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Abstract: Grassland fire is one of the most important disturbance factors in the natural ecosystems. This paper focuses on the spatial 
distribution of long-term grassland fire patterns in the Hulun Buir Grassland located in the northeast of Inner Mongolia Autonomous 
Region in China. The density or ratio of ignition can reflect the relationship between grassland fire and different ignition factors. Based 
on the relationship between the density or ratio of ignition in different range of each ignition factor and grassland fire events, an ignition 
probability model was developed by using binary logistic regression function and its overall accuracy averaged up to 81.7%. Meanwhile 
it was found that daily relative humidity, daily temperature, elevation, vegetation type, distance to county-level road, distance to town 
are more important determinants of spatial distribution of fire ignitions. Using Monte Carlo method, we developed a time-dependent 
stochastic ignition probability model based on the distribution of inter-annual daily relative humidity and daily temperature. Through 
this model, it is possible to estimate the spatial patterns of ignition probability for grassland fire, which will be helpful to the quantitative 
evaluation of grassland fire risk and its management in the future. 
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1  Introduction 

Grassland fire is one of the most important disturbance 
factors to the natural ecosystems, which has been be-
coming a very critical problem at present due to global 
warming and human activities (Veblen et al., 1999; 
Flannigan et al., 2009; Finch and Marchant, 2011). Ac-
cording to the statistics, there are 5417 grassland fires in 
China during 1991 and 2003, and the fire-affected areas 
was up to 60 042 km2 (Zhou and Lu, 2009). Fire disaster 
has not only caused heavy losses of life and property, 
but has also directly affected the pastoral production, 
and brought instability to ecological security in the 

grassland regions (Liu et al., 2010). 
Ignition probability means the probability of fire oc- 

curred in certain area due to natural or human-caused 
factors, which is necessary to analyze the risk of grass-
land fire. Grassland fire ignition probability at multiple 
spatial and temporal scales based on historical fire re- 
cords is important to fire managers and scientists, which 
is also an essential element in analyzing and assessing 
fire danger (Koutsias et al., 2004; Filipe et al., 2009). 
Modeling wildfire ignition probability was carried out in 
different countries with different methods. The main 
wildfire ignition probability assessment methods used in 
existing research include kernel density estimation  
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method ( de la Riva et al., 2004; Giuseppe et al., 2007), 
and multiple regression method (Pew and Larsen, 2001; 
Vasconcelos et al., 2001; Kalabokidis et al., 2007; 
Martinez et al., 2009; Zhang et al., 2010). 

Kernel density estimation method, using implicit 
density interpolation techniques to interpolate or diffuse 
spatial information, based on the spatial distribution of 
historical fire point, is not able to reflect the relation of 
fire and the factors associated with ignition (de la Riva 
et al., 2004; Koutsias et al., 2004). The key of this 
method is the selection of bandwidth that directly im-
pacts the results of kernel density estimation method. 
Koutsias et al. (2004), who analyzed the bandwidth se-
lection, argued that the estimate result would be more 
accurate when bandwidth was close to the mean nearest 
neighbor distance of historic ignition points. Meanwhile, 
it was very essential to analyze the uncertainty of spatial 
influencing areas of historic ignition point to achieve 
more accurate estimate result (de la Riva et al., 2004; 
Giuseppe et al., 2007).  

In multiple regression method, binary logistic regres-
sion model and artificial neural network model are often 
utilized to develop ignition probability based on historic 
fire data as response variables, and other factors that 
impact on the ignitions as independent variables. For 
example, many scholars assessed ignition probability in 
the forest region or grassland of different countries us-
ing binary logistic regression and analyzed the contribu-
tion of different impact factors on ignition probability 
(Chou et al., 1993; Kalabokidis et al., 2007). With the 
increasing impact of human activities, some scholars 
analyzed the relationship between human-caused igni-
tion probability and other influence factors (Pew and 
Larsen, 2001; Martinez et al., 2009; Zhang et al., 2010). 
Some scholars assessed ignition probability using artifi-
cial neural network model (Vasconcelos et al., 2001; 
Vasilakos et al., 2007). Through comparative analyses 
on binary logistic regression model and artificial neural 
network model, it was found that artificial neural net-
work model demonstrated slightly better accuracy and 
robustness, however it is not able to identify the impor-
tance of each variable, since the weights of independent 
variables after training can not be easily interpreted. For 
the logistic regression model, it allows more interpreta-
tion capacity than the artificial neural network model 
(Vasconcelos et al., 2001; Kalabokidis et al., 2007).  

