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Abstract: Time-series Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation 

Index (NDVI) data have been widely used for large area crop mapping. However, the temporal crop signatures gener-

ated from these data were always accompanied by noise. In this study, a denoising method combined with Time series 

Inverse Distance Weighted (T-IDW) interpolating and Discrete Wavelet Transform (DWT) was presented. The detail 

crop planting patterns in Hebei Plain, China were classified using denoised time-series MODIS NDVI data at 250 m 

resolution. The denoising approach improved original MODIS NDVI product significantly in several periods, which 

may affect the accuracy of classification. The MODIS NDVI-derived crop map of the Hebei Plain achieved satisfac-

tory classification accuracies through validation with field observation, statistical data and high resolution image. The 

field investigation accuracy was 85% at pixel level. At county-level, for winter wheat, there is relatively more signifi-    

cant correlation between the estimated area derived from satellite data with noise reduction and the statistical area (R2 = 

0.814, p < 0.01). Moreover, the MODIS-derived crop patterns were highly consistent with the map generated by high 

resolution Landsat image in the same period. The overall accuracy achieved 91.01%. The results indicate that the 

method combining T-IDW and DWT can provide a gain in time-series MODIS NDVI data noise reduction and crop 

classification. 
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1  Introduction 
 

The satellite-based remote sensing data have been widely 
applied to providing a cost-effective way to develop 
large geographic regional land use/land cover (LULC) 
classification. Over the past decade, the science of large- 
area LULC mapping had made significant progress as 
the same as improved remotely sensed data and com-
puting resources, and advanced classification techniques. 
Numerous efforts devoted into large-area LULC map-
ping at regional (Homer et al., 2004; Wessels et al., 2004) 
and global (Friedl et al., 2002; Bartholome and Belward, 
2005) scale have been known through literatures. How-

ever, little attention has been paid to large-area crop 
mapping and monitoring. Most of the highlights of 
mapping efforts focused on the classification of land 
cover types associated with natural systems (e.g., forest 
land, grassland, and shrubland) and have tended to gen-
eralize cropland areas into a single or limited number of 
thematic classes (Wardlow and Egbert, 2008). Few re-
searches on large-area mapping attempted to map spe-
cific crop types and crop land transformation (Wardlow 
et al., 2007; Galford et al., 2008; Zhang et al., 2008). It 
is known that the classification map is essential to assess 
the cropland changes which commonly occur every year. 
Especially in the irrigated agricultural regions in semi- 
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arid area, the cropland pattern is a significant factor for 
agricultural water management. Thus, an accurate and 
timely mapping methodology is necessary to character-
ize the regional-scale cropping pattern and to provide 
improved LULC information to scientists and policy 
makers. However, the development of a large-area crop 
mapping methodology is complicated because it re-
quires remotely sensed data which have large geo-
graphic coverage, high temporal resolution, adequate 
spatial resolution, minimal cost and is easy to imple-
ment, if possible.  

Moderate Resolution Imaging Spectroradiometer 
(MODIS) data products offer a great opportunity for 
land-cover and land-use change studies due to their 
characteristics of moderate spatial resolution, frequent 
observations, enhanced spectral resolution and improved 
atmospheric calibration (Zhang et al., 2003) and being 
free to the end user. Moreover, the MODIS Land Sci-
ence Team provides a suite of standard MODIS data 
products to users, including 16-day composited MODIS 
250 m Vegetation Index (VI) product (MOD13Q1) and 
yearly MODIS land cover products (MOD12). However, 
the current 1-km MODIS global land cover classifica-
tion resolution may be too coarse for local application.  

In an analysis of the MODIS VI product data for 
more than 2000 fields in Kansas, the data were found to 
have sufficient spatial, spectral, temporal, and radiomet-
ric resolutions to detect unique multi-temporal VI sig-
natures for the state's major crop types and land use 
practices (Wardlow et al., 2007). Time-series Normal-
ized Difference Vegetation Index (NDVI) data can dis-
tinguish different vegetation characteristics through ac-
quiring the unique value at individual phase during plant 
growth period (Boles et al., 2004). Many researches had 
been carried out using time-series NDVI data to classify 
land-cover map (Friedl et al., 2002) and to monitor 
vegetation dynamics (Sakamoto et al., 2005; Lunetta et 
al., 2006). However, time-series data are often affected 
by various noise components such as cloud presence, 
atmospheric variability, aerosol scattering and bi-direc-   
tional effects (Xiao et al., 2003; Sakamoto et al., 2005). 
Such time-series data from remote sensing may have 
unpredicted noise, which will limit the use of traditional 
classification methods based on statistical assumptions. 
Thus, noise reduction or filter processing is necessary 
before the time-series NDVI data are used for further 
analyses (Xiao et al., 2003; Lunetta et al., 2006). There 
were many methods and tools for such preprocessing 

