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Abstract: Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) 

products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and 

evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad-

vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with 

variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial 

variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im-

ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a 

larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near 

infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly 

dependent on whether the empirical semivariogram reached its sill within the original image size. When the empirical semivariogram 

did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image 

size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen-

sor images with consideration of their nominal spatial resolution, image size and spectral bands. 
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1  Introduction 

As the availability of remote sensing images with dif-
ferent spectral and geometric resolution is becoming 
more readily available and easily accessible, there is 
unprecedented opportunity to utilize them for various 
earth observation applications. This has led to a substan-
tial interest in the harmonization of multisensor records 
(Tarnavsky et al., 2008). Therefore, the need for charac-
terizing spatial heterogeneity of multisensor images is 

ubiquitous in geographical and remote sensing fields.  
Numerous studies have been carried out to evaluate 

the spatial heterogeneity of remote sensing images in 
relation to spatial resolution through variogram analysis 
(Brivio and Zilioli, 2001; Oliver et al., 2005; Van der 
Meer, 2012; Lausch et al., 2013; Wen et al., 2012). They 
found that spatial heterogeneity of surface reflectance 
was dependent of spatial resolution, spectral band and 
image size. Nevertheless, the majority of these studies 
were conducted on spatially aggregated datasets based 
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on single-sensor images (Woodcock et al., 1988; Gar-
rigues et al., 2006). Several studies took this approach 
further and quantified the decay of spatial variability of 
natural landscapes from real multi-resolution data 
(Goodin and Henebry, 2002; Rahman et al., 2003; Gar-
rigues et al., 2008; Tarnavsky et al., 2008; Lausch et al., 
2013). Tarnavsky et al. (2008) assessed the spatial con-
sistency of Normalized Difference Vegetation Index 
(NDVI) datasets derived from Advanced Very High 
Resolution Radiometer (AVHRR), Satellite pour l'ob-
servation de la Terre-vegetation (SPOT-VGT), and 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) earth observation records through variogram 
modelling. They found that the decay of spatial infor-
mation content followed a logarithmic relationship with 
stronger fit value for the spatially aggregated NDVI 
products than for the native-resolution NDVI products. 
Therefore they suggested that multisensor NDVI records 
can not be integrated into a long-term data record with-
out proper consideration of all factors affecting their 
spatial consistency. However, these studies mainly focus 
on images from a particular sensor or NDVI datasets for 
natural landscapes. Variograms from multisensor images 
in multiple spectral bands in urban areas are needed for 
further exploration of the entire landscape of the earth.  

Urbanization has recently become an important 
theme in integrated ecological and socio-economic re-
search (Lovell and Johnston, 2009; Wade et al., 2009). 
The growing interest in urban observation with mul-
tisensor images prompts the need to investigate their 
spatial and temporal consistency. To address this need, 
we evaluated the coherence and differences in spatial 
heterogeneity of multisensor images from both urban 
and natural landscapes. Four images, QuickBird, SPOT, 
Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) and Landsat Thematic Map-
per (TM) images were applied in the Fuzhou City, 
Southeast China. Spatial heterogeneity can be described 
by spatial variability and spatial structure, which is also 
called an object or patch (Li and Reynolds, 1995). The 
variogram properties were proved to be efficient in 
characterizing both the spatial variability and spatial 
structure of different images and therefore variogram 
modelling was utilized in this study. Firstly, the com-
parison of spatial heterogeneity was conducted among 
four real multisensor images and then the dissimilarity 
between directly observed multisensor images and ag-

gregated images was examined. Finally, the influence on 
spatial heterogeneity from image size was also evalu-
ated.  

2  Materials and Methods  

2.1  Study area 
Fuzhou City is the capital of Fujian Province (23°32�•– 
28°19�•N, 115°50�•–120°43�•E), located in the southeastern 
China. It is a middle-size coastal city between Guang-
dong Province and Shanghai Municipality. The climate 
is characterized as south semi-tropic oceanic monsoon 
zone with sweltering summer and mild winter. Mean 

annual temperature is 19.7��  and the total annual pre-

cipitation is 1348.3 mm (Lu, 1999). The city is located 
on a subtropical plain squeezed between the Gu and Qi 
mountains in a north-south direction. The Minjiang 
River and Wulong River cross the city and split it into 
three parts. The northern part is characterized by 
high-density urban landscape, the middle part is distin-
guished by medium- and low-density urban landscape, 
and the southern part is still being rapidly developed 
(Fig. 1).  

2.2  Data sources 
Multisensor images, including QuickBird, SPOT, 
ASTER and Landsat TM images, were utilized in this 
study (Table 1). The acquisition time of these four re-
mote sensing images was overall consistent except for 
the SPOT images. New buildings and roads can be ob-
served from the SPOT image of the low-density urban 
landscape in the process of urbanization. As a result, the 
SPOT image was not comparable at this site. However, 
SPOT images at other three sites provided valuable in-
formation as far as multisensor images were considered. 