The study on fire ignition probability mentioned above 

focused on the assessment of the average annual wild-
fire ignition probability and the relationship between 
wildfire ignition probability and influence factors. 
However, using the average annual or seasonal mete- 
orological factors (temperature, precipitation, relative 
humidity) to assess wildfire ignition probability, the in-
fluence of daily meteorological factors on wildfire igni-
tion probability was ignored. In all these researches, 
only Zhang et al. (2010) assessed grassland fire ignition 
probability using daily meteorological factors. Mean-
while, few studies focused on the time-dependent sto-
chastic grassland fire ignition model. 

Grassland fire prone areas account for about 1/3 of 
the total grassland area of 4 × 106 km2 in China, and the 
Hulun Buir Grassland is one of highly occurred grass-
land fires regions (Liu et al., 2008). There were about 
700 grassland fires occurred in this region, which burn-
ed about 47 100 km2 from 1986 to 2008, causing great 
damage in the grassland husbandry, ecological environ-
ment, social economic development and so on. In this 
paper, the Hulun Buir Grassland fire ignition points data 
and 12 ignition factors, including natural conditions, 
human activity, vegetation type was analyzed to discuss 
the relationships between the ignition density or ignition 
ratio in different range of each ignition factor and grass-
land fire events from 1986 to 2008. Based on the rela-
tionships, a grassland fire ignition probability model 
was developed. Then, a time-dependent stochastic igni-
tion probability model reflecting the contribution of 
meteorological factors and its seasonal change was de-
veloped by using Monte Carlo method, that will be 
helpful to the quantitative evaluation of grassland fire 
risk and the management of grassland fire in the future. 

2  Data and Method  

2.1  Study area 
The Hulun Buir Grassland (47.33°–50.25°N, 115.50°– 
121.17°E) is located in the northeast of the Inner Mon-
golia Autonomous Region of China with an area of ap-
proximately 83 000 km2, consisting of four banners (i.e. 
counties) and two county-level cities (Fig. 1). Hulun 
Buir Grassland is a typical temperate semi-arid and 
semi-humid area. Because of its high latitude, mean an-
nual temperature ranges from –2.5℃ to 0℃ and abso-
lute minimum temperature can be low as –49℃, while 
annual precipitation varies from 280 mm to 400 mm. In 
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winter, the grassland is strongly impacted by the Mon-
golian high-pressure while the summer monsoon was 
weak, so the study area is dry and cold in winter, and 
rainless and windy in spring. The region is rich in grass-
land vegetation covered with meadow steppe, typical 
steppe and desert steppe from east to west. The meadow 
steppe is located in the Yimin River Basin of the eastern 
of Hulun Buir Grassland, and Carex pediformis, Fili-
folium sibiricum, Stipa baicalensis are its typical vege-
tation type. The typical steppe located in the Orxon Gol 
River Basin of the middle part of the Hulun Buir Grass-
land with Stipa grandis, Aneurolepidium chinense 
widely distributed. For desert steppe in westernmost of 
Hulun Buir Grassland, the dominant vegetation is Stipa 
krylovii. 

2.2  Ignition and non-ignition points selection 
The official wildfire database in the Forestry Bureau of 
Hulun Buir City (i.e., prefecture) from 1986 to 2008 was 
obtained, including location (latitude and longitude), 
date of ignition, total area burned, ignition cause, fire 
levels, etc. Because of the ignition location reporting 
uncertainties, this database is corrected to avoid dupli-
cations and all inconsistent records are removed. Based 
on the locations of the ignition points and using the Na-
tional 1︰250 000 Topographic Database, its complete-
ness and accuracy are ensured by GIS spatial analysis. 
After this, 548 points were chosen from a total number 
of 677 ignition points in the database and the spatial 
distribution of these selected ignition points is shown in 