including Best Index Slope Extraction (BISE) (Viovy et 
al., 1992) and modified BISE (Lovell and Graetz, 2001), 
Asymmetric Gaussian (AG) technique (Jönsson and 
Eklundh, 2002), Savitzky-Golay (Savitzky and Golay, 
1964) and modified Savitzky-Golay (Chen et al., 2004), 
fast Fourier transform technique and others Fourier-  
based fitting methods (Sellers et al., 1994; Roerink et al., 
2000; Zhang et al., 2008), mean-value iteration (MVI) 
filter (Ma and Veroustraete, 2006), double logistic func-
tion-fitting (Beck et al., 2006), and wavelet transform 
method (Galford et al., 2008), and currently, Julien and 
Sobrino (2010) presented the iterative Interpolation for 
Data Reconstruction (IDR) method. 

Many different methods were compared in previous 
researches, such as AG function and BISE, AG function 
and Fourier-based method (Jönsson and Eklundh, 2002), 
modified Savitzky–Golay and fast Fourier transform 
(Chen et al., 2004). Hird and Mcdermid (2009) pre-
formed quantitative assessments of six different noise 
reduction methods. The results indicate that each 
method has its advantages and drawbacks which limit its 
application (Jönsson and Eklundh, 2002; Chen et al., 
2004). At present, the researches on noise-reduction are 
mostly focused on the outliers of time-series NDVI. 
However, the method keeping the high quality NDVI 
values is ignored. In addition, little attention has been 
paid to the application effect of noise reduced time-  
series NDVI, such as the result of the regional classifi-
cation derived from the noise reduced NDVI.  

The objective of this study is to map the crop pattern 
in the Hebei Plain which is one of the major grain-  
producing areas of China. Meanwhile, investigating the 
applicability and accuracy of time-series MODIS NDVI 
data denoised by Time series Inverse Distance Weighted 
interpolating (T-IDW) and wavelet for crop classifica-
tion at regional scale were also implemented. The clas-
sification map of different crop types was validated by 
both statistical data and fine-resolution remote sensing 
data to evaluate the noise reduction and the classifica-
tion method. 

 

2  Study Area and Data 
 

2.1  Study area 
In this study, the Hebei Plain, with an area of 62 020 km2, 
is selected as the study area which is consisted of 83 
counties (Fig. 1). In this area, agriculture is the largest 
water consumer. Meanwhile, rapid economic develop-
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ment and population growth are increasing pressure on 
water supplies. The shortage of water resources has be-
come a serious restraining factor for the development of 
this area (Liu et al., 2001). In the study area, 72% of the 
total area is cultivated land, and the major crop types are 
winter wheat (Triticum aestivum L.) and summer maize 
(Zea mays L.). The growing season of winter wheat is 
from early October to mid-June next year, and summer 
maize is nurtured at the end of winter wheat growth 
season and harvested in last September. Cotton (Gos-
sypium spp.) and spring maize (Zea mays L.) are also 
planted in this area with the growing season from 
mid-April to mid-October. The climate is temperate 
semi-arid with a strong summer monsoon season. Aver-
age monthly temperature ranges from about –2.5℃ in 
January to 26℃ in July, with an average annual tem-
perature of about 13.2℃ and annual frost free days 
about 150–210 days. The average annual precipitation is 
about 400–500 mm, of which about 70% is concentrated 
in July–September. 
 
