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Abstract: Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas, and it distributes only in a re-

stricted area with very low number. To address the lack of detailed distributional information, we used maximum en-

tropy (Maxent) niche-based model to predict the species′ potential distribution from limited occurrence-only records. 

The location data of P. smithiana, relative bioclimatic variables, vegetation data, digital elevation model (DEM), and 

the derived data were analyzed in Maxent. The receiver operating characteristic (ROC) curve was applied to assess the 

prediction accuracy. The Maxent jackknife test was performed to quantify the training gains from data layers and the 

response of P. smithiana distribution to four typical environmental variables was analyzed. Results show that the 

model performs well at the regional scale. There is a potential for continued expansion of P. smithiana population 

numbers and distribution in China. P. smithiana potentially distributes in the lower reaches of Gyirong Zangbo and 

Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP), 

China. The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen 

closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000–3000 m. Model 

simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-

ent. 
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1  Introduction 
 

Rare species often distribute in limited geographic areas 
or in a very small number of habitats, which need to be 
well preserved. Developing effective methods for iden- 
tifying the factors that shape the distribution and abun- 
dance of rare species is a prime concern for conserva- 
tion (Guisan et al., 2006; Williams et al., 2009). Models 
of the distribution of rare species are important tools in 

monitoring and management efforts. Because of their 
rarity, presence data of such species that are used to 
build distribution models are generally limited. Many 
rare species inhabit remote regions which are difficult to 
observe, and there is an urgent need to assess the status 
of these species. However, until recently such regions 
have been little explored by biologists, and most avail- 
able information is based on visual surveys in existing 
or proposed reserves (Schaller, 1977; Harris and Loggers, 
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2004). Although these surveys can not provide reliable 
estimations of population distribution, they provide an 
opportunity to focus sampling effort and refine the esti-
mations of distribution within the broader population 
range. This can be achieved by understanding the fun- 
damental ecological requirements of the species, based 
on the environmental characteristics of known occur- 
rence sites (Kadmon and Heller, 1998; Peterson et al., 
1999). 

It is widely accepted that the geographic distribution 
of species and their diversity or richness depend on how 
well their ecological niche is understood (Whittaker et 
al., 2001). The measurement of environmental require- 
ments to quantify the range size and patterns of species 
distribution and richness is an important step towards 
this understanding (Woodward, 1987). The niche is an 
abstract characterization of the intra-community posi-
tion of the species that depends on time, space, and dif-
ferences in resource gradients that cause the species 
evolution. The majority of niche-based models pub-
lished in the literature have been developed on common 
plant and animal species or biodiversity (Rouget et al., 
2004; Poutsma et al., 2008). To date, relatively few 
successful applications of this approach for rare plant 
species have been found (Miller, 1986; Brigham and 
Schwartz, 2003; Engler et al., 2004).  

Maximum entropy (Maxent) niche-based model can  
be applied to analyzing the coordinates of species pres- 
ence-only geographic locations and associated environ- 
mental data to produce distributions by expressing suit- 
ability of each grid cell as a function of the environ- 
mental variables at that grid cell. A high value of the 
function indicates that the grid cell is predicted to have 
suitable conditions for that species (Phillips et al., 2005). 
Compared with other existing models, such as the bio- 
climatic prediction system (BIOCLIM) (Beaumont et al., 
2005), domain model (DOMAIN) (Carpenter et al., 
1993), genetic algorithm for rule-set prediction model- 
ing system (GARP) (Stockwell et al., 2006; Sanchez-  
Flores, 2007) and multivariate adaptive regression 
splines (MARS) (Elith et al., 2006), Maxent has a num- 
ber of features that make it very useful for modeling 
species distribution (Vidal-Garcia and Serio-Silva, 
2010), including a deterministic frame work, hence, sta-
bility as well as the ability to run with presence-only 
point occurrences; high performance with few point lo- 
calities; better computing efficiency enabling the use of 

large-scale high-resolution data layers; continuous out- 
put from least to most suitable conditions; and an ability 
to model complex responses to environmental variables 
(Phillips et al., 2005). 

