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Abstract: This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Addi-
tive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, 
as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation 
type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness 
of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. 
Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The 
results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environ-
mental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and 
community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables 
play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different 
plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and 
other variables which are not closely related to the environmental conditions are the major causes of imprecision. 
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1  Introduction 

Remote sensing image classification is the main ap-
proach to achieve vegetation map at large scale (Sanders 
et al., 2004). Traditional classification methods based on 
the spectral features, such as supervised classification 
and unsupervised classification, were widely used to 
classify the remote sensing image (Yang and Zhou, 
2001). However, the similarities of spectral signature 
among plant communities make the delineation of dis-
tinct vegetation patches based on remote sensing image 

a difficult task (Treitz et al., 1992). Expert system was 
developed to surmount the limitation of using spectral 
features solely to classify the remote sensing image (Jo-
seph and Gary, 2004). Expert system incorporates the 
spectral features, environmental variables and expert 
knowledge in remote sensing image classification (Jo-
seph and Gary, 2004; Zhang and Zhu, 2011). Therefore, 
theoretically, expert system is a perfect classification 
method, however, uncertainties of knowledge acquisi-
tion and quantization limit the application of expert sys-
tem (Joseph and Gary, 2004). 
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Environmental response models are another way to 
map vegetation (Guisan and Zimmermann, 2000). Ac-
cording to the ecological niche theory, each plant com-
munity occupies a geographical space, which is deter-
mined by terrain, soil, temperature, precipitation, radia-
tion and so on (Song, 2001). Based on the ecological 
niche theory, a ′balanced′ or ′quasi-balanced′ relation-
ship was assumed to exist between vegetation and envi-
ronment. Based on this theory, statistical models were 
employed to define environmental response models and 
then predict the distribution of vegetation (Guisan and 
Zimmermann, 2000; Ferrier and Guisan, 2006). How-
ever, it is insufficient for environmental response mod-
els to map actual vegetation, because the actual vegeta-
tion is greatly affected by disturbances such as land use 
change (Guisan and Zimmermann, 2000; White et al., 
2001; Dirnbök et al., 2002; Dullinger et al., 2003), or 
historically determined distribution patterns (Dirnbök et 
al., 2001). Consequently, environmental response models 
are usually used to predict potential rather than actual 
vegetation distribution (Guisan and Zimmermann, 2000). 

In conclusion, the similarities of spectral features 
among different plant communities limit the capacity of 
remote sensing image classification, and also it is insuf-
ficient for environmental response models to map actual 
vegetation. On the other hand, plant communities which 
can not be reliably delineated by spectral attributes may 
be separated with the help of abiotic environmental vari-
ables, and vice versa (Ferrier et al., 2002; Ferrier and 
Guisan, 2006). In other words, both abiotic environ-
mental variables and spectral attributes have limitations 
for mapping vegetation, they should be viewed as mu-
tual complementation rather than competitive sources of 
information for vegetation mapping (Ferrier et al., 2002; 
Miller et al., 2007). Therefore, integrating environ-
mental variables and spectral variables based on statis-
tical models might be a feasible way to map vegetation. 

Nonlinear models based on Gaussian curve, such as 
Detrended Canonical Analysis (DCA) and Canonical 
Correspondence Analysis (CCA), are very popular in the 
study of the relationship between vegetation and envi-
ronment (Ohmann and Gregory, 2002; Dirnböck et al., 
2003). However, the relation between vegetation and 
environment is so complex that it can not be completely 
fitted for unimodel, moreover, dimensionality reduction 
of DCA and CCA will cause information loss (Zhang, 
1995). Generalized Additive Models (GAMs) are non- 
parametric extension of Generalized Linear Models 

(GLMs) and allow for both continuous and factor vari-
ables (Hastie and Tibshirani, 1990). Smoothed function 
derived from the explanatory variables was employed to 
build a model in GAMs, instead of pre-establishing a 
parametric model, which overcomes the limitation of 
pre-establishing parametric models. Other non-parame-
tric models, such as Classification and Regression Tree 
(CART) and Artificial Neural Network (ANN), also 
have the ability to fit robust models to ecological data 
and may be better suited for modeling interactions. 
However, the methods of selecting significant variables 
in CART and ANN are not based on appropriate statis-
tical distribution and the response curve shapes can not 
be observed, resulting in their failure in the ecological 
interpretability (Lehmann et al., 2002). Therefore, 
GAMs were widely used to model the responses of 
vegetation to environmental variables in ecological 
studies (Austin, 2002; Lehmann et al., 2002; Shen and 
Zhao, 2007; He et al., 2008; Wen et al., 2008). 