2.2  MODIS NDVI 16-day composited data  
MODIS NDVI 16-day composite grid data (MOD13Q1) 
are provided every 16 days at 250 m spatial resolution  

as a gridded level-3 product in the Sinusoidal projection 
(Huete et al., 1999). In version 005 a new compositing 
scheme is utilized, which reduces angular, sun-target- 
sensor variations, using the Constrained View Maximum 
Value Composite (CV-MVC) and an option to use 
BRDF models (Didan and Huete, 2006). MOD13Q1 file 
in Hierarchical Data Format-Earth Observing System 
(HDF-EOS) format was acquired from January to De-
cember 2006 from the Land Processes Distributed Ac-
tive Archive Center of U.S. Geological Survey (USGS 
LP DACC) data pool (USGS, 2009). Detailed docu-
ments on MODIS NDVI compositing process and Qual-
ity Assessment Science Data Sets (QASDS) can be 
found at MODIS Vegetation Index (MOD13) Algorithm 
Theoretical Basis Document (Huete et al., 1999). 

 
2.3  Validation data set 
Accuracy assessment of land cover products from 
coarse-resolution satellite dataset is a critical and chal-
lenging task, because these maps can over or underesti-
mate cover types due to the fragmentation and sub-pixel 
proportion of each cover type (Achard and Mayaux, 
2001). As an alternative approach, land cover maps de-
rived from fine-resolution images have been used for 

 

 
 

Fig. 1  Location of study area and survey sites 
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coarse-resolution classification map validation (Lotsch 
et al., 003; Wu et al., 2008). In this study, both statistical 
data and fine-resolution Landsat data derived classifica-
tion map were used to validate the MODIS-derived crop 
area. The statistical data was gathered from Rural Statis-
tical Yearbook of Hebei Province (Cao et al., 2007). 
Two Landsat imageries in September 5, 2006 were ob-
tained from International Scientific & Technical Data 
Mirror Server of Chinese Academy of Sciences. The 
path of these two Landsat imageries is 124 and the rows 
are 33 and 34, and the cover area is showed in Fig. 1. 

Moreover, Magellan EX plorist 600 hand-held GPS 
receivers were used for the ground survey in 2006 and a 
set of 74 sites were sampled (Fig. 1), every site was 
about 1 km2 with only one type of crop. The data of 40 
survey sites were regarded as training sample used to 
generate dynamic NDVI time-series curve, and those of 
other survey sites for result evaluation. 

 
3  Methodology  
 
3.1  Data pre-processing 
A time series of 16-day composite MODIS 250 m NDVI 
dataset spanning one growing season (January to De-
cember, 2006) were created for this study. Totally, 23 
sets of 16-day composite MOD13Q1 data constituted 
the time series, and four tiles (h26v04, h26v05, h27v05 
and h27v05) of the MODIS product were required for 
the whole study area coverage. For each composite pe-
riod, the NDVI data were extracted from those MODIS 
vegetation indexes images. It was then mosaicked, and 
reprojected from the Sinusoidal to the UTM WGS-84 
projection using a nearest neighbor resampling routine. 
Finally, the time-series dataset was subsetted to the 
study area boundary and multilayer image stack was 
developed for both the original NDVI data and Quality 
Assessment Science Data Set (QASDS). 

 

3.2  Creating a T-IDW and wavelet denoised NDVI 
time series 
In this study, a filter procedure composed of two steps 
was developed to generate high quality time-series sig-
nal. The first step is T-IDW interpolation based on 
NDVI Quality Assessment (QA) flags, and the second 
step is noise reduction by wavelet transformation. A 
wavelet-based method is used to remove the contami-

nated data in time-series MODIS NDVI data, because 
the wavelet transformation retains time components 
when transforming time-series data, and so can repro-
duce seasonal changes of vegetation without losing the 
temporal characteristics (Sakamoto et al., 2005). The 
NDVI data stack is firstly filtered using QASDS ratings 
to remove poor-quality data values by T-IDW method. 
Those NDVI pixels corresponded to QASDS data qual-
ity rated as ′acceptable′ or higher are retained. Other 
pixels with ′bad′ quality ratings are flagged for interpo-
lation. The T-IDW interpolation method can be ex-
pressed as Equation (1): 

1

( , , ) ( , , ) ( , , )
M

m

F x y t g x y m f x y m


       (1) 

where x, y is the location of ′bad′ flagged pixel, t is the 
period, F(x, y, t) is the estimated value at time t, f(x, y, m) 
is the value of adjacent pixel of time m, g(x, y, m) is the 
weight of f(x, y, m), and m is the maximum of the time 
distance.  