Tibetan spruce (Picea smithiana) is a Himalayan en-
demic conifer species with very few species number and 
limited distribution areas, and as a habitat specialist, 
very sensitive to climate change. Confirming the distri-
bution of P. smithiana is of great importance for species 
conservation and facing the challenge of species con-
servation under the threat of climate change. This paper, 
using maximum entropy (Maxent) niche-based model, 
predicted the potential distribution area of P. smithiana 
in the Qomolangma (Mount Everest) National Nature 
Preserve (QNNP), China, with the purpose of providing 
reliable spatial prediction of P. smithiana for its conser-
vation and identifying the suitable site conditions for its 
reintroduction.  

 
2  Materials and Methods 
 
2.1  Study area 
The Qomolangma (Mt. Everest) National Nature Pre-
serve (3.3 × 104 km2), one of the most important pro-
tected area in the world (Cidanlunzhu, 1997), is located 
at the junction of the Tibet Autonomous Region, China 
and Nepal. It covers the whole area of Tingri, Gyirong, 
Nyalam counties and most area of Dinggyê County 
(27°48′–29°19′N, 84°28′– 88°23′E) (Zhang et al., 2007). 
We take the whole area of the four counties (3.6 × 104 
km2) as the study area. It is composed of two big plateau 
geomorphic units of high Himalayan Mountains, and the 
lake basin on the plateau. The former has towering 
snowy peaks and deep river valleys with great diver-
gence of altitude (1800–8800 m). In the southern QNNP, 
at increasing altitudes, are the following climate types: 
mountain warm temperate, subalpine cold temperate, 
alpine sub-frigid, and alpine frigid. In the northern part, 
the climate is cold and dry, which are the typical char-
acteristics of the plateau continental climate. The soil 
distribution shows significant horizontal and vertical 
zonation. Mountain yellow brown soil, mountain acid 
brown soil, and mountain bleached podzolic soil, subal-
pine meadow soil, alpine meadow soil, subalpine steppe 
soil and alpine meadow-steppe soil are distributed in 
turn from bottom to top. The QNNP is very diverse in 
ecosystems and its vertical zones are remarkable. The  
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vegetation is mainly composed of mountain subtropical 
evergreen broad-leaved forests, mountain warm-tem-
perate needle-leaved and broad-leaved mixed forests, 
mountain cold-temperate needle-leaved forests, subal-
pine frigid shrubs and meadows, alpine frigid meadows 
and cushion vegetation, and alpine frigid moraine li-
chens. The QNNP is rich in biodiversity; there are 2176 
species of vascular plants, among them more than 10 
species are national key protected plants, such as P. 
smithian Alcimandra cathcartii and Trillium gova-
nianum, and 263 species of animals including more than 
30 species of national key protected animals, such as 
Presbytis entellus, Macaca assamensis, and Ailurus 
fulgens (Tibet Bureau of Statistics, 2008).  

 
2.2  Data and processing  
2.2.1  Occurrence data of P. smithiana 
P. smithiana belongs to genus Picea, which is native to 
the Himalayas, giving rise to its alternative name, the 
′West Himalayan Spruce′. It is an evergreen tree grow-
ing to 30–50 m at a slow rate. P. smithiana has the 
longest needles of any spruce, up to 5 cm in length. It is 
in leaf all year, and the seeds ripen from October to No-
vember. The flowers are monoecious and are wind pol-
linated. The plant prefers a climate with distinct seasons 
and acid mountain brown soil. It requires sufficient hu-
midity during growing season and has a large root sys-
tem. The plant can resist cold, drought and strong wind, 
and it has a strong shade tolerance, but it can not tolerate 
atmospheric pollution and maritime exposure. It often 
mixes with Pinus griffithii and Quercus semicarpifolia. 
P. smithiana grows mainly at an altitude of 2400–3200 
m, and it is one of the endemic species of the Himalayas. 
According to the former literature references and docu-
mentation (Wu, 1980), in China, it only appears (with 
low abundance) in the Gyirong Zangbo River Basin in 
Gyirong County, located in the south of the Qing-
hai-Tibetan Plateau. However, the Poiqu and Pumqu 
River basins located in the three other counties of 
QNNP have extremely similar environmental conditions 
and are distributed relatively close to the Gyirong 
Zangbo River Basin. As such, there is a high probability 
of P. smithiana occurring in these regions. 