Fig. 2a.  
The amount and spatial distribution of non-ignition 

points are critical to ignition probability assessment. In 
order to make spatial characteristics of ignition and 
non-ignition points fit for random distribution without 
overlaying or being nearby, in the past studies various 
methods have been developed on generating non-   
ignition points, including the amount and locations. For 
instance, using Mean-Nearest-Neighbor-Distance method 
(Koutsias et al., 2004; Kalabokidis et al., 2007), the 
amount of non-ignition points greater or equal to the 
ignition points are randomly generated. In this paper, the 
amount and locations of non-ignition points are also 
determined with similar method following the past 
studies. The mean nearest neighbor distance of the 548 
ignition points in the study area is 4890.54 m, which is 
used to determine the amount of non-ignition points. 
Thus, the sum of ignition/non-ignition points is 1043 
and the number of non-ignition points is 495. The spa-
tial distribution of non-ignition points is shown in Fig. 
2b. 

2.3  Influence of independent factors  
The probability of wildfire ignition is determined by 
both natural conditions and human activities, such as 
weather, topography, fuel type and distance to road, etc. 
Human-caused fires rank the first in both total amount 
and the burned area, accounting for 56.28% and 57.47% 
of total, respectively in Hulun Buir Grassland (Table 1). 
Twelve factors of four groups were selected to analyze  

 

 
 

Fig. 1  Location of Hulun Buir Grassland in China  
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Fig. 2  Distribution of ignition points (a) and non-ignition points (b) in Hulun Buir Grassland from 1986 to 2008 
 

Table 1  Number and percentage of each type of grassland fire in Hulun Buir Grassland (1986–2008)   

Grassland fire cause Burned area (km2) Burned area percentage (%) Number of grassland fire Percentage of grassland fire (%)

Human-caused 27058.18 57.47 381 56.28 

Fire from Mongolia 8213.40 17.45 40 5.91 

Lightning  2975.50 6.32 28 4.13 

Others 8831.81 18.76 228 33.68 

 
fire ignition probability, including factors of human ac- 
tivities (distance to national/provincial road, distance to 
county-level road, distance to town and distance to vil- 
lage), natural factors of meteorology (daily temperature, 
daily relative humidity and daily precipitation), topog- 
raphy (elevation, slope and aspect), vegetation (grass- 
land type) and biomass distribution (annual Net Primary 
Productivity (NPP)). Spatial distribution of all factors 

was developed in Geographic Information System (GIS) 
to set up a raster database of explanatory variables of 
wildfire ignition probability in the Hulun Buir Grassland 
(Table 2), with spatial resolution of 500 m × 500 m in 
Albers projection. 

The number, density or ratio of ignition as the ev- 
aluation indicators were selected to analyze the impact 
of different independent factors on the distribution of  

 
Table 2  Ignition factors and their sources in Hulun Buir Grassland 

Ignition factor Code Source 

Distance to village (km) DIS_rural Land Use Database in Hulun Buir City 

Distance to town (km) DIS_urban Land Use Database in Hulun Buir City 

Distance to county-level road (km) DIS_roadc National 1︰250 000 Topographic Database 

Distance to provincial/national road (km) DIS_roadp National 1︰250 000 Topographic Database 

Elevation (m) DEM SRTM DEM dataset (90 m × 90 m ) 

Slope (°) Slope SRTM DEM dataset (90 m × 90 m ) 

Aspect (°) Aspect SRTM DEM dataset (90 m × 90 m ) 

Vegetation type VEG Vegetation Map of China 

Annual NPP (g C/m2) NPP NASA/MODIS MOD17A3 data 

Daily temperature (℃) TEM Daily ground observation meteorological dataset of CMDSSS 

Daily relative humidity (%) RH Daily ground observation meteorological dataset of CMDSSS 

Daily precipitation (mm) PRE Daily ground observation meteorological dataset of CMDSSS 

Notes: NPP is Net Primary Productivity; CMDSSS is China Meteorological Data Sharing Service System 
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grassland ignition points. The number of ignition was 
the number of fire points in the different range value of 
each independent factor. The density of ignition is a ra-
tio of independent number to area in the different range 
value of each ignition factor except for meteorological 
factors, calculated as follows: 

ig

ig
ig )(

)(
)(

iA
iN

iD =                  (1) 

where D(i)ig is the density of ignition in the ith range; 
N(i)ig is the number of ignition in the ith range; A(i)ig is 
the area of ignition in the ith range. 