The NDVI of crop changes continuously with the 
phenology in the real world. However, the period of 
MOD13 composited was 16 days. The interpolated 
value of NDVI will be significantly deviated if the time 
distance is set unreasonable. Therefore, considering both 
the phenology and MODIS composited period, the 
maximum of m is set as 2, which means that the NDVI 
values in one month taking effect in interpolation pro-
cedure.  

Concretely, let F(x, y, t) be the NDVI value for pixel 
(x, y) and composite t (varying from 1 to 23 in a year). 
For a ′bad′ flagged pixel in a composite time t, if all the 
pixels in t + 1, t + 2, t – 1, t – 2 are ′acceptable′, the F(x, 
y, t) will be calculated as Equation (2): 

F(x, y, t) = a1f(x, y, t – 2) + a2f(x, y, t – 1) + 

a3f(x, y, t + 1) + a4f(x, y, t + 2)    (2) 

where a1, a2, a3 and a4 are weight parameters. 
If the f(x, y, t – 1) or the f(x, y, t + 1) is ′bad′ flagged, 

then the g(x, y, m) will change, and the F(x, y, t) will be 
calculated as Equation (3): 

F(x, y, t) = a1f(x, y, t – 2) + a2f(x, y, t ± 1) + 

a3f(x, y, t + 2)                (3) 

Although most of noise has been reduced by the first 
step mentioned above, some residual noise also remains 
because of the intense changes in the land surface. The 
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residual noise shows small fluctuation but higher than 
natural surface change in time-series in frequency. 
Therefore, a further noise reduction step was performed 
by employing Discrete Wavelet Transform (DWT).  

Wavelet functions are a group of functions with os-
cillating and fast-decaying characteristics, which are 
generated from a mother wavelet by dilations and trans-
lations. The wavelet function is defined by Equation (4): 

  





 


a
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a
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)(,             (4) 

where a is the dilation or scaling parameter, and b is the 
translation or position parameter (Addison, 2002). 

Wavelet analysis can accurately capture the local 
characteristics of non-stationary signals because it 
compacts support and fast-decaying. It means that the 
function′s duration was very limited and the time com-
ponents of time-series data can be maintained during 
wavelet transformation. 

The wavelet transformation Wf(a, b) was defined by 
Equation (5): 
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where f(T) is the input signal,  is a mother wavelet, a is 
the dilation or scaling parameter, b is the translation or 
position parameter, and T represents the time-step in the 
one-dimensional time series over which the integration 
is performed (Addison, 2002).  

The form of Equation (5) describes a wavelet trans-
formation decomposed signal at various scales and 
shifts. The wavelet transformation can decompose both 
large-scale and small-scale components of a signal. The 
large-scale component represents the low frequency 
parts of the original signal or optimal approximations, 
and the small-scale component represents the high fre-
quency parts of the original signal or detailed informa-
tion (Lu et al., 2007). 

There are lots of redundancy signals in the continuous 
transformation instance. The redundancy signals would 
be useful in data reconstruction or feature extraction, but 
it will take too much computing time. For most practical 
applications, the DWT is accurate enough and can re-
construct signals perfectly (Mallat, 1989). The DWT 
analyzes signals over a discrete set of scales usually 
sampled at dyadic sequence. In discrete form the pa-
rameters a and b are given as follows: 

(a, b) = (2j, 2jk)              (6) 

where j and k are integers. 
The dyadic form wavelet function is given as (Addi-

son, 2002): 

)2(2 )( 2
, kTT j

j

kj  


             (7) 

Applying the wavelet to a time series signal needs to 
select mother wavelet. The relevant parameters of 
mother wavelet include order and power by which the 
wavelet behavior is defined. A number of different 
mother wavelets existed, including daubechies family 
(dbN), derivative of a Gaussian (DOG) family and 
Coiflet family (Torrence and Compo, 1998). In this 
study, Coiflet mother wavelet with order 4 was used 
because the wavelet shape was as small as possible to 
match the peaks of NDVI value in agricultural phenol-
ogy. A power threshold was required by wavelet noise 
removing processing. The power threshold corre-
sponded to the number of coefficients determining how 
much of the input NDVI time series signal was retained. 
Error analysis was performed with the 70%, 80%, 90% 
and 95% power threshold. Observed NDVI data of cot-
ton and winter wheat-summer maize were compared 
with 20 randomly selected sites with corresponding crop 
type. Average relative error (ARE, it is average value of 
all relative error of observed and wavelet transformed 
NDVI), R2 and root mean square error (RMSE) were 
used in error analysis.  