In this study, our objectives are: 1) to examine the re-
lationship between vegetation and environmental vari-
ables, as well as spectral attributes, based on GAMs; 2) 
to map the distribution of dominant plant communities 
based on GAMs; and 3) to evaluate the uncertainties of 
GAMs in vegetation mapping. 

2  Data and methods 

2.1  Study area 
The Huanghe (Yellow) River Delta (36°55′–38°12′N, 
118°07′–119°18′E) located in the northern Shandong 
Province of the eastern China is selected as the study 
area of this research (Fig. 1). It lies on the south side of 
the Bohai Sea. The region is characterized by temperate, 
semi-humid continental monsoon climate. The mean 
annual temperature ranges from 11.50℃ to 12.48 , with ℃

the warmest monthly temperature of 26.68  in July and ℃

the coldest of 4.18  in January. The℃  mean annual pre-
cipitation is 590.9 mm and mean annual evaporation is 
over 1500 mm. The maximum monthly rainfall is     
227.0 mm in July and the minimum is 1.7 mm in Janu-
ary (Zang, 1996). Within the delta, the underground 
water table is high and the water is saline. The entire 
area is mainly covered by wet and saline soil. Meadow, 
especially the halophytic meadow, dominated by Chi-
nese tamarisk (Tamarix chinensis Lour.), Seepweed 
(Suaeda salsa (Linn.) Pall.) and reed (Phragmites aus-
tralis (Cavanilles) Trinius ex Steudel), is the typical  
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Fig. 1  Location of Huanghe River Delta and distribution of vegetation sampling sites 
 
vegetation in this area (Fig. 2). 

2.2  Data and processing 
2.2.1  Vegetation survey data 
Data were collected during the growing season in 2006, 
2007 and 2008. The sampling strategy was random and 

the size of quadrat varied from 100 m2 (10 m × 10 m) 
for shrub species to 1 m2 (1 m × 1 m) for herbaceous 
species. Variables recorded include species name, den-
sity, height and coverage of all herbal and shrub plants. 
The cover was estimated according to Braun-Blanquet′s 
5-level ordinal scale (Braun-Blanquet, 1933). Geogra- 

 

 
 

Fig. 2  Main plant species in Huanghe River Delta. Frequency is percent of quadrats in which a plant species occurs 
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phical coordinates of quadrats were recorded by using a 
GPS (±10 m). In total, 483 quadrats of vegetation were 
collected (Fig. 1) and the set of 483 quadrats represent-
ing the ultimate modeling input data were marked on the 
SPOT-5 image and digitized thereafter. 

Due to the errors of geometrical correction and im-
precision of GPS coordinates of quadrats, we set quad-
rats near the center of vegetation patch, and kept the 
quadrats at least 50 m away from the boundary. This 
will insure that the quadrat-derived variables could rep-
resent the spectral and environmental characteristics of 
this vegetation patch. 

As the response variables of GAMs are pres-
ence-absence (1/0) data, we supposed that if the impor-
tance value (IV) of T. chinensis, S. salsa or P. australis 
is higher than other species in the same quadrat, then 
this quadrat was assigned with 1, otherwise, the quadrat 
was assigned with 0. The importance value (IV) for each 
species in each quadrat was obtained by the sum of its 
relative density, coverage and height.  

 +  + r r rIV C D H=       (1) 

where Cr is the relative coverage; Dr is the relative den-
sity, and Hr is the relative height of each plant species. 
2.2.2  Environmental data 
Previous studies proved that topography, soil and 
ground water table have great effects on the vegetation 
distribution in the Huanghe River Delta (Song et al., 
2009). However, we did not get the data of ground water 
table. But, ground water table is significantly related 
with topography, as well as the nearest distance to the 
Huanghe River and the nearest distance to the coastline 
(Song et al., 2009). Therefore, altitude (ALT), slope 
(SP), the nearest distance to the coastline (DC) and the 
nearest distance to the Huanghe River (DR) were se-
lected as predictors in this research. Altitude and slope 
were derived from DEM (with 50 m horizontal resolu-
tion) which came from the digitization of 1∶10 000  
topographical map of the Dongying City in Shandong 

Province. The nearest distance to the Huanghe River 
and the nearest distance to the coastline were calculated 
by the ′Near′ tool in ArcGIS 9.3. 

