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Abstract: Land cover classification is the core of converting satellite imagery to available geographic data. However, 

spectral signatures do not always provide enough information in classification decisions. Thus, the application of 

multi-source data becomes necessary. This paper presents an evidential reasoning (ER) approach to incorporate Land-

sat TM imagery, altitude and slope data. Results show that multi-source data contribute to the classification accuracy 

achieved by the ER method, whereas play a negative role to that derived by maximum likelihood classifier (MLC). In 

comparison to the results derived based on TM imagery alone, the overall accuracy rate of the ER method increases by 

7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are acces-

sible. The ER method is regarded as a better approach for multi-source image classification. In addition, the method 

produces not only an accurate classification result, but also the uncertainty which presents the inherent difficulty in 

classification decisions. The uncertainty associated to the ER classification image is evaluated and proved to be useful 

for improved classification accuracy. 
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1  Introduction 
 

Remote sensing research focusing on image classifica-
tion is always an ongoing topic, because classification 
results are the basis for converting remote sensing im-
ages to available geographic data (Wilkinson, 2005). 
The land use/cover information derived from satellite 
image classification is very important in the Earth Sur-
face Science (ESS). For example, many landscape met-
rics are built on the land cover classification (Zhang et 
al., 2006; Zhang et al., 2009). It has been confirmed that 
multi-source data have the potential for improving im-
age classification accuracy, since they can provide much 
more information compared to single satellite imagery 
for classification decisions (Kim and Swain, 1995; 

Chiuderi, 1997; Le Hegarat-Mascle et al., 1997; Datcu 
et al., 2002; Franklin et al., 2002; Ozesmi and Bauer, 
2002; Chitroub, 2003; Tzeng et al., 2007; Camps-Valls 
et al., 2008; Na et al., 2009). 

Geospatial data used for image classification include 
four types: interval data, ratio data, nominal data and 
ordinal data (Franklin et al., 2002). Traditional statistical 
classifiers (e.g., maximum likelihood classifier) can 
only use the data meeting some normal distribution such 
as satellite image data (Mertikas and Zervakis, 2001). 
Interval data (e.g., DEM), ordinal data (e.g., land deg-
radation map) and nominal data (e.g., soil map) are dif-
ficult to be incorporated into these classifiers, in fact, 
these data are crucial to some classification tasks. For 
example, hydrological and soil maps contribute to wet- 
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land mapping (Li and Chen, 2005; Vaiphasa et al., 2006; 
Castaneda and Ducrot, 2009; Davranche et al., 2010), 
and vegetation inventory map improves the mapping of 
grizzly bear habitat (Franklin et al., 2002). Therefore, it 
is necessary to explore a new classification method 
which can combine data regardless of the number of 
sources and the scale of measurement.  

Currently, there are mainly two effective methods, in-
cluding the decision tree and evidential reasoning (ER), 
to handle multi-source data in a classification task 
(Franklin et al., 2002). The ER method, built on Demp-
ster-Shafer theory of evidence, is a method of inexact 
reasoning (Shafer, 1967; Giarratano and Riley, 1998). 
The method has the ability to incorporate all four types 
of geospatial data, so it has been widely used in a vari-
ety of classification tasks (Le Hegarat-Mascle et al., 
2000; Foucher et al., 2002; Cohen and Shoshany, 2005; 
Al Momani et al., 2006; Sun et al., 2008). Additionally, 
the method can produce interpretive measures (such as 
degree of support, plausibility and uncertainty) which 
are useful to classification (Lein, 2003; Cohen and Sho-
shany, 2005). However, few researches have been de-
voted to the relationship between uncertainty and classi-
fication accuracy produced by the ER method.  

In this paper, we selected the Dazhanhe National Na-
ture Reserve in Heilongjiang Province, China as the 
study area, combined TM images and geographic ancil-
lary data (altitude and slope), to assess the potential of 
the ER method for multi-source image classification and 
analyze the relationship between uncertainty and classi-
fication accuracy. In addition, the maximum likelihood 
classifier (MLC) method was also achieved based on 
multi-source data for a comparison with the ER method. 
The accurate information derived from image classifica-
tion may be useful for land planning in the study area.  