 
3.3  Classification method 
The phenological characteristics (e.g. germination, vege-  
tative phase, ripening, and harvest) of crop are reflected 
at the pixel-level in the time-series NDVI data. So in 
this study a knowledge-based land use classification 
model that combined remote sensing and phenological 
rules of crops in hierarchical decision tree was devel-
oped. The most important issue of this approach was the 
expert information of different crops on the seasonal 
phenological development in the study area. The aver-
age multi-temporal NDVI profiles and phenology of 
main crop types in the study area were generated from 
40 sites among all the 74 sites.  

Figure 2 shows the hierarchical classification tree 
which is composed of four levels and used in this study. 
At the first stage, the whole study area was mapped into 
vegetation and non-vegetation classes. Secondly, the 
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vegetation land areas were mapped into crop and non- 
crop. Then the crop areas could be separated into bi-
modal crop (winter wheat-summer maize) and spring 
crop. The final step was to classify the spring crop into 
two specific types, spring maize and cotton. All the 
NDVI values in this step were multiplied by 10 000 to 
improve the speed of operation and storage. 
 
3.4  Accuracy assessment 
In order to assess the crop map derived from denoised 
time-series NDVI data, accuracy assessment of three 
different spatial levels was carried out in this study. The 
three spatial scales were pixel-level, county-level and 
regional-level. The pixel-level accuracy was performed 
by comparing time-series NDVI derived map with sur-
vey sites. At the county-level, the crops areas derived 
from satellite imagery were compared with the statisti-
cal data obtained from the Chinese Ministry of Agricul-
ture Database. The regional-level accuracy was assessed 

by comparing the classification map derived from 
MODIS NDVI data and the high resolution Landsat 
data.  

 

4  Results 
 

4.1  Comparative analysis of denoising methods  
Different power threshold (70%, 80%, 90% and 95%) 
effect on wavelet noise removing processing was pre-
sented in Table 1. The results show that the 90% power 
threshold has the maximum R2 and minimum RMSE 
both in cotton and winter wheat-summer maize. 

An example of comparison of various power thresh-
old values for two crop types including cotton and win-
ter wheat-summer maize double-cropping system is 
provided (Fig. 3). The 90% power threshold captures the 
overall data trend well, and gets closest to both high and 
low observed NDVI values. As Fig. 3 and Table 1 
shown, the peaks of NDVI values under the 90% power 

 

 
 

NDVImean: mean annual NDVI; Slope: topographic slope estimated from DEM data; GL: growth season length of vegetation calculated from period number of 
NDVI value higher than 3000; and NDVI18 and NDVI19 are NDVI values on September 30 and October 16, respectively 

Fig. 2  Classification decision tree for discriminate different land covers based on time-series NDVI profile 
 

Table 1  Error analysis of wavelet power threshold on timer-series NDVI data 

Power threshold (%) Crop type ARE (%) R2 RMSE 

Cotton 17.16 0.937 0.157 95 

Winter wheat-summer maize 16.22 0.900 0.153 

Cotton 10.73 0.979 0.097 90 

Winter wheat-summer maize 13.79 0.924 0.132 

Cotton 20.38 0.908 0.209 80 

Winter wheat-summer maize 16.53 0.884 0.161 

Cotton 24.82 0.891 0.205 70 

Winter wheat-summer maize 20.24 0.775 0.224 

Notes: ARE: average relative error; RMSE: root mean square error 
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Fig. 3  Comparison of different wavelet-smoothed time-series 
values and observed NDVI of cotton (a) and winter 

wheat-summer maize double-cropping system (b) in 2006 

 
threshold are removed effectively, although the dou-
ble-cropping system makes the agricultural system more 
complex. 

Assessment of the denoising effects between the 
original signals and denoised NDVI values by T-IDW, 
DWT and T-IDW combined with DWT were carried out 
for two primary crop types in the study area at pixel 
level. The winter wheat-summer maize double-cropping 
system and cotton were located at Luancheng Agro- 
Ecosystem Experimental Station, Chinese Academy of 
Sciences and Nangong County, respectively.  