The distribution data of P. smithiana were obtained 
from Chinese Virtual Herbarium applied by the Qing-
hai-Tibetan Plateau Museum of Biology in the North-
west Institute of Plateau Biology, Chinese Academy of 

Sciences. The database contains the information of the 
location, associated environment and morphological 
features of the samples collected from the 1970s to pre-
sent. A total of 36 P. smithiana samples were available, 
including eight replicate samples. We eliminated the 
replications and used the remaining 28 points (18 for 
training, 10 for testing) as the occurrence data to be 
analyzed in this study.  
2.2.2  Bioclimatic variables 
The environmental layers ′Bioclimatic Variables′ were 
used in the predicting procedures. These consist of im-
portant ecological factors and global climatic features. 
The data supplied by World Climate Project were 
downloaded from http://www.worldclim.org/, and com-
prised 19 layers (Table 1). The data layers were gener-
ated through interpolation of monthly average climate 
data from weather stations on a 30 arc-second resolution 
grid (often referred to as ′1 km′ resolution) during 1950– 
2000 and calculation of the annual mean values (Hi-
jmans et al., 2005). We scaled down the environmental 
layers to 30 m resolution to match with the elevation 
and vegetation data, as finer resolution data was not 
available. 

 

Table 1  Bioclimatic variables description 
Variable Description 

Bio1 Mean annual temperature 

Bio2 Mean diurnal range 

Bio3 Isothermality 

Bio4 Temperature seasonality 

Bio5 Max temperature of warmest month 

Bio6 Minimum temperature of coldest month 

Bio7 Temperature annual range 

Bio8 Mean temperature of wettest quarter 

Bio9 Mean temperature of driest quarter 

Bio10 Mean temperature of warmest quarter 

Bio11 Mean temperature of coldest quarter 

Bio12 Annual precipitation 

Bio13 Precipitation of wettest month 

Bio14 Precipitation of driest month 

Bio15 Precipitation seasonality 

Bio16 Precipitation of wettest quarter 

Bio17 Precipitation of driest quarter 

Bio18 Precipitation of warmest quarter 

Bio19 Precipitation of coldest quarter 

 
2.2.3  Elevation data 
All the spatial data was handled in ArcGIS version 9.2 
(ESRI) with the spatial analyst extension. Digital eleva-
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tion model (DEM) was obtained from Earth Remote 
Sensing Data Analysis Centre with a resolution of 30 m 
(http://www.gdem.aster.ersdac.or.jp/search.jsp). Aspect 
and slope values were derived from DEM. 
2.2.4  Vegetation data  
The vegetation data used in this study were derived 
from the land cover data obtained through the interpre-
tation of Advanced Wide Field Sensor (AWiFS) satellite 
imagery in 2007, by the method of object-oriented clas-
sification. The land cover data (Zhang et al., 2010) en-
compass the whole QNNP with a spatial resolution of  
56 m (Fig. 1). The classification system of the land cover 
was established by the Land Cover Classification Sys-
tem 2 published by FAO (Table 2) (Zhang et al., 2010). 
2.2.5  Auxiliary data 
The auxiliary data include the topographic maps at the 

scale of 1∶100 000 covering the whole QNNP; the 

vector layers of county boundaries, main rivers, impor-
tant cities and counties, main road lines and main rail-
way lines of China were obtained from National Fun-

damental Geographic Information System. 
 