 

2  Background of Evidential Reasoning Ap-
proach 

 
The evidential reasoning (ER) was firstly proposed by 
Dempster and further developed by Shafer, and it is de-
veloped based on the fact that the knowledge and in-
formation is always uncertain, incomplete, or insuffi-
cient in making decisions such as image classification 
(Sun et al., 2008). The ER method can integrate various 
data sources through formal probabilistic reasoning 
(Cayuela et al., 2006), and the classification confidence 

can be improved as the evidence increases (Al Momani 
et al., 2006). 

In the image classification context, the ER method 
has several advantages compared with traditional classi-
fication procedures. Firstly, it is a non-parametric classi-
fier and thus can handle data which may violate the 
normal distribution (Srinivasan and Richards, 1990). 
Secondly, it can incorporate data regardless of the num-
ber of sources and the scale of measurement. Thirdly, it 
is a ′soft′ classification method and the results can be 
adjusted by human interpretation. Fourthly, it can pro-
vide several interpretive measures such as support, 
plausibility and uncertainty which can be used to evalu-
ate the classification results (Lein, 2003; Peddle, 1995a; 
Sun et al., 2008). The fundamental aspects of the ER 
method are described as follows. 

 
2.1  Frame of discernment (FoD) 
Concepts and functions of ER are based on frame of 
discernment (FoD). In Dempster-Shafer theory, a set of 
mutually exclusive and exhaustive elements constitutes 
the frame of discernment, denoted by   (Peddle, 

1995a). Any element of   is called singleton, a set 

with none element is called empty set (). A set of size n 
has 2n subsets. In the image classification context, all 
the land covers to be classified correspond to the ele-
ments of FoD. Suppose that there are three kinds of land 
covers (forest, grass and water) needed to be discerned 
in a satellite imagery, then the FoD can be defined as the 
following formula: },,{ wtgsft . If the research only 

focuses on singleton (i.e., each land cover class), the 
FoD can be simplified as: }{},{},{ wtgsft . Then, the 

number of sets is reduced significantly (from 8 to 3) 
which can simplify the computational complexity and 
the processing time exponentially of the ER method 
(Gordon and Shortliffe, 1985; Wilkinson and Megier, 
1990). 

 
2.2  Basic probability assignment (BPA) 
A piece of evidence can support one or more subsets. 
Suppose that there is a piece of evidence in support of 
the non-empty subset X on  , and a set function m(X) 

named the Basic Probability Assignment (BPA) repre-
sents the degree of support to subset X, then the degree 
of support is defined in the interval [0, 1], and must sum 
to 1 over all possible sets: 
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2.3  Belief function and plausible function 

In FoD  , suppose that X, Y are two sets on  , if the 

set function m meets the following equation: 
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where Bel(X) is the belief function of set X on   (i.e., 

the lower probability); Pl(X) is the plausible function set 
X (i.e., the upper probability), and Bel(X–) is the belief 
function of the complementation set of X. The interval 
[Bel(X), Pl(X)] reflects the unknown degree of set X. 

 
2.4  Combination of belief functions 
The theory of evidence allows us to combine belief 
functions from different evidences on the same FoD 
with combination rule and generate new belief functions. 
Let Bel1 and Bel2 denote belief functions over the same 
FoD  , then the new belief function, termed as the 

orthogonal sum of Bel1 and Bel2, denoted as Bel1 2Bel , 

is calculated as follows: 
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where m1, m2 are the BPA functions of Bel1, Bel2, com-
posed of the possible hypotheses sets X1, …, XK and 
Y1, …, YK, respectively. The sum extends over all class 
labels whose intersection ZYX  . If there are more 

than two pieces of evidence, the combination rule can be 

extended as: 1 2 3 4 5Bel Bel Bel Bel Bel    , …  

 
2.5  Interval of uncertainty 
In Dempster-Shafer theory of evidence, the uncertainty 
is defined as: Un(X) = Pl(X) – Bel(X) (Fig. 1). The un-
certainty is a probability interval which neither supports 
nor negates subset X obviously. We suppose X is true if 
Un(X) = [1, 1], false if Un(X) = [0, 0], and unknown if 
Un(X) = [0, 1]. Un(X) indicates the unknown degree of 
set X, and fusing evidence from multi-source data may 
narrow this unknown interval (Shafer, 1976).  