The ratio of ignition is an evaluation indicator for 
meteorological factors (temperature, relative humidity 
and precipitation) and has the following form: 
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ig

ig fa
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where R(i)ig is the ratio of ignition in the ith range; Nig is 
the total of ignition points; N(i)fa is the number of each 
meteorological factor value in the ith range, and Nfa is 
the total number of each meteorological factor value. 
The quantitative relationships between influencing fac-
tors and fire ignition are analyzed respectively as fol-
lows.  

(1) Roads. The distribution of ignition points in the 
vicinity of different level roads was analyzed by using 
the number and density of ignition located in different 
road buffers. It is found that the number of ignition de- 
creased as the distance to roads increased, regardless of 
national, provincial or county-level road. Inside the dis- 
tance of 48 km from national or provincial roads, the 
number of ignition accounted for 86.68% of total igni- 
tion points, and the ignition density decreased with the 
increase of distance. When distance is larger than 48 km, 
however, ignition at first increased and then decreased 
(Fig. 3a). Inside the distance of 12.5 km from county- 
level roads, the number of ignition accounted for 
77.01% of total ignition points, and the ignition density 
decreased with the increase of distance, but its trend was 
not obvious at the distance exceeding 12.5 km (Fig. 3b). 
Therefore, ignition density is higher near road, and dif-
ferent levels of roads have different degree of influence 
on the distribution of ignition points in general.  

(2) Residential areas. The distribution of ignition 
points in different level residential areas was analyzed 
by using the number and density of ignition located in 

different buffers of residential areas. The distribution 
trends of the number of ignition in different distances 
from the resident areas (town and village) were not sig-
nificant. At a distance of 40 km away from town, the 
number of ignition accounted for 52.01% of total igni-
tion points, ignition density tends to decrease with the 
increase of distance, but its trend was not obvious at the 
distance exceeding 40 km (Fig. 3c). At a distance of 21 
km away from village, the number of ignition accounted 
for 57.30% of total ignition points, the ignition density 
decreases with the increase of distance, but there is no 
obvious trend at the distance exceeding 21 km (Fig. 3d). 
The result demonstrated that the different level residen-
tial areas influence the distribution of ignition points 
differently. Also, the nearer to the residential areas and 
the higher the ignition density, the greater the influence 
of resident areas on ignition. 

(3) Topographic factors. The distribution of ignition 
points was analyzed in different topographic factors like 
elevation, slope and aspect. The ignition points were 
mainly distributed in the range elevation of 600–800 m, 
accounting for 82.85% of total ignition points. The 
number and density of ignition firstly increased and then 
decreased with the increase of elevation (Fig. 4a). For 
slope, the number of ignition dropped with the increase 
of slope, but the trend of density ignition firstly in-
creased and then decreased (Fig. 4b). For aspect, no ob-
vious trend of ignition number and density was found 
(Fig. 4c).  

(4) Meteorological factors. For temperature, the 
trends of the number and ratio of ignition in different 
temperature ranges were similar, firstly increased and 
then decreased, and their maximum values appeared in 
the range of 2.5℃–3.5℃ (Fig. 4d). Regarding relative 
humidity, the number of ignition firstly increased and 
then decreased with relative humidity increasing, so the 
total trend of ignition ratio decreases with relative humi-
dity increases (Fig. 4e). As to precipitation, there were 
350 ignition points at the period without precipitation, 
accounting for 63.87% of total ignition points, which 
shows that ratio of ignition is higher during dry season. 
It displays that the ignition ratio decreases with the pre-
cipitation increases in the range less than 3.5 mm of 
precipitation. The trend of ignition ratio is stochastic 
with no significant trend (Fig. 4f). 