In Fig. 4, those NDVI values were from single pixel 
selected randomly in the study area, ang it demonstrates 
the reconstructed time-series NDVI for the crop types of 
cotton and winter wheat-summer maize. From Fig. 4a, it 
can be found that the T-IDW method based on QASDSA 
can remove a large amount of noise in the time series 
because almost all the noise is from abnormal peaks and 
troughs which have flagged in QASDSA. However, 
there is still some residual noise remained as little fluc-
tuation. The DWT with Coiflet mother wavelet in order 

4 and 90% wavelet power can remove some little fluc-
tuation but have on power for those large peaks. The 
power should be changed to 68% to remove the large 
peak in selected cotton time-series NDVI data. However, 
a lower power, or fewer coefficients, retains less high 
frequency data by applying a wider wavelet which may 
capture trends through the entire time series but may 
lose phonological detail during a single year. By con-
trast, the method combined two steps including T-IDW 
and DWT performed much better than individual per-
formance of T-IDW and DWT, since it can remove noise 
shown as abrupt rises or drops and unreasonable peak 
value and at the same time remain the right observations 
near the contaminated sites. The Fourier transform 
method was used as a comparison in this study, which 
can obtain better effort than T-IDW or DWT but it is  

 

 
 

Raw is original signals; T-IDW is noise removed NDVI only by T-IDW 
method based on QASDSA; DWT is denoised NDVI only by DWT with 
Coiflet mother wavelet in order 4 and 90% power; FFT is noise removed 
NDVI by fast Fourier transform method (Zhang et al., 2008); and T-IDW and 
DWT means NDVI denoised by combined method with the same parameter as  

T-IDW and DWT 

Fig. 4  Pixel multi-temporal NDVI profiles of cotton (a) and 
winter wheat-summer maize (b) denoised by different methods 
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similar with combined method. Figure 4b shows the 
noise reduction effect for bimodal crop. The situation of 
T-IDW, DWT and combined method are the same as 
mentioned above though the double cropping system 
contains more narrow peaks. However, the Fourier 
transform method was worse than combined method. 

 
4.2  Crop classification  
The major crops NDVI profile characteristics are con-
sistent with the distinctive calendar of crops as shown in 
Fig. 5. The winter wheat is generally sown and then 
emerges in early October; initial tillering is witnessed at 
the beginning of November. The crop turns into dormant 
during the whole winter (December, January and Febru-
ary). Low NDVI values (0.25–0.35) from November 
through mid-March reflect this initial growth stage. In 
mid-March the winter wheat recovers and resumes 
growth in early spring when the air and soil tempera-
tures get warm. This stage is represented by the rapid 
increase of NDVI values till mid-May which is the 
flowering stage of winter wheat. The ripening and se-
nescence phase of winter wheat occur in late May and 
June and harvesting typically occurs during the first 10 
days of June, expressed by the rapid decrease of NDVI 
values from 0.6 to 0.3 during this period. Summer maize 
is interplanted manually to winter wheat 5–7 days be-
fore harvest to prolong the growth period, reaching its 
utmost luxuriance in mid-August and then following 
with harvest at the end of September. At the beginning 
of October, land is plowed to prepare for winter wheat 
planting, and the two-crop rotation is repeated. So the 
bimodal signal is generated and acted as the fundamen-
tal basis of winter wheat-summer maize double crop- 
ping system classification.  

Winter wheat-summer maize was relatively easily ex-
tracted because of the bimodal signal. On the contrary, 
the spring crops are difficult to discriminate because the 
unimodal signals are similar. Cotton and spring maize 
are both categorized as spring crop because the seedtime 
is in spring, and these crops almost have the same crop 
calendars. However, unique spectral-temporal responses 
that represent subtle differences in their growth cycle 
are reflected in timer-series NDVI profile.  