 
 

Fig. 1  Illustration of interval of uncertainty 

 

3  Materials and Methods 
 
3.1  Study area 
In this paper, we selected the Dazhanhe National Nature 
Reserve (47°59′55″–48°50′12″N, 127°44′57″–128°30′14″E), 
located in the northern Heilongjiang Province of China, 
as the study area, with a total area of 430 000 ha (Fig. 2). 
The mean annual temperature is –2℃, and the annual 
precipitation is 500–700 mm which mainly occurs in 
July and August. The altitude ranges from 320 m to 620 
m, and the slope is from 0° to 26°. The representative 
soil is dark brown, and non-zonal soils are meadow soil, 
bog soil, peat soil and black soil. 

According to field investigation, there are four types 
of land covers including forest, wetland, water and 
building land (Table 1). Forest and wetland are pre-
dominant in the study area, and there are a variety of 
forest types and wetland types. Forest is mainly distrib-
uted in low mountains, gentle hills and highland of low 
watershed, while the other classes mainly in low-lying 
land and gently sloping areas. 

 
3.2  Data collection and processing 
Landsat 5 TM image (Row/Path: 118/26) dated on Sep-
tember 30, 2007 was acquired from the USGS Earth 
Resource Observation Systems Data Center (http:// 
glovis.usgs.gov/). The image was rectified to the Gauss 
Kruger projection system (datum Xi′an 1980, zone 22) 
based on topographic maps using approximately 70 
ground control points, primarily the intersection of ways 
and rivers, evenly distributed across the image. A third 
order polynomial model was used for the rectification 
with the nearest neighbor algorithm with a pixel size of 
30 m × 30 m for all bands. The root mean square errors 
were less than 0.5 pixels (15 m). 

The topographic map covered the study area was ac-
quired from the Heilongjiang Mapping and Surveying 
Bureau. Altitude and slope maps were generated based 
on the vector contour lines and altitude points derived 
from the topographic map using ARCGIS 9.1 software. 
The geographical ancillary data (altitude and slope)  
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Fig. 2  Sketch map of study area 

 
Table 1  Land cover types of study area 

Land cover Description 

Forest  Broad-leaf forest, coniferous forest and mixed forest 

Wetland Sphagnum swamp, herbaceous swamp, shrub swamp and forested wetland 

Water Dazhan River, pond and comic lake 

Building land Small town, village, road, waste land, etc. 

 
were then re-sampled to pixel size 30 m × 30 m, so as to 
match the resolution of TM image. 

For supervised classification and accuracy assessment, 
1000 pixels for four land cover types were identified 
from: 1) field locations in late August 2007 and late 
June 2008 referenced on the ground with a global posi-
tioning system (GPS); 2) random locations derived from 
imagery using stratified random sampling method. To 
acquire representative samples for each class, random 
samples were collected strictly within the polygons 
which are larger than 1 ha (around 11 TM pixels) 
(Wright and Gallant, 2007). Although the choice of pix-
els is arbitrary, it can reduce mixed-pixel sampling and 
mislabeling due to the positional errors. The number of 
sampling sites in the four classes was proportional to 
their relative areas to avoid the over-prediction of rare 
classes. A total of 520 sites were chosen as the training 
samples, including 190 forest sites, 180 wetland sites, 
80 building land sites and 70 water sites. 

3.3  Basic probability assignment 
Due to its generality, the Dempster-Shafer theory of 
evidence does not discuss the generation method of 
evidence measures, i.e., basic probability assignment 
(BPA) (Sun et al., 2008). However, the ER method is 
conducted based on the BPA, so how to calculate BPA is 
important for satisfied classification results. Maximum 
likelihood classifier (MLC), the most widely used tradi-
tional classifier, can produce an accurate classification 
result if the dataset used is distributed normally, thus the 
posterior probability derived by MLC based on TM im-
agery was used as the BPA from satellite imagery (Ca-
yuela et al., 2006). The MLC was performed by using 
the following equation (Richards and Jia, 1999):                 

1( ) ln ( ) ( )t
i i i i if x x m x m             (5) 

where fi is the discriminant function for class i; x is the 

pixel of imagery; i  is the variance-covariance matrix 

estimated from training pixels in class i, and mi is the 
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mean vector of the class i. 
According to the knowledge derived from field inves-

tigation and related reports in the study area, forest is 
mainly distributed in high altitude and high slope areas, 
and water, wetland and building land are distributed in 
low altitude and low slope areas. We found that the ar-
eas with an altitude larger than 520 m and slope larger 
than 6° are almost covered with forest, while there is no 
forest in the areas where altitude is lower than 410 m 
and slope is lower than 2°, and the occurrence probabil-
ity of forest distribution gradually increases with the 
altitude between 410 m and 520 m. Thus, the altitude 
and slope referred to the hypothesis of the forest class 
directly. Therefore, the knowledge was incorporated by 
using a linear function (Fig. 3). The given BPA for the 
forest class was 0.8 in the area where altitude is above 
520 m and slope above 6°, and 0.05 where altitude is 
below 410 m and slope below 2°. 