(5) Vegetation type. The vegetation in Hulun Buir 
Grassland was divided into nine types by sub-vegetation 
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Fig. 3  Distribution of number and density of ignition at different distances to provincial/national road (a), county-level road (b), town 
(c) and village (d) 

 
(Editorial Board of Vegetation Map of China, Chinese 
Academy of Sciences, 2007). Temperate grass-forb 
meadow steppe, temperate needle arid steppe and tem-
perate grass, carex and forb swamp meadow were 
mainly distributed in this region, accounting for 76.24% 
of the total area. The number and density of ignition in 
different vegetation type areas are illustrated in Table 3. 
The areas of higher ignition density were mainly located 
in temperate broadleaf deciduous shrub areas of ecotone 
among forest and grassland and farmland area of the 
farming-pastoral ecotone. These two regions were also 
areas of frequent human activities. 

(6) Annual NPP. The data of NPP were derived from 
NASA EOS/MODIS MOD17A3 dataset from 2000 to 
2006, which was produced by using BIOME-BGC 
model. The dataset has been widely used for global and 
regional vegetation biomass estimation, carbon cycle 
and global change (e.g., Zhao et al., 2005; Rasmus et al., 
2006; Guo et al., 2008). NPP distribution is used in this 
paper to represent the spatial distribution of biomass. 
The number and ratio of ignition in the NPP range of 
120–240 g C/m2 is higher than those in others and it 
accounts for 93.61% of total ignition points (Fig. 5). 

2.4  Ignition probability model  
2.4.1  Relationship of fire ignition and independent 
factors  
The probability of grassland fire ignition, in the form of 
a binary distribution, is mainly determined by natural 
and human factors. In this paper, the binary logistic re-
gression model, as a probabilistic non-linear and multi-
variate analysis model, has been applied for analyzing 
the relationship between the binary classification results 
and independent factors. The prediction result of grass-
land fire state is ignition or non-ignition. In previous re- 
searches, wildfire ignition probability was assessed di- 
rectly with the ignition factors by binary logistic regres- 
sion model (Chou et al., 1993; Pew and Larsen, 2001; 
Kalabokidis et al., 2007; Martinez et al., 2009; Zhang et 
al., 2010). But the binary logistic regression model is a 
monotonic increasing function of independent variable 
and dependent variable. When the influence of ignition 
factors on ignition probability is not monotonic in some 
study areas, the influencing analysis may become un-  
reasonable. There is a strong monotonic increasing ex-
ponential relationship between the ignition probability 
and the density of ignition (Filipe et al., 2009). In this  
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Fig. 4  Distribution of ignition number and density at different elevation (a), slope (b), aspect (c), temperature (d), relative humidity (e) 
and precipitation (f) grades 
 
Table 3  Ignition number and density under different vegetation type areas 

Vegetation type Ignition number Ignition density (ignitions/100 km2) 

Temperate broadleaf deciduous scrub 8 0.97 

Farmland 10 0.91 

Temperate needle arid steppe 341 0.77 

Temperate grass-forb meadow steppe 101 0.75 

Temperate grass, carex and forb swamp meadow 37 0.63 

Temperate grass and forb holophytic meadow 13 0.46 

Temperate grass and forb meadow 13 0.40 

Cold-temperate and temperate swamp 5 0.31 

Others 18 0.18 
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Fig. 5  Distribution of ignition number and density under differ-
ent NPP 

 
paper, the density or ratio of ignition can interpret the 
relationship between grassland fire ignition distribution 
and ignition factors more explicitly and clearly. A grass-
land fire ignition probability model was developed 
based on historic ignition data and the density or ratio of 
ignition under different independent factors, and the 
influence of independent factors on ignition probability 
was also analyzed with the density or ratio of ignition. 
The regression models of ignition density or ratio and 
the different independent factors were developed, and 
their forms, parameters, R2 are listed in Fig. 6. 
2.4.2  Grassland fire ignition probability model  
Binary logistic regression model is chosen to combine 
the influences of all ignition factors with the following 
form: 

ig
0 1 1 2 2

1
1 exp[ ( )]i i

P
b b x b x b x

=
+ − + + + ⋅ ⋅ ⋅ +

  (3) 

where Pig is the probability of ignition; xi is the value of 
the ith ignition factor; b0 is the constant of model; bi is 
the regression coefficients of ignition factor xi. In this 
equation, ignition points (Pig = 1) and non-ignition point 
(Pig = 0) are considered as dependent variables and the 
density or ratio of ignition of different ignition factors as 
independent variables. The grassland fire ignition prob-
ability function is therefore given as below: 

[ ]ig
0 1 1 2 2

1
1 exp ( ( ) ( ) ( ))i i

P
b b f x b f x b f x

=
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(4) 

where f(xi) is the mathematic model of ignition density 
or ratio for the ith ignition factor. 