Totally, 585 soil samples (0–30 cm) were collected in 
the study area. Soil salinity (SALT), soil organic mat-
ter (SOM) and soil total nitrogen (TN) and pH were 
measured according to Liu (1996). At last, the measured 
soil variables were log-transformed to conform to the 
normal distribution and interpolated spatially by ordi-
nary Kriging method in ArcGIS 9.0. Table 1 is the pre-
diction errors which are used to evaluate the effects of 
the interpolation by ordinary Kriging. 
2.2.3  Spectral data 
SPOT-5, a multi-spectral image with high-resolution of 
10 m (acquired on September 7, 2005) was used as the 
basic spectral data in this study. The image contains four 
bands of information: visible green (VG) (0.50–0.59 
µm), visible red (VR) (0.61–0.68 µm), near infrared 
(NIR) (0.78–0.89 µm), and short infrared wave band 
(SIR) (1.58–1.75 µm).  

Geometric correction for SPOT-5 image was done by 
SPOT5-Orbit Pushbroom model which was included in 
Erdas image 9.3. Twenty-seven ground control points 
were recorded by using differential GPS (TrimbleGe-
oXT) and the DEM with 50 m resolution were used to 
diminish the geometric error and the effects of topogra-
phy on the SPOT-5 image. Bilinear interpolation was 
employed to resample the image and the root mean 
squared error of the geometric correction is less than   
5 m. The SPOT-5 image was not subjected to atmos-
phere correction, one reason was that only one scene 
was used in this research, the other was that there were 
no atmosphere data at the time of image acquisition 
(Song et al., 2000). 

In this research, besides Digital Number (DN) val-
ues in all four wavebands (DNVG, DNVR, DNNIR and 
DNSIR), Normalized Difference Vegetation Index (NDVI), 
Ratio Vegetation index (RVI), Soil Adjusted Vegetation 
Index (SAVI) and Difference Vegetation Index (DVI) 

 
Table 1  Prediction errors for measured soil variables 

Error TN SOM pH SALT 

Root-mean-square error 0.05705 0.62610 0.40950 0.73910 

Average standard error 0.05907 0.65380 0.49840 1.65600 

Mean standardized error –0.02193 –0.01316 0.01005 0.01124 

Root-mean-square standardized error 1.01800 1.21300 0.83270 0.60220 

Notes: TN is abbreviation of soil total nitrogen; SOM is abbreviation of soil organic matter; SALT is abbreviation of soil salinity 



 SONG Chuangye et al. Predictive Vegetation Mapping Approach Based on Spectral Data, DEM and Generalized Additive Models 335 

 

were selected as predictors in this research. NDVI, RVI, 
SAVI and DVI were calculated according to the follow-
ing equations (Zhao, 2003):  

NDVI = (DNNIR − DNVR) / (DNNIR + DNVR)     (2) 

RVI = DNNIR / DNVR     (3) 

SAVI = (DNNIR − DNVR)(1 + L) / 
(DNNIR + DNVR + L) (4) 

DVI = DNNIR − DNVR  (5) 

where L was soil adjusted coefficient and it was as-
signed a value of 0.5 in this research (Zhao, 2003). 

The pixels containing each of the 483 quadrats and 
the eight pixels surrounding the quadrat-pixel (the pixel 
where a quadrat was located) were all identified and the 
DNVG, DNVR, DNNIR, DNSIR, NDVI, RVI, DVI and 
SAVI values were extracted. To make sure that the 
DNVG, DNVR, DNNIR, DNSIR, NDVI, RVI, DVI and 
SAVI could represent the spectral characteristics of the 
vegetation, we stipulated that if the deviation between 
the derived spectral variables and the average spectral 
variables exceeds two-fold standard deviation, this de-
rived variable was considered as outlier and would be 
deleted. The mean value of DNVG, DNVR, DNNIR, DNSIR, 

NDVI, RVI, DVI and SAVI of the quadrat-pixel and the 
pixels surrounding the quadrat-pixel were used to build 
the GAMs model. 