 
3.4  Classified models 
Four classified models were constructed by using four 
different combinations of data sources: 1) TM imagery 
alone; 2) TM imagery plus slope (TM + SLO model); 3) 
TM imagery plus altitude (TM + DEM model); 4) TM 
imagery plus altitude and slope (TM + SLO + DEM 
model). The MLC and ER methods, using ERDAS and 
IDRISI software respectively, were conducted based on 
the four models using the same training locations as 
mentioned above. The difference between the two pro- 
cedures was that the MLC method combined the 
multi-source data directly, while the ER method did it 
by using the evidence derived from multi-source data.    

3.5  Accuracy assessment  
A total of 480 reference sites not previously used for 
training purpose were used for accuracy assessment, 
including 82 building land pixels, 78 water pixels, 142 
wetland pixels, and 178 forest pixels. A confusion ma-
trix was generated, which can reflect the quality of clas-
sification directly (Foody, 2002), and three kinds of ac-
curacy were calculated: 1) user′s accuracy for each class, 
which indicates the percentage of classified samples that 
were identified in reality; 2) producer′s accuracy for 
each class, indicating the percentage of reference sam-
ples that were correctly classified; and 3) overall accu-
racy, indicating the general level of classification results. 
The standard error of the mean (SEM) was calculated to 
assess the variation level of classification accuracy over 
the four classified models of the two classifiers, it is 
designated as S, and the equation is as follows: 

1


N
S


               (6) 

where   is the standard deviation of sample and N is 

the size of sample. 
 

4  Results  
 
4.1  MLC classification  
The accuracy of the MLC classification decreases sig- 
nificantly when more data sources are added (Fig. 4c). 
When all data sources are accessible, the overall accu-
racy rate declined by 8.35% compared with that derived 
based on TM imagery alone. In the predominant forest 
class, producer′s accuracy rate (PAR) is relative constant 
across the four models (Fig. 4a). Similarly, in the build- 

 

 
 

Fig. 3  Altitude-based and slope-based probabilities for forest class  
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Fig. 4  Producer′s accuracy rate, user′s accuracy rate and overall 
accuracy rate observed by MLC method across four models 

 
ing land class, the variation of PAR is slight. However, 
in the water and wetland classes, the PARs decline sig-
nificantly when more data are added. The results for 
user′s accuracy rate (UAR) are much poor (Fig. 4b). 
UARs of the building land and water classes are below 
45% across the four models. The addition of the altitude 

and slope data does not improve the UARs of the two 
types of land cover. As can be seen, high UARs of the 
wetland and forest classes (about 80%) are consistent 
across the four models, and there is a decreasing trend 
for the forest class. The overall accuracy rate decreases 
sharply with the addition of the slope and altitude data 
(Fig. 4c). The accumulation effect of classification ac-
curacy by the MLC method is not apparent when adding 
new data sources. For example, the overall accuracy rate 
of TM + SLO + DEM model is almost equal to that of 
TM + DEM model, and for the PAR of the wetland class, 
the result is similar. This indicates that the addition of 
slope data does not reduce the classification accuracy 
further. 
 
4.2  ER classification  
Overall accuracy rate of the ER classification increases 
when more data sources are added (Fig. 5c). Compared 
with the slope, the altitude does well in improving the 
overall accuracy rate. In the predominant forest class, 
the PARs are high, greater than 80% in the last three 
models. In the building land class, the poor PARs are 
almost constant across models, but there is an upward 
trend with respect to the UARs. Similarly, in the wet-
land class, the PARs are almost constant across the 
models, and the difference is that the average PAR of 
the wetland class is higher than that of the building land 
class by about 20%. In the water class, the PAR is im-
proved by almost 20% in the last two models compared 
to the former two models. The UAR of the forest class 
decreases slightly when more data sources are added. 
Generally, accuracy rates for each class in the TM + 
SLO + DEM model perform better than those in the 
former three models. In this study, the overall accuracy 
rate of TM + SLO + DEM model is 84.52% which in-
creases by 7.66% compared with that of TM model. The 
results demonstrate that the multi-source data can im-
prove the classification accuracy significantly by using 
the evidential reasoning method.  
 