2.3  Maximum entropy (Maxent) niche-based model 
Maxent is a machine learning algorithm that generates 
predictions or inferences of species′ ecological require-
ments from an incomplete set of information. The Max-
ent approach is based on a probabilistic framework. It 
relies on the assumption that the incomplete empirical 
probability distribution (based on the species occur-
rences) can be approximated with a probability distribu-
tion of maximum entropy subject to certain environ-
mental constraints, and that this distribution approxi-
mates a species potential geographic distribution (Phillips 
et al., 2005; Suarez-Seoane et al., 2008). Maxent mod-
els do not predict the actual limits of a species′ range; 
they can identify regions with similar environmental 
conditions to occurrence localities. The input data in- 
cludes a set of environmental layers for a geographical 
region and a set of species presence data inside that re- 
gion. The model evaluates the suitability of each grid 

 

 
 

Fig. 1  Land cover map of study area (Zhang et al., 2010) 
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Table 2  Classification system of land cover 
ID Class Division Description 

1 Bare soil Bare soil and/or other unconsolidated material(s) 

2 Bare rock Bare rock(s) 

3 Built-up area Built up area(s) 

4 Cultivated area Herbaceous crop(s); crop gype: food crops 

5 River Natural waterbodies (flowing) 

6 Lake Natural waterbodies (standing) 

7 Snow Snow 

8 Glacier Ice (moving) 

9 Gravels, stones and boulders Gravels, stones and boulders 

10 Alpine sparse vegetation Sparse perennial short forbs 

11 Forbs Open annual forbs; floristic: Artemisia wellbyi 

12 Closed to open grassland Closed to open grassland, single layer; floristic: Kobresia 

13 Closed grassland Closed perennial short grassland; floristic: Kobresia 

14 Closed to open flooded herbaceous Vegetation grow on permanently flooded land 

15 Broad-leaved evergreen closed shrubland Broad-leaved evergreen with medium height and thickness 

16 Broad-leaved deciduous open shrubland Broad-leaved deciduous shrubland 

17 Needle-leaved evergreen open shrubland Needle-leaved evergreen medium high shrubland 

18 Broad-leaved evergreen closed forest Broad-leaved evergreen high trees 

19 Broad-leaved deciduous closed forest Broad-leaved deciduous high trees 

20 Mixed forest Multi-layered mixed high trees 

21 Broad-leaved deciduous closed to open forest Broad-leaved deciduous woodland 

22 Needle-leaved evergreen closed to open forest Needle-leaved evergreen woodland 

 
cell as a function of environmental variables at that cell. 
The suitability value provided by Maxent range is from 
0 (unsuitable habitat) to 100 (optimal habitat). In addi-
tion, Maxent is equipped with several features aimed at 
supporting the interpretation of the model results. It has 
a built-in jackknife option, which allows the estimation 
of the significance of individual environmental data 
layers in computing the species distributions. It also can 
provide response curves for each environmental layer 
showing how the Maxent prediction depends on a par-
ticular environmental variable. Maxent version 3.3.2 
was obtained from http://www.cs.princeton.edu/~schapire/ 
maxent/. We followed recently published best practice 
approaches to tune its parameters (Phillips and Dudik, 
2008) and carried out the jackknife test and response 
curves to further analyze the model results. 

The Receiver Operating Characteristic (ROC) curve 
was applied to verifying the result of Maxent modeling. 
Maxent provides statistical measures for model per-
formance such as omission rates and the areas under the 
ROC curve. The ROC curve provides a quantitative 
representation of the tradeoffs between no omission 

(sensitivity) and commission error (1-specificity). The 
sensitivity represents the absence of the omission error, 
and the quantity 1-specificity represents the commission 
error. The ROC curve is obtained by plotting the sensi-
tivity on the y-axis and 1-specificity on the x-axis for all 
possible thresholds. The area under the ROC curve 
(AUC) is an important measurement of the model per-
formance. The larger the AUC is, the higher the sensi-
tivity rate and the lower the 1-specificity rate. An AUC 
equal to 1.0 represents an ideal diagnostic test because it 
achieves both 100% sensitivity and 100% specificity 
(Zweig and Campbell, 1993). 

 
3  Results 

 
3.1  Identification of main bioclimatic variables   
There are close correlations among the 19 bioclimatic 
variables. Such correlations can increase the difficulty 
of identification of the main influencing factors, at the 
same time, the modeling requirements of logistic re-
gression (applied in Maxent) that the variables should be  
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normal and independent can not be met. In addition, if 
the environmental variables layers have a high resolu-
tion, the Maxent could not run because of the large 
amount of data. Therefore, we ran the Maxent for the 
first time to calculate the contribution of each biocli-
matic variable to the predicted probability. We chose six 

bioclimatic variables with high contribution values (≥ 1) 

as the modeling variables, which include Bio3, Bio6, 
Bio7, Bio14, Bio11 and Bio1, with the contribution per-
cent of 67.00%, 17.10%, 9.60%, 1.90%, 1.10%, 1.00%, 
respectively. 
 
