, especially for large areas (Song et al., 2013). 
This means that the spectral properties derived from the 
satellite image are unable to represent the actual spectral 
feature of the soil and relax the field-to-imagery correla-
tion exactly (Ohmann and Gregory, 2002; Karl and 
Maurer, 2010). 

4.2  Management and amelioration of soil saliniza-
tion  
4.2.1  Construction of soil salinity monitoring system 
in agricultural land  
In order to avoid further deterioration on soil saliniza-
tion, monitoring systems are required. It should be able 
to support critical reflection about the management 
actions, providing both negative and positive feedback 
in order to iteratively evaluate their effectiveness, and 
to detect unintended developments of the system being 
managed in the early stages (Giordano et al., 2010). 
The soil salinity monitoring system plays a fundamen-
tal role, especially inside agricultural land with 
non-saline soils (soil salt content < 8 g/kg) showed in 
Fig. 8. This system should integrate various types of  

knowledge, including local knowledge and technical 
knowledge, to address the issues of complexity and 
uncertainty of salt-affected environmental systems and 
to enhance the long term sustainability of the monitor-
ing program.  

The first step called the definition of information 
needs included understanding the current monitoring 
practices and identifying the main drawbacks. The sec-
ond step involved eliciting the farmers' understanding of 
the soil salinization process and identifying key pa-
rameters for the assessment. Then, for the local scien-
tists and technicians, this step involved eliciting a tech-
nical understanding of the soil salinization process and 
identifying parameters for the assessment. A GIS-based 
system was developed to facilitate the analysis and 
storage of the locally based information. The potential 
of fuzzy logic to address linguistic variables was ex-
ploited to cope with the qualitative nature of the farm-
ers′ information (Giordano et al., 2010). At the end of 
this process, the salinity values were plotted on a map.  
4.2.2  Managing water use between upstream and 
downstream  
There is a need to link agricultural water management 
and the management of downstream groundwater sys-
tems to strike soil salinization, where required. Irriga-
tion expansion is warranted in salt-affected area where 
the water infrastructure is underinvested, such as ex-
tremely saline soil distribution in the northern Xinjiang 
(Fig. 8a) and moderately and severe saline soil in the 
southern Xinjiang (Fig. 8b). Trade can help alleviate 
water problems in these areas when economic and po-
litical conditions are met by involving stakeholders, who 
can negotiate unavoidable soil salinization between up-
stream food production (non-saline soil with yellow 
color in Fig. 9a) and downstream salt-affected ecosys-
tem (grassland and shrub land in Fig. 9b). There might 
be a scope to reduce the soil salinization by focusing 
more on how agriculture alters the dynamics (e.g., tim-
ing and variability) of water flow for better adapted to 
downstream groundwater ecosystem dynamics. The 
peak growth period of the vegetation is in May, June 
and July, during which transpiration water loss was tre-
mendous and more water was needed accounting for 
47% of the annual requirement. Therefore, the ground-
water table as a feedback should be monitored in 
salt-affected soil after May, to water management of 
oasis agriculture. 
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4.2.3  Increasing plant diversification in salt-affected 
soil 
Based on the salt tolerance of plant species, there are 
emerging examples of plant diversification and manage-
ment for the optimal utilization of salt-affected soils and 
saline-sodic waters. The plant species that have shown 
potential under such environments are divided into five 
groups: 1) fiber, grain and special crops; 2) forage grass 
and shrub species; 3) medicinal and aromatic plant spe-
cies; 4) bio-fuel crops; and 5) fruit trees. An appropriate 
selection is generally based on the ability of plant spe-
cies to withstand elevated levels of soil salinity while 
also providing a saleable product or one that can be used 
on-farm; however, from an economic perspective, much 
depends on the local needs. More detail can be found in 
the studies of Qadir and Oster (2004) and Qadir et al. 
(2008). The stakeholders can formulate plant scheme 
based on the predicted soil salinity map. Finally, eco-
logical protection and economic development would be 
balanced with help of soil salinity map in plant layout 
and the agricultural planning. 

5  Conclusions 

Increasing soil salinity is responsible for a dramatic de-
crease of agricultural production. To manage this prob-
lem, detailed and up-to-date knowledge about the spatial 
distribution of soil salinity is needed. Soil-salinity maps 
for this purpose were produced in large scale through 
linking the soil salinity values of typical samples to the 
polygons on the type map, according to the same soil 
type name. The soil salinity maps produced through 
conventional direct linking methods usually suffer from 
low accuracy, lack of spatial details, and poor current 
knowledge. 

This study employed an integrated method (IHSS- 
SoLIM) to produce a soil-salinity map at a high level of 
spatial detail and accuracy. The method of application 
and the evaluation demonstrated that the employed ap-
proach can effectively predict the spatial distribution of 
soil salinity in low-relief areas. With help of 23 repre-
sentative soil samples, the results indicated the predic-
tion was appropriate in Kuqa Oasis and Keriya Oasis, 
and was little better in Fubei Oasis than that in those 
oases, according to the evaluation criterion. Based on all 
validation samples from three oases, accuracy estima-
tion shows the employed method performed better (R2 = 

0.74, RPD = 1.67, RMSE = 11.18) than the multiple 
linear-regression (MLR) model (R2 = 0.60, RPD = 1.47, 
RMSE = 14.45). The prediction was classified, and the 
statistical result showed 48.07% of study area was af-
fected by the soil salinization, mainly distributed at 
downstream oases, around lakes, and on both side of 
rivers, and was more serious in the southern than the 
northern parts of Xinjiang. To address this situation, 
measurements should include constructing a soil-salinity 
monitoring system, the rational allocation of water re-
sources, multifunctional agro-ecosystems, and plant di-
versification, with the guidance of predicted soil-salinity 
maps, to effectively ameliorate soil salinity. 

Poor prediction in non-saline soil such as farmland 
can be accounted for by limitation in spatial resolution, 
non-synchronism between field sampling, and satellite 
pass-and-interpretation of ancillary variables in envi-
ronmental variation. In future work, addition variables 
such as surface hydrology and groundwater table should 
be considered to compensate for the error mentioned 
above. In conclusion, the employed method can serve as 
an alternative model for soil-salinity mapping on a large 
scale in arid areas. 
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