Since our model was applicable only to vegetation 
covered areas where quadrat data were available, we 
masked out non-vegetation areas (e.g., water, urban, 
agriculture, and beach) from our GAMs predictions. 

2.3  Methods 
2.3.1  Predictors selection for GAMs fitting  
Total 16 predictors were collected in this research, part 
of the predictors are highly correlated (Table 2). To di-
minish the impacts of the correlation on the performance 
of the fitted GAMs model, we set 0.8 as the maximum 
correlation allowed between predictors, if higher corre-
lation was found, predictors were withdrawn from can-
didate predictors (the order of elimination of correlated 
variables was given by the order of column number in 
selected predictors). Then, the GAMs model selected in 
this research was fitted by using only the not highly 
correlated predictors. 
2.3.2  Generalized Regression Analysis and Spatial 
Predictions  
Most analyses were performed using Generalized Re-  

 
Table 2  Correlation analyses of collected predictors  
Predictor SP ALT DNSIR DNVR DNNIR DNVG DR DC DVI NDVI RVI SAVI SOM SALT pH TN

SP 1.00                

ALT 0.33 1.00               

DNSIR 0.13 0.44 1.00              

DNVR 0.01 0.21 0.70 1.00             

DNNIR 0.06 0.26 0.35 –0.14 1.00            

DNVG 0.03 0.24 0.69 0.97 –0.09 1.00           

DR –0.07 –0.38 0.08 0.35 –0.41 0.28 1.00          

DC 0.04 0.61 0.08 –0.22 0.46 –0.15 –0.83 1.00         

DVI 0.02 –0.01 –0.33 –0.82 0.66 –0.78 –0.49 0.43 1.00        

NDVI 0.01 –0.03 –0.32 –0.81 0.67 –0.77 –0.49 0.41 0.99 1.00       

RVI –0.01 –0.06 –0.32 –0.79 0.68 –0.75 –0.47 0.40 0.99 0.99 1.00      

SAVI 0.01 –0.03 –0.32 –0.81 0.67 –0.77 –0.49 0.41 0.99 0.99 0.99 1.00     

SOM –0.01 –0.03 –0.22 –0.41 0.31 –0.38 –0.69 0.53 0.48 0.49 0.47 0.49 1.00    

SALT –0.15 –0.46 0.09 0.39 –0.25 0.30 0.69 –0.62 –0.43 –0.41 –0.38 –0.41 –0.51 1.00   

pH 0.05 0.35 –0.01 –0.16 0.28 –0.09 –0.56 0.53 0.28 0.27 0.27 0.27 0.54 –0.68 1.00  

TN 0.04 0.18 –0.13 –0.36 0.37 –0.32 –0.72 0.61 0.48 0.48 0.45 0.48 0.83 –0.61 0.69 1.00

Notes: All correlation is significant at p < 0.05 level. SP, ALT, DNSIR, DNVR, DNNIR, DNVG, DR, DC, DVI, NDVI, RVI, SAVI, SOM, SALT and TN are 
respectively abbreviation of slope, altitude, digital number of shortwave infrared band, digital number of visible red band, digital number of visible red 
band, digital number of near-infrared band, digital number of visible green band, nearest distance to Huanghe River, neatest distance to coastline, differ-
ence vegetation index, normalized difference vegetation index, ratio vegetation index, soil adjusted vegetation index, soil organic matter, soil salinity and 
soil total nitrogen 
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gression Analysis and Spatial Predictions (GRASP) 
(Lehmann et al., 2002), a set of S-PLUS (v.6.0-Mathsoft 
Inc., Seattle, Washington) functions developed to facili-
tate the analysis of large numbers of species. Regres-
sions were fitted by using generalized additive models. 
A logistic link and binomial error term were used for 
individual species models and a smoothing spline me-
thod was chosen to smooth the predictors, taking four as 
the degree of freedom by default. The model for each 
species was fitted by using a backwards stepwise pro-
cedure in which all predictors were initially fitted. The 
significance of dropping each predictor was tested by 
using the analysis of deviance (ANOVA, F-test) to de-
cide adding or removing them from the model. Model 
fitting proceeded until no more variables could be re-
moved. Contribution of each predictor was assessed by 
calculating the average change in residual deviance when 
dropping each predictor from the final regression model.  