3.2  Potential distribution of P. smithiana 
Maxent models for the potential distribution of P. 
smithiana were generated using the geo-referenced spe-
cies presence data and 10 environmental variable layers, 
including six bioclimatic variable layers, three elevation 
layers and one vegetation layer. The potential distribu-
tion of P. smithiana is shown in Fig. 2. 

P. smithiana mainly distributes in the lower reaches of 

Gyirong Zangbo and Poiqu in Gyirong and Nyalam 
Counties, where the altitude is comparatively lower than 
the other areas in QNNP, and the climate is mountain 
warm temperate. It often appears along the river valley 
and mixes with Pinus griffithii and Quercus semicarpi-
folia which are the dominant species of subtropical 
mountain needle-leaved forest and mixed forests of sub-
tropical mountain evergreen broad-leaved forests, nee-
dle-leaved forest and deciduous broad-leaved forest. Its 
distribution area is parallel to the buffer zone of the riv-
ers. The distribution probability becomes lower as the 
distance from the river increases. 

 
3.3  Result evaluation using ROC test 
We used two indicators to examine the performance of 
the model: the fraction of predicted area and extrinsic 
omission rate as the threshold-dependent test and the 
area under the ROC curve (AUC) as the thresh-
old-independent test (Table 3). The indicators were ob- 
tained using approximately 30% of the training data as 

 

 

Fig. 2  Prediction of distribution of P. smithiana 
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Table 3  Results of threshold-dependent omission test and 
threshold-independent ROC test 

Threshold-dependent test  Threshold-independent test 

Fractional pre-
dicted area 

Test omis-
sion rate 

 AUC test (training) 

0.004 0.001  0.998 (0.999) 

 
test localities for evaluating the performance statistics. 
The AUC value (0.998) was significantly better than 
random (0.5). This result was obtained for both the 
training and the test data, with the small difference in 
AUC values suggesting a robust performance of the 
Maxent algorithm to capture the changes in environ-
mental variables over point localities. The omission test 
was calculated at a 10% threshold value. At this thresh-
old, the fractional predicted area shows the fraction of 
all the pixels that are predicted suitable for the species. 
The omission rate was quite low (0.001), indicating that 
only a small fraction of the test locations fell into pixels 
not predicted as suitable for P. smithiana. The overall 
accuracy of the model for P. smithiana was high, im-
plying that the Maxent-derived distributions are a close 
approximation of the distribution probability that repre-
sents the reality. 
 
3.4  Jackknife analysis of environmental variables 
The jackknife training gains for the environmental vari- 
ables were performed for all individual runs and showed 

almost the same results with slight variability in gain 
values (Fig. 3). Six variables have notable influences on 
the distribution pattern of P. smithiana: vegetation, 
DEM, temperature annual range, minimum temperature 
of the coldest month, mean temperature of the coldest 
quarter and mean annual temperature. The variables 
with low gain and thus less contribution to model gen-
eration were: aspect, slope and precipitation of the driest 
month.  

 
3.5  Response curves of environmental variables 
We chose four response curves of environmental vari-
ables, including vegetation, DEM, mean annual tem-
perature and minimum temperature of the coldest month 
to analyze the response of P. smithiana distribution to 
each typical environmental variable (Fig. 4).  