Generally, differences in the planting date which is 
depicted by the different timings of their initial greenup 
are used to detect crop types among the spring crops. 
However, in this study the major spring crops of cotton 
and spring maize are almost sown at the same time in 
early May as shown in Fig. 5. It was difficult to distin-
guish the greenup time between these spring crops. 
Therefore, further analysis was performed to find out 
the variation in timing and value in these NDVI profiles, 
which are represented as different amplitude and phase 
in time-series signal. These differences were used as the 
basis of classification among these spring crops. As 
shown in Fig. 5, the spring maize peaked at July 28 with 
the highest NDVI value of 0.78. By contrast, the cotton 
peaked at August 13 with lower NDVI value of 0.72. 
The differences in crop type and canopy structure of 
spring maize and cotton could be represented by the 
NDVI values at peak growing season. In addition to the 
difference in peak growing season, the NDVI profiles of 
the two spring crops also exhibit different behaviors 
during the senescence stage. The large NDVI decrease 
at late July (July 28 composite period) represented the 
onset of the senescence of spring maize and this course 
continued until early October when harvest was exe-
cuted and the NDVI values reached the lowest in this  

 

 
 

Fig. 5  Multi-temporal NDVI profiles of main crop categories in Hebei Plain 
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stage. Cotton exhibits a smooth NDVI decease curve, 
gradually from August 13 to November 17 composite 
periods, which reflects the extended period to dry the 
cotton balls and pick in batch.   

Following the method of processing and classification, 
the classification map derived from time-series MODIS 
NDVI data is derived and shown in Fig. 6a. The spatial 
distribution of major crop and non-crop in the time-  
series NDVI derived map is consistent with the general 
land cover patterns of Hebei Plain. Main crop areas, 
such as the southeast and northeast cotton producing 
area, and large winter wheat-summer maize cropland, 
have been found to expand throughout the piedmont 
alluvial plain of the Taihang Mountains which is located 
in the west of the study area. The smaller and frag-
mented crop patches throughout the eastern coastal 
plains are also mapped. The patterns of the whole area 
in the general crop map are consistent with the cropping 
distribution (Cao et al., 2007). The winter wheat-   
summer maize double-cropping system is dominant 
throughout the western and central plain. The spring 
crop class is mainly distributed in the northeast and 
southeast plain. In the southeast the cotton is the main 
crop, and in northeast the spring maize is planted widely 
corresponding to the cotton.  
 
4.3  Classification assessment 
In this study, accuracy assessment at pixel-level, county- 
level and regional-level were carried out for accurate 
and comprehensive evaluation. Firstly, at pixel-level, 34 
remained survey sites were used to validate the MODIS 

derived classification results. There were 20 winter 
wheat-summer maize sites, nine cotton sites and five 
spring maize sites. The crop types in all the sites were 
correct with the corresponding classification results ex-
cept for three winter wheat-summer corn sites, one cot-
ton site and one spring maize site. The accuracy is 85% 
at pixel-level.  

At county-level, the correlation between time-series 
MODIS-derived area and statistical area of the winter 
wheat is showed in Fig. 7. It can be observed that com-
pared with raw NDVI values, the desonised NDVI val-
ues are closer to the statistical ones. There is relatively 
more significant correlation between the estimated area 
derived from satellite data with noise reduction and the 
statistical area (R2 = 0.814, p < 0.01). 

To validate the effect of noise reduction method in 
classification, a classification map with the same classi-
fying parameters but without desnoising was derived 
(Fig. 6b). The area of winter wheat-summer maize and 
spring maize in Fig. 6b is obviously more than that in 
Fig. 6a. The spring maize area in the northeast is much 
larger, while the cotton area in the southeast is smaller 
and some areas of spring maize are found among the 
cotton field. NASA USGS land cover data is shown in 
Fig. 6c, in which the crop lands were treated as only one 
type. This is obviously inaccuracy either compared with 
survey data or statistical data. 

Finally, the regional-level comparison was performed 
by comparing classification result with high-resolution 
Landsat image. Figure 8 shows the classification map 
derived from 250 m time-series MODIS NDVI data, 30  

 

 

Fig. 6  Crop classification results of Hebei Plain from denoised NDVI data (a), raw NDVI data (b) and 
MCD12Q1 (MODIS land cover type product) (c) 
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Fig. 7  A county-level comparison of winter wheat area from 
statistical data and derived from MODIS NDVI data with and 

without noise reduction 

 

 
 

Fig. 8  Comparison of MODIS-derived 250 m general crop map 
(a), Landsat TM derived classification map (b), and false-color 
(RGB: band 5, band 4, and band 3) Landsat TM imagery (c) in 

central study area 

 
m Landsat false-color TM imagery and Landsat TM 
derived classification map in the center of the study area. 
It indicates that the classified crop patterns in MODIS- 
erived map have a strong spatial correspondence to the 
cropping patterns in the Landsat TM imagery. 