Based on the binary logistic regression model (Equa-
tion (4)), the grassland fire ignition probability model 
had been developed (Equation (5)) , distance to town 

(DIS_urban), distance to county-level road (DIS_roadc), 
elevation (DEM), vegetation type (VEG), daily tem-
perature (TEM), daily relative humidity (RH) are the 
major variables impacting ignition probability and the 
regression coefficients of each ignition factors in the 
model were determined by using a stepwise logistic re-
gression procedure with SPSS. The form of logistic re-
gression is given by: 

ig 1/(1 exp( (1.1772 ( ) 0.8868

( ) 2.3348 ( ) 2.0102
( ) 1.1932 ( _ ) 0.6897
( _ ) 7.0520)))

P f RH

f TEM f DEM
f VEG f DIS roadc
f DIS urban

= + − × + ×

+ × + ×
+ × + ×

−

   (5) 

2.5  Time-dependent stochastic ignition probability 
mode 

According to the ignition probability model, the ratio of 
ignition for daily temperature and relative humidity had 
significant positive relationships with the ignition prob-
ability, and their influences were the greatest (Table 4). 
With Monte Carlo method, according to the distribution 
of annual mean daily relative humidity and daily tem-
perature from 1986 to 2008, the simulated daily relative 
humidity and daily temperature data with similar prob-
ability distribution characteristics were randomly gener-
ated. On the basis of the ignition probability model, a 
time-dependent stochastic ignition probability model 
can be described as Equation (6):  

ig ( ( ),  ( )) 1/(1 exp( (1.1772 ( ( ))

0.8868 ( ( )) 2.3348
( ) 2.0102 ( )

1.1932 ( _ ) 0.6897
( _ ) 7.0520)))

P RH t TEM t f RH t

f TEM t
f DEM f VEG

f DIS roadc
f DIS urban

= + − × +

× + ×
+ × +

× + ×
−

 

(6) 

3  Results and Analyses 

3.1  Ignition probability simulation and ignition 
factors analyses  
The overall classification accuracy of the logistic re- 
gression model averaged up to 81.7%, identifying that 
the majority predictions of model are correct for both 
ignition points (i.e. 84.9% of the ignition points were 
correctly classified) and non-ignition points observa- 
tions (i.e. 78.2% of the non-ignition points were cor- 
rectly classified) (Table 5). Receiver Operating Charac-
teristics (ROC) curve is a statistical method widely used 
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Fig. 6  Regression models of ignition density or ratio for different independent factors 
 

to comprehensively assess the performance of classifier 
(Zhang and Dong, 2004; Zou et al., 2009). The area un-
der ROC curve for the ignition probability indicated the 

model prediction accuracy is 91.1% (p < 0.01), proving 
the reliability of model for ignition probability simula-
tion. 
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Table 4  Parameters for fitted logistic regression model 

Ignition factor Code b SE Wald Sig. 

Daily relative humidity RH 1.1772 0.1030 130.5906 0.0000 

Daily temperature TEM 0.8868 0.0865 104.9758 0.0000 

Elevation DEM 2.3348 0.3462 45.4764 0.0000 

Vegetation type VEG 2.0102 0.5178 15.0725 0.0001 

Distance to county-level road DIS_roadc 1.1932 0.5559 4.6075 0.0318 

Distance to town DIS_urban 0.6897 0.3540 3.7968 0.0514 

Notes: b is regression coefficient of each ignition factor; SE is standard deviation of regression coefficient; Wald is significance of each single variable on 
condition that other variables exist 

 
Table 5  Classification table and statistical performance of logistic regression model 

Prediction 

Non-ignition point Ignition point Observation 

0 1 

Correct prediction (%) 