The goodness of fitting for each GAMs model was 
tested by the deviance of the model (D2), which was 
obtained by using the following calculation formula: 

2 = ( ) /D ND RD ND−   (6) 

where ND is the null deviance; RD is the residual devi-
ance which can not be explained by the model; ′ND–RD′ 
is the explained deviance. If D2 is 1, which means no 
residual deviance and the deviance can be explained 
completely by the model.  

Final regression model was then used to predict the 
probability of species occurrence for each grid in the 
study area. Based on the probability maps of species 
occurrence, the species with the greatest estimated prob-
ability was assigned to the pixel.  
2.3.3  Model validation 
Probability map of each species based on GAMs was 
assessed by using cross-validation of Receiver Oper-
ating Characteristic (ROC) statistics (Fielding and Bell, 
1997). ROC curve is a graphical plot which illustrates 
the performance of a binary classifier system. It is cre-
ated by plotting the fraction of true positives out of the 
positives (TPR is true positive rate) vs. the fraction of 
false positives out of the negatives (FPR is false positive 
rate), at various threshold settings. TPR is also known as 
sensitivity, and FPR is one minus the specificity (1 – 
specificity) or true negative rate. 

Unlike Kappa statistics, the ROC method avoids the 
problem of choosing a threshold value, therefore, ROC 

is regarded as a suitable method to validate binomial 
model (Lehmann et al., 2002). Cross-validation of ROC 
statistics were performed with five subsets of the entire 
dataset, each subset containing an equal number of ran-
domly selected data points. Each subset was then 
dropped from the model, and then the model was recal-
culated and predictions were made for the omitted data 
points. Combination of the predictions from the differ-
ent subsets was then plotted against the observed data. It 
has been suggested that models running at an Area Un-
der Curve (AUC) > 7 are acceptable (Hosmer and Le-
meshow, 2000). 

3  Results and Analyses 

3.1  Fitted models based on GAMs 
The stepwise selection of statistically significant pre-
dictors for T. chinensis, P. australis and S. salsa were 
performed by using the models in Table 3. Predictors in 
the fitted GAMs model for each species are identical, 
however, the explanatory capacity of the fitted models 
for different species are different. For S. salsa and P. 
australis, the fitted model explains 57% and 58% of the 
null deviance, respectively, but for T. chinensis, the fit-
ted model explains 52% of the null deviance. 

Table 4, Table 5 and Table 6 are ANOVA analyses 
for the fitted GAMs model which are constructed by 
testing the significance of removing in turn each pre-
dictor from the selected model. From those ANOVA 
tables, we could see that predictors selected into the fit-
ted models were all confirmed by the statistical signifi-
cance test. In addition, we could also get the information 
about the contribution of each predictor in the fitted 
GAMs, which were also obtained by removing each 
predictor from the fitted model and calculating the asso-
ciated change in deviance. 

For T. chinensis (Table 4), SALT, ALT and SOM are 
the most important predictors among environmental 
predictors, pH is the next most important, while DR is 
the least important; DNNIR and DNSIR are the most im-
portant predictors among the spectral variables.  

In the fitted model for P. australis (Table 5), contri-
butions of environmental predictors rank in the follow-
ing order: ALT > SP > pH > DR > SOM > SALT. 
Among spectral predictors, DNVR and DNNIR make 
greater contribution than DNSIR. 

In the fitted model for S. salsa (Table 6), the contri- 
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Table 3  Selected GAMs models for T. chinensis, P. australis and S. salsa 

Species Number of quadrat Model Null deviance Explained deviance D2 
      

T. chinensis 152 s(SP, 4) + s(ALT, 4) + s(DNSIR, 4) + s(DNVR, 4) + s(DNNIR, 
4) + s(DR, 4) + s(SOM, 4) + s(SALT, 4) + s(pH, 4) 1833.25 956.11 0.52

      

P. australis 183 s(SP, 4) + s(ALT, 4) + s(DNSIR, 4) + s(DNVR, 4) + s(DNNIR, 
4) + s(DR, 4) + s(SOM, 4) + s(SALT, 4) + s(pH, 4) 2080.74 1204.75 0.58

      

S. salsa 148 s(SP, 4) + s(ALT, 4) + s(DNSIR, 4) + s(DNVR, 4) + s(DNNIR, 
4) + s(DR, 4) + s(SOM, 4) + s(SALT, 4) + s(pH, 4) 2068.68 1186.22 0.57