In addition, a confusion matrix (Chawla et al., 2002) 
was used to compare classification results derived by 
MODIS with the ground truth data which generated 
from TM-derived land cover map classified by maxi-
mum likelihood method (Table 2). Only cotton and 
winter wheat were considered in the confusion matrix 
because they are the main crops in the center of study 
area (Fig. 8). From Table 2, it can be found that the pro-
ducer′s accuracies of cotton and winter wheat are 
90.76% and 98.48%, respectively. Overall accuracy is 
91.01%, and the Kappa coefficient is 0.904.  

Table 2  Producer′s and user′s accuracy confusion matrix of 
classification results  

Ground truth (%) 
Class 

Cotton 
Winter 
wheat 

Total user′s 
accuracy 

Unclassification 0.84 0 0.17 

Cotton 90.76 1.52 19.86 

Winter wheat 8.40 98.48 79.97 

Total producer′s accuracy 100 100 100 

Total (pixels) 319 660 979 

Overall accuracy 91.01% 

Kappa coefficient 0.904 

 
5  Discussion and Conclusions  

 
In this study, a noise reduction method combining T- 
IDW and DWT was applied to filtering the time-series 
MODIS NDVI data generated from 16-day composited 
MODIS 250 m NDVI product. Then the denoised time- 
series data were used to classify the crops in the Hebei 
Plain to discriminate bimodal winter wheat-summer 
maize rotation system and unimodal spring corp. The 
classification map was compared with survey sites, sta-
tistical data and fine-resolution remote sensing data. The 
results indicate that time-series MODIS 250 m NDVI 
data provide a viable option for regional-scale crop 
mapping in the Hebei Plain. The accuracy is 85% at 
pixel-level. While at county-level, the classified crop 
land areas are well correlated with statistical data, and 
the R2 is 0.814 for the area of winter wheat. Classifica-
tion map derived from desnoised data is more reason-
able than the data without noise removing and NASA 
USGS land cover data. Compared with the land cover 
map derived from time-series NDVI data by Friedl et al. 
(2002) and Canisius et al. (2007) on global and China, 
the results of this study are better. The landscape crop-
ping patterns in MODIS-derived crop map have a strong 
spatial correspondence to the cropping patterns that can 
be visually interpreted in the Landsat TM imagery. The 
confusion matrix between MODIS-derived and Land-
sat-derived classification show that the overall accuracy 
is 91.01% and Kappa coefficient is 0.904. However, 
overestimations and (or) underestimations are detected 
at both country-level and regional-level mainly due to 
the fragmentation and sub-pixel proportion. Therefore, 
sub-pixel unmixing methods, which have been applied 
to MODIS 250 m data for LULC characterization (Lo-
bell and Asner, 2004), are recommended to be investi-
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gated to improve the classification results. 
The time-series noise reduction method was evaluated 

in this study beside the assessment of classification re-
sults. The results show that the T-IDW method can re-
move most of the noise in the time series but some re-
sidual noise remains because of fluctuations. The DWT 
can remove some small fluctuations but can not afford 
those large peaks unless a higher threshold is applied. 
The method combining T-IDW and DWT performs 
much better results, not only removing noise but also 
remaining the details of crop phenology. The noised 
reduction effect of Fourier-based method (Zhang et al., 
2008) was almost the same with that of this study. 
However, the high quality NDVI values were kept rea-
sonable with the method presented in this research.  

This study presented the primary results of using 
time-series 16-day composited MODIS NDVI data in 
the Hebei Plain. Additional research activities should be 
performed on this basis. For example, numerous other 
variables could be directly derived from MOIDS data 
such as multi-spectral metrics. Other vegetation indexes 
such as enhanced vegetation index and shorter time in-
terval data for instance 8-day composite MODIS prod-
uct would be considered in the next step for more accu-
rate classification. The mapping method should also be 
tested for more crop types in other geographical regions 
to determine the applicability. Moreover, area such as 
crop land dynamic, crop yield and agricultural water 
management could be benefited by the classification 
map produced in this study for more reliable decision 
making.   
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