Based on these response curves, P. smithiana prefers 
the ecological environment with high forest cover, com-
paratively low altitude and warm temperature, and is 
more likely to choose needle-leaved evergreen closed to 
open forest and mixed forest. It is worth noting that cer-
tain patches of cultivated area are distributed quite close 
to the potential distribution area of P. smithiana. The 
further expansion of cultivated land will probably alter 
the habitat of P. smithiana. As for the DEM, P. smithi-
ana appears to mainly distribute from 2000 m to 3000 m. 
The distribution probability decreases with the increase 

 
Bio1: mean annual temperature; Bio3: isothermality; Bio6: minimum temperature of coldest month; Bio7: temperature annual range; 

Bio11: mean temperature of coldest quarter; Bio14: Precipitation of driest month 
 

Fig. 3  Jackknife test for environmental variables significance performed by Maxent 
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Vegetation code: 1, bare soil; 2, bare rock; 3, built-up area; 4, cultivated area; 5, river; 6, lake; 7, snow; 8, Glacier; 9, gravels, stones and boulders; 10, alpine sparse 

vegetation; 11, forbs; 12, closed to open grassland; 13, closed grassland; 14, closed to open flooded herbaceous; 15, broad-leaved evergreen closed shrubland;  
16, broad-leaved deciduous open shrubland; 17, needle-leaved evergreen open shrubland; 18, broad-leaved evergreen closed forest; 19, broad-leaved deciduous 

closed forest; 20, mixed forest; 21, broad-leaved deciduous closed to open forest; 22, needle-leaved evergreen closed to open forest  

 
Fig. 4  Response curves of environmental variables 

 
of elevation (> 3000 m). P. smithiana prefers a warm 
temperate climate in mountainous area. The distribution 
probability increases as the mean annual temperature 
and minimum temperature of the coldest month in-
crease. 
 
4  Discussion and Conclusions  
 
This study employed maximum entropy (Maxent) 
niche-based model to generate a predictive distribution 
of P. smithiana. The model performed well at the re-
gional scale. Results indicate that for P. smithiana, the 
number and distribution might continue to expand in 
China. P. smithiana prefers a warm temperate climate in 
mountain area and mainly distributes in the needle-    
leaved evergreen closed to open forest and mixed forest 
along the valley at comparatively low altitudes of about 
2000–3000 m. According to the results of this study, 
aside from the lower reaches of the Gyirong Zangbo 
River, which is considered to be the only distribution 

area in China, P. smithiana may potentially distribute in 
the lower reaches of the Poiqu River.  

Although the Maxent performed well with few point 
localities and enabled the use of large-scale high-reso-   
lution data layers, there remained several limitations in 
this study. The data used in the model are from a variety 
of sources with different resolutions. The vegetation (56 
m) and DEM data (30 m) have high resolution; however, 
the bioclimatic variables only have a resolution of about 
1 km, errors may exist during the downscaling process 
which will reduce the accuracy of the prediction. There 
are only a small number of location data of P. smithiana 
because of its rareness. Most of the recorded location 
data were collected during the 1970s and these locations 
were only distributed near roads because they were eas-
ier to reach. The lack of surveys in some habitats may 
result in a bias in prediction and lead to the weak valida-
tion because few location data were used for testing. 
Moreover, the validity of training dataset for the model  
is based on the assumption that current species distribu-
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tions are in equilibrium with the current climate. The 
impact of global climate change on species distribution 
is not considered. Another important defect is that the 
niche selection does not necessarily reflect the quality of 
the habitat (Johnson and Seip, 2008). It describes the 
realized niche of the species, which results from compe-
tition with natural disaster (e.g., fire), human distur-
bance and several other biotic and abiotic factors. It is 
quite difficult to take account of all the possible factors. 

There is great potential to build upon the foundation 
of this project. Possible distributions of other rare spe-
cies can be predicted using specific location data and 
relative environmental variable layers for each species. 
If more location data and layers with higher resolution 
are available, it would lend even greater support to the 
predictions and might also provide a stronger foundation 
for validity of the prediction. As the global climate 
changes, the surrounding environment of rare species 
will inevitably be affected, leading to changes in habi-
tats. The influence of global climate change on species 
distribution presents a challenge because it requires con-
tinuing data refinement as environmental variables 
change along with climate change. Another challenge 
for future research will be to develop an integrated ap-
proach to incorporate human influence factors, such as 
land-use changes, and reproduction mechanisms to im-
prove the precision of species distribution simulations. 
Furthermore, more field work for identifying P. smithi-
ana in the lower reaches of the Poiqu River and related 
conservation planning needs to be considered.  
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