Notes: s in fitted model is symbol of spline smoothing curve; 4 in bracket is degree of freedom; D2 is result of divide null deviance by explained deviance 

 
Table 4  ANOVA analyses of selected GAMs model for      
T. chinensis 

Test Df  Deviance  F value p value 

–s(SP, 4) –3.87 –24.12 15.77 < 0.001 

–s(ALT, 4) –3.73 –80.01 54.24 0 

–s(DNSIR, 4) –3.76 –51.07 34.39 0 

–s(DNVR, 4) –3.68 –13.13 9.03 < 0.001 

–s(DNNIR, 4) –3.55 –222.01 158.11 0 

–s(DR, 4) –3.92 –11.23 7.25 < 0.001 

–s(SOM, 4) –3.85 –87.70 57.48 0 

–s(SALT, 4) –3.76 –108.99 73.25 0 

–s(pH, 4) –3.78 –57.47 38.42 0 

 
Table 5  ANOVA analyses of selected GAMs model for      
P. australis 

Test Df  Deviance  F value  p value 

–s(SP, 4) –4.10 –81.83 34.32 0 

–s(ALT, 4) –4.17 –130.59 53.89 0 

–s(DNSIR, 4) –4.02 –26.48 11.34 < 0.001 

–s(DNVR, 4) –3.96 –52.62 22.87 0 

–s(DNNIR, 4) –4.08 –48.58 20.49 < 0.001 

–s(DR, 4) –4.07 –73.38 31.00 0 

–s(SOM, 4) –3.91 –60.97 26.87 0 

–s(SALT, 4) –3.88 –23.06 10.23 < 0.001 

–s(pH, 4) –4.05 –78.98 33.57 0 

 
Table 6  ANOVA analyses of selected GAMs model for S. salsa 

Test Df  Deviance  F value  p value  

–s(SP, 4) –3.93 –40.48 16.16 < 0.001 

–s(ALT, 4) –3.74 –88.72 37.24 0 

–s(DNSIR, 4) –3.85 –16.22 6.62 < 0.001 

–s(DNVR, 4) –3.91 –91.34 36.63 0 

–s(DNNIR, 4) –3.78 –62.49 25.98 0 

–s(DR, 4) –3.95 –85.44 33.96 0 

–s(SOM, 4) –3.80 –33.15 13.71 < 0.001 

–s(SALT, 4) –3.99 –117.60 46.20 0 

–s(pH, 4) –3.93 –62.59 25.02 0 

bution of SALT, ALT, DR, pH is greater than that of SP 
and SOM. Among spectral predictors, DNVR and DNNIR 
contribute much more than DNSIR. 

3.2  Predicted vegetation type based on fitted 
GAMs  
The fitted GAMs were exported to lookup tables and the 
occurrence probability maps of T. chinensis, P. australis 
and S. salsa were produced in Arcview 3.2 (Fig. 3 to Fig. 
5).  

From Fig. 3 to Fig. 5, we could see that the occur-
rence probability of S. salsa is very high in the area near 
the coastline. With the increase of the distance to the 
coastline, the occurrence probability of T. chinensis and 
P. australis become higher and higher. This means that 
from coastline to land, the dominant plant species 
change gradually from S. salsa to T. chinensis, and then 
P. australis. This kind of vegetation distribution pattern 
is especially evident in the northern part of the study 
area. This maybe due to the long distance from the 
northern part to the Huanghe River, and the vegetation 
distribution is little affected by the Huanghe River. In 
the southern part of the study area, the vegetation dis-
tribution pattern is greatly affected by the Huanghe 
River and the occurrence probability of T. chinensis and 
P. australis is very high. 

The predicted vegetation distribution pattern is in 
agreement with the characteristics of the actual vegeta-
tion distribution in the Huanghe River Delta. The 
Huanghe River Delta is formed by the deposition of a 
large amount of sand and mud transported by the 
Huanghe River. The downstream movement of fresh-
water combined with the inland movement of saline 
water from the ocean generates a salinity gradient in the 
estuarine systems (Yue et al., 2003). The salt content in 
the soil of the newly deposited land is more than 3%, on 
which S. salsa is partially distributed. The S. salsa in-
creases organic matter in the soil which makes the area  
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Fig. 3  Predicted occurrence probability of T. chinensis based on GAMs 
 

 
 

Fig. 4  Predicted occurrence probability of P. australis based on GAMs 
 
become the T. chinensis land. The secreting salt effects 
of T. chinensis and accumulation of their dead branches 

and leaves result in the reduction of soil salt content 
and the increase in soil fertility, which makes the area 
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evolve to the P. australis land. 
At last, according to the occurrence probability maps 

of T. chinensis, S. salsa and P. australis, the vegetation 
type of each grid was determined (Fig. 6). 