Geometric correction was implemented by using 1�)����
10 000 topographic maps, and also by the GPS route 
recording and ground truth data to make sure the align-
ment error was within one pixel. Image processing was 
conducted through ERDAS software. 

2.3  Methods 
First, we evaluated the differences in the spatial vari-
ability among multi-sensor images by comparison of 
empirical semivariograms and analysis of variogram 
model parameters characterizing the overall image 
variance (through the semivariogram sill) and the actual 
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Fig. 1  Location of study area and sampling sites. A, B, C, D, E are sampling sites with size of 3 km × 3 km for A to D, 10 km × 10 km 
for site E; F represents center of images with window from 5 km × 5 km to 25 km × 25 km with a lag of 5 km; Color image on right is a 
false color picture composited by band 1, 3, and 4 of Landsat TM, which was obtained on April 4, 2003 
 
Table 1  General descriptions of QuickBird, SPOT, ASTER and Landsat TM images 

Spectral wavelength (nm) 
Image Acquisition date Spatial resolution (m) 

Green band Red band Near infrared band 

QuickBird April 30, 2003 2.4 520–620 630–690 760–900 

SPOT December 14, 2003 10.0 500–590 610–680 780–890 

ASTER June 17, 2003 15.0 520–600 630–690 780–860 

Landsat TM April 4, 2003 30.0 520–600 630–690 760–900 

 
spatial support of data (through the mean length scale). 
Second, we characterized the decay of spatial informa-
tion content as pixel size increased (data regularization) 
over Fuzhou City for the spatially aggregated QuickBird 
at their native spatial resolutions. Finally, the effect of 
image size on the empirical variograms of SPOT images 
was evaluated. 
2.3.1  Data preprocessing  
In order to evaluate the spatial heterogeneity among 
different landscapes, four contrasting sampling sites (A, 
B, C, D) (Fig. 1) were selected to represent different 
levels of human influence on the spatial structure of ur-
ban landscapes: 1) a high-density urban landscape (site 
A), located in the very densely populated and commer-
cial concentrated areas, which is a typical urban land-
scape in the center of compact cities in South China; 2) 

a medium-density urban landscape (site B), mostly 
dominated by institutions such as schools and hospitals, 
which is another typical landscape for most cities in 
China; 3) a low-density urban landscape (site C), which 
comprises either industrial enterprises or village houses 
surrounded by suburbs; and 4) a natural landscape in the 
Gu Mountain (site D), where the spatial structure ob-
served from images reflects the forest landscape shaped 
by terrain morphology. A natural landscape site was in-
cluded to obtain an overall comparative analysis with 
urban landscapes. Each sampling site was 3000 m by 
3000 m in size. The reflectance was measured in green, 
red and near infrared (NIR) bands. To eliminate the dif-
ference of multi-sensor images caused by sunlight, data 
normalization was conducted by dividing the mean 
value of the whole image at each spectral band, respec-
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tively. A normalized value was used when calculating 
the semi-variance.  

To compare the spatial heterogeneity of observed 
images with different pixel sizes, the QuickBird images 
were aggregated to 4.8 m, 7.2 m, 9.6 m, 19.2 m, 24.0 m, 
48.0 m, 96.0 m and 240.0 m. This allowed for a quanti-
tative assessment of changes in spatial heterogeneity 
with pixel size disregarding sensor-dependent factors. In 
order to assess the effect of image size on landscape 
spatial heterogeneity, a series of images centered at site 
F in Fig. 1b with window from 5 km × 5 km to 25 km × 
25 km with a lag of 5 km was created from the original 
SPOT images. The differences in spatial heterogeneity 
observed from these images were evaluated through 
comparison of empirical semivariograms and analysis of 
semivariogram model parameters characterizing the 
overall image variances and spatial structures as de-
scribed in sections 2.3.2 and 2.3.3.  
2.3.2  Empirical semivariogram 
Empirical semivariogram measures the average of 
squared differences between values z of paired pixels (x, 
x + h) separated by a vector h (Chilès and Delfiner, 
1999). We computed the semivariance up to a maximum 
distance equal to one-half the full spatial extent of the 
image subsets, considering that semivariograms values 
are not statistically reliable at large distances due to the 
decreasing number of pixel pairs N for computation of 
semivariance (Chilès and Delfiner, 1999). In addition, 
only the omni-directional variograms were calculated 
since semivariograms for different orientations (direc-
tional variograms) showed little variation.  

Empirical semivariograms have several key proper-
ties. The sill is the maximum variance value that can be 
attained by the variogram. It is an indicator of overall 
spatial variability of the data. The range is the distance 
where the semivariogram reaches the sill. If the sill is 
not reached before hmax, the spatial extent of the image 
is not sufficiently large to encompass the low frequency 
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and proper pixel size of remote sensing images for dif-
ferent applications. 
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