Non-ignition point 0 387 108 78.2 

Ignition point 1 83 465 84.9 

Overall precision 81.7 

 
The ignition probability model′s regression coeffi-

cients (b) of each ignition factor are positive (Equation 
(5)), which indicates that ignition probability has posi-
tive correlations with the density or ratio of the ignition. 
Daily relative humidity and daily temperature had sig-
nificant influence on the ignition probability (p < 0.01), 
and their Wald values are 130.591 and 104.976 respec-
tively. Elevation and vegetation type have significant 
effect on ignition probability (p < 0.01) with Wald val-
ues of 45.476 and 15.073, respectively. For distance, to 
county-level road and distance to town, the impact to 
ignition probability is not significant with Wald values 
of 4.608 and 3.797 (Table 4). The contribution of other 
factors to ignition probability, such as daily precipitation, 
slope, aspect, distance to village, distance to provin-
cial/national road and annual NPP is less significant 
than those mentioned above. 

The temporal distribution of grassland fires is ana-
lyzed as shown in Fig. 7a. Grassland fires mostly oc-
curred in spring and autumn, especially in April. For 
example, 41.22% in number and 60.67% in burned area 
of the fires occurred in April, closely related to the cli-
matic characteristics of this region.  

During 1986 to 2008, annual mean daily relative hu-
midity, as shown in Fig. 7b, has minimum values around 
the end of April and mid October. Compared to Fig. 7a, 
clearly these two minimums exactly correspond to two 
peaks of grassland fire, which also appeared in spring 

and autumn. In Fig. 7c, the annual mean daily tempera-
ture increases at first and reach to the highest in summer, 
then drop to the lowest in winter. In spring and autumn, 
the two peak periods of grassland fire occurred, the 
daily temperature was about 5℃ rather than its highest 
or lowest temperature.  

3.2  Time-dependent stochastic ignition simulation 
In this study, the stochastic ignition probability of the 
study area on April 15 (spring), July 15 (summer), Oc-
tober 15 (autumn) and January 15 (winter) were calcu-
lated as examples to display time-dependent simulation 
of the proposed model. The probability distribution of 
annual mean daily relative humidity and daily tempera-
ture were assumed to be normal distribution. Figure 8 
and Fig. 9 showed that the probability density distribu-
tion of seasonal mean daily relative humidity and daily 
temperature obeyed normal distribution in a spatial cell. 
The Kolmogorov-Smimov test accepts the null hypothe- 
sis at the 5% significance level. 

The stochastic ignition probability spatial distribution 
on different dates was analyzed based on GIS (Fig. 10). 
The area percentage of different ignition probability on 
different dates is shown in Table 6. The area of high 
ignition probability on April 15 is largest, then that on 
October 15, while those in summer and winter are small. 
The results show that the stochastic ignition probability 
distribution has he seasonal variation characteristics and 
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Fig. 7  Monthly numbers and burned area of grassland fire (a), 
annual mean daily relative humidity (b) and temperature (c) in 
Hulun Buir Grassland during 1986 and 2008 

 
are consistent to the occurrence of historical grassland 
fire in the study area. 

The area of high ignition probability on April 15 is 
widely distributed in the eastern and western Hulun Buir 
Grassland (Fig. 10b), that on October 15 is mainly in the 
northeast and northwest (Fig. 10d) and the area of high 
fire probability in summer and winter is only distributed 
around county-level road (Fig. 10a, c). The results show 
that the spatial pattern of stochastic ignition probability 
is obvious on different dates. 

The time-dependent stochastic ignition probability 
model can be used to estimate ignition probability of 
any day in the future. But the stochastic ignition prob-
ability model had uncertainty because of the differences 
between the fitted and observed values of daily relative 
humidity, daily temperature. The differences need to be 

reduced by increasing the number of samples in the fu-
ture researches. 

4  Discussion  

For meteorological factors, daily relative humidity has 
the greatest influence on ignition probability. The spring 
and autumn are peak periods for fire occurrences be-
cause they are the dry seasons. Temperature has greater 
influence on ignition probability. Precipitation does not 
have direct influence on ignition probability. In winter, 
the temperature is lower leading to snow always covers 
which not only increases water content of dead fuels but 
also separates combustibles from fire sources, so it is 
difficult to ignite. In spring, snow melts and evaporates 
with the increase of temperature, this is the reason for 
easier ignition. In hot summer, there are only few fire 
events, because at that time it is rainy, which means that 
the vegetation grows vigorously and there is much 
moisture, so it is difficult to fire. In autumn, although 
the daily temperature decreases gradually with time, the 
vegetation are withered when their moisture content 
decrease, so it is easy to ignition. 