 

 
 

Fig. 5  Predicted occurrence probability of S. salsa based on GAMs 
 

 
 
Fig. 6  Predicted vegetation type map based on species occurrence probability 
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3.3  Model validation based on ROC curve 
The AUC is equal to the probability that a classifier will 
rank a randomly chosen positive instance higher than a 
negative one (Fawcett, 2006). The area under the ROC 
curve (AUC) results were considered excellent when 
AUC values between 0.9 and 1.0, good when between 
0.8 and 0.9, fair when between 0.7 and 0.8, poor when 
between 0.6 and 0.7 and failed when between 0.5 and 
0.6 (Obuchowski, 2003). According to this, the accuracy 
of the fitted GAMs models in this study could be all 
classified into the excellent class (Fig. 7). 

 

 
 

Fig. 7  Cross validation of fitted GAMs models based on Re-
ceiver Operating Characteristic (ROC) curve for P. australis (a), 
S. salsa (b) and T. chinensis (c) 

4  Discussion 

4.1  Performance of fitted GAMs model  
Classical vegetation mapping methods, such as super-
vised classification and non-supervised classification, 
only utilize spectral features to classify vegetation and 
ignore the relation between vegetation and environment. 
In this research, the corresponding relations between 

vegetation and environmental variables as well as spec-
tral features, were used to map the vegetation. Hence, 
theoretically, the approach adopted in this research is 
robust for vegetation mapping, and the results also ap-
prove the practicability and effectiveness of this method. 
The D2 values are all higher than 0.5 (Table 4), which 
indicates that more than half of the deviance can be ex-
plained by the fitted GAMs model, the percent of the 
explained deviance is higher than the similar researches 
(Shen and Zhao, 2007; Wehrden et al., 2009). The AUC 
values are all higher than 0.9 (Fig. 7) and this means 
that the prediction results are high accuracy and accept-
able (Hosmer and Lemeshow, 2000). Therefore, we can 
say that integrating vegetation survey data, spectral data 
and environmental data by GAMs is a feasible approach 
to map vegetation.  

In this research, prediction accuracy varies with 
vegetation type. P. australis and S. salsa are better pre-
dicted than T. chinensis. One cause is the difference in 
the amount of training samples, since existing resear-
ches have proved that the map quality might be im-
proved when quadrats are collected at higher density 
(Guisan and Zimmerman, 2000; Pfeffer et al., 2003; 
Miller et al., 2007). Another cause might be the differ-
ence in the plant community structure (Dirnböck et al., 
2003). Sparse plant communities with low coverage 
yield the phenomenon of diffuse background spectral 
reflectance and bring out the effects of mixed spectrum. 
Therefore, the discriminating power of spectral vari-
ables becomes relatively weak for open vegetation types 
(Goward et al., 1994). In the presented study, the habitat 
of T. chinensis lacks a dense vegetation cover and the 
effect of mixed spectrum is very strong, which lead to 
the weak correlation between vegetation and spectral 
variables. On the contrary, P. australis meadow and S. 
salsa community have dense vegetation cover, the ef-
fects of mixed spectrum are weak and spectral features 
have stronger ability to delineate vegetation patches.  

In addition, we found that predictors in the GAMs 
model of different species are the same, but the contri-
bution of the same predictor in different GAMs model is 
different, this might indicate that there are differences in 
mesophyll structure and environment requirements 
among those vegetation types. 

4.2  Prediction of vegetation type 
Most researches in plant ecology employed GAMs to 
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predict the species occurrence probability instead of 
vegetation type (Shen and Zhao, 2007; He et al., 2008; 
Wen et al., 2008). However, this is not appropriate for 
all application of conventional vegetation maps, for 
example, in conservation, it is necessary for us to know 
whether a place does or does not belong to a certain 
vegetation type. In such cases, vegetation map with 
clear class may be appropriate (Schmidtlein et al., 2007). 
Therefore, in this research, we defined the vegetation 
type of each prediction cell according to the probability 
of species occurrence, and the species with the greatest 
estimated probability was assigned to the pixel. How-
ever, we should admit that it is insufficient for us to de-
termine the vegetation type based on the probability of 
species occurrence, inter-specific relationships should 
also be involved in the prediction of vegetation type. 

4.3  Effects of response variables on prediction 
Response variable required in this research is binomial 
data (presence/absence), so the generation of response 
variables has great effects on the performance of the 
fitted GAMs model. 

In order to generate the required binomial data for the 
GAMs model (take T. chinensis for instance), we speci-
fied that if the importance value (IV) of T. chinensis is 
higher than other species in the quadrat, then this quad-
rat was assigned with 1, otherwise, the quadrat was as-
signed with 0. However, if there are two or more domi-
nant species in the same quadrat, for example, T. 
chinensis and P. australis are both dominant species in a 
quadrat, but the importance value of P. australis is 
slightly lower than T. chinensis, so this quadrat was still 
assigned with 1. While the spectral features derived by 
this quadrat represent the spectral characteristics of P. 
australis to a great extent, therefore, the correlation be-
tween spectral features and T. chinensis was relaxed and 
the discernment capacity of the spectral variables de-
creased (Treitz et al., 1992). Futuremore, information 
loss due to the transition from species-plot matrix to 
binomial data (presence/absence) weakened the relation 
between plant species and spectral features, this also 
decreased the discernment of the spectral variables.  

4.4  Effects of predictor variables on prediction 
The multi-spectral image used in this research has only 
four wavebands with 10 m spatial resolution. The low 
spectral and spatial resolutions limit the discriminating 

power of the spectral variables. The spatial resolution of 
the DEM (with 50 m horizontal resolution) used in this 
study is not fine enough to describe the micro-topogra-
phy and part of the micro-scale variation in topography 
missed. For soil variables, the number of soil samples 
limits the prediction accuracy of the interpolation by 
ordinary Kriging. Hence, inadequate resolution of pre-
dictors is partially responsible for the unexplained varia-
tion.  

In this research, the quadrat size, the spatial resolu-
tions of DEM and remote sensing image are different. 
The optimal condition is that resolutions of all the data 
are the same, but such coherence is always impossible. 
Even the quadrat size, the spatial resolution of DEM and 
the spatial resolution of remote sensing image are the 
same, spatial error of the remote sensing image or im-
precision in the location of the quadrat can also relax the 
field-to-image correlation (Peleg and Anderson, 2002; 
Weber, 2006). Another problem is the temporal differ-
ence between the field plot measurement and remote 
sensing image. Ideally, to strengthen the field-to-ima-
gery correlation, the field data and remote sensed data 
should be collected at the same time. However, it is im-
possible for us to collect all the required field data at the 
same time when the remote sensing image is acquired, 
especially for large area. This makes the spectral prop-
erties derived from the satellite image can not represent 
the actual spectral features of the vegetation and relax 
the field-to-imagery correlation exactly (Ohmann and 
Gregory, 2002; Karl, 2010). 

Furthermore, even if resolution mismatch does not 
exist and the resolution of DEM is fine enough to reflect 
micro-scale variations controlling the distribution of 
plant community, it can not account for all of them. The 
reason is that biological factors, land use and other dis-
turbances have great effects on the distribution of plant 
community (Dirnbök et al., 2003; Dullinger et al., 2003). 
Therefore, the influences of land use and other variables 
which are not closely related to environmental condi-
tions also limit the explanatory power of environmental 
and spectral variables (Dirnböck et al., 2002). 

5  Conclusions 

In this research, GAMs were used as an analysis tool to 
integrate environmental factors and spectral factors to 
predict the vegetation distribution in the Huanghe River 
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Delta. The results proved that: 1) Integrating vegetation 
survey data, environmental data and spectral data based 
on GAMs is a practical way to map the vegetation. 2) 
Prediction accuracy varies with community type, and 
community structure has great effects on the perform-
ance of GAMs model. 3) Inaccuracies could not be ac-
counted for by environmental descriptors and spectral 
variables, confounding effects of additional controls like 
land use and disturbance, also have certain contribution 
to the imprecision. This study provides a promising il-
lustration of the power of combining spectra data and 
environmental data on vegetation mapping with GAMs. 
This approach will be helpful for the researches of 
vegetation ecology and remote sensing classification. 
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