Among the topographic factors, slope and aspect do 
not have obvious influence on ignition probability, and 
only elevation has significant influence on it. Because 
the higher ignition density area was that with the eleva-
tion ranging from 600 m to 800 m, which is a high hu-
man activity region with 80.51% residential land lo-
cated. 

Among the human-caused factors, the distance to 
county-level road and distance to town have the greater 
influence on ignition probability, with the distance in-
crease, the ignition probability is lower. This result 
agrees with that from other researchers on ignition pro-
bability, such as Vasconcelos et al. (2001), Filipe et al. 
(2009), Martinez et al. (2009), and Zhang et al. (2010).  

Based on the daily ignition probability, a lot of igni- 
tion points randomly generated, and then the wildfires 
were assessed by using the spreading model. This 
method can accomplish the quantitative evaluation of 
wildfire risk (Mbow et al., 2004; Carmel et al., 2009). 
In this paper, with Monte Carlo method, the distribution 
of seasonal daily relative humidity and daily tempera- 
ture were calculated, and then the time-dependent sto-
chastic ignition probability model was developed. The 
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Fig. 8  Probability density distribution of seasonal daily temperature in a spatial cell on Jan. 15 (a), Apr. 15 (b), Jul. 15 (c), October 15 
(d) from 1986 to 2008  
 

 
 

Fig. 9  Probability density distribution of seasonal daily relative humidity in a spatial cell on Jan. 15 (a), Apr. 15 (b), Jul. 15 (c), Oct. 15 
(d) from 1986 to 2008 

model may provide support for the quantitative evalua-
tion of grassland fire risk in the future. 

5  Conclusions 

In this study, the temporal and spatial distribution of 
Hulun Buir Grassland fire during 1986 and 2008 was 
analyzed, in which 12 ignition factors were selected co-

vering both natural and human-induced effects. Based 
on the number and density or ratio of ignition of dif-
ferent ignition factors, a time-dependent stochastic ig-
nition probability model was developed. Main conclu-
sions were drawn as follows through this study. 1) The 
density or ratio of ignition is able to reflect the rela- 
tionships between grassland fire and different ignition 
factors. And the ignition probability model, which is 
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Table 6  Area percentage of different ignition probability on different dates 

Area percentage (%) 
Ignition probability 

January 15 April 15 July 15 October 15 

0.0–0.1 54.10 0.79 49.07 7.71 

0.1–0.2 24.88 2.03 25.13 7.36 

0.2–0.3 10.82 1.97 12.48 7.46 

0.3–0.4 5.20 2.90 6.25 7.95 

0.4–0.5 2.84 4.44 3.53 11.26 

0.5–0.6 1.67 5.30 2.37 13.37 

0.6–0.7 0.48 6.53 1.11 13.50 

0.7–0.8 0.00 11.38 0.06 13.57 

0.8–0.9 0.00 20.98 0.00 11.90 

0.9–1.0 0.00 43.69 0.00 5.93 

 

 
 

Fig. 10  Distribution of ignition probability on Jan. 15 (a), Apr. 15 (b), Jul. 15 (c), Oct. 15 (d)  

 
based on the density or ratio of ignition of different igni-
tion factors, can better describe the ignition mechanism 
in the study area. 2) The overall classification accuracy 

of the proposed ignition probability model is up to 
81.7%. Daily relative humidity, daily temperature, ele-
vation, vegetation type and distance to county-level road 
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have significant influences on the ignition probability (p 
< 0.05), and their contribution to the ignition probability 
decrease in turn. 3) With the Monte Carlo method, the 
grassland stochastic ignition probability model is built 
based on the distribution of seasonal daily relative hu-
midity and daily temperature. This model can reflect 
future daily spatial pattern of grassland ignition prob-
ability in the study area. Consequently, it can provide 
support for the quantitative evaluation of grassland fire 
risk. 
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