4.3  Uncertainty of ER classification  
The ER method can provide a richer description of the 
inherent uncertainty associated with the classification 
results. The mean uncertainty for each class of four 
classified models is shown in Table 2. The mean uncer-
tainty for each class decreases gradually when more data 
sources are added. It indicates that multi-source data 
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Fig. 5  Producer′s accuracy rate, user′s accuracy rate and overall 
accuracy rate observed by ER method across four models 

reduce the area of image where multi-spectral data are 
insufficient to label pixels. The uncertainty of TM + 
DEM model declines than that of TM + SLO model for 
almost all the classes. As mentioned above, the contri-
bution of the altitude to the accuracy rates is higher than 
that of the slope. Thus, low accuracy rate always, ap-
pears in high uncertainty area, although we still can not 
demonstrate this result in theory at present. Compared 
with traditional methods, this richer description may be 
useful to classification results. For example, we can in-
vestigate the low uncertainty area for more informa-   
tion which may have the potential to obtain better re-
sults. Additionally, the uncertainty is an indirectly vari-
able for assessing the contribution to classification ac-
curacy from a variety of data sources. We divided the 
uncertainty into four levels: slight level (uncertainty in 
the range of 0–0.075); low level (0.075–0.100); me-  
dium level (0.100–0.200); high level (0.200–1.000)  
(Fig. 6). 

As can be seen from Fig. 6, the area of slight and low 
level uncertainty expands and that of medium and high 
level shrinks when more data sources are added. Obvi-
ously, the altitude data do better than the slope in reduc-
ing the uncertainty (Fig. 6b, Fig. 6c). When all data 
sources are accessible, the uncertainty is further de-
creased. In addition, the accumulation effect of the un-
certainty is also apparent. In TM model, the high uncer-
tainty occurs mainly in the rare building land and water 
which have relative poor classification accuracies. When 
combining the slope and altitude with TM imagery, the 
area of high and medium uncertainty reduces sharply, 
which indicates that sufficient information has supplied 
for most of this area in classification decisions. Al-
though the area of high and medium uncertainty de-
creases, it is found that the area of medium uncertainty 
is also large (Fig. 6d). Therefore, in the future, much 
more data sources such as soil and landform maps 
should be added in the ER classification procedure to 
decrease the uncertainty of classification further. 

 
Table 2  Mean uncertainty of ER classified models 

Model Forest (S.D.) Wetland (S.D.) Water (S.D.) Building land (S.D.) Overall (S.D.) 

TM model 0.0976 (0.0378) 0.0963 (0.0463) 0.1076 (0.0477) 0.1374 (0.0507) 0.1012 (0.0441) 

TM + SLO model 0.0866 (0.0442) 0.0919 (0.0322) 0.1047 (0.0460) 0.1345 (0.0472) 0.0923 (0.0430) 

TM + DEM model 0.0687 (0.0405) 0.0867 (0.0316) 0.1053 (0.0513) 0.1335 (0.0528) 0.0778 (0.0424) 

TM + SLO + DEM model 0.0613 (0.0376) 0.0839 (0.0308) 0.1027 (0.0507) 0.1311 (0.0505) 0.0703 (0.0402) 
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(a) TM model; (b) TM + SLO model; (c) TM + DEM model; (d) TM + SLO + DEM model 

 
Fig. 6  Distribution of uncertainty level 

 

5  Discussion 
 
The results in this study show that the slope and altitude 
can not improve the classification results implemented 
by the MLC method. To the contrary, they play a nega-
tive role, and the altitude makes a greater impact than 
the slope does. It is mainly because that the classifier is 
designed on the statistical theory and thus can not han-
dle data such as slope and altitude which may violate 
normal distribution. The results in this study are consis-
tent with those in Cayuela et al. (2006) and Franklin et 
al. (2002). 

The contribution of the altitude to the accuracy rates 
of the ER approach is higher than that of the slope, and 
it may be attributed to: 1) the altitude is much more 
useful and important in this area; 2) the knowledge for-
mulation we designed for the generation of evidence 
measure from the altitude is better and more reasonable 
than that from the slope. Because of the well docu-
mented manner of evidence generation in the ER 
method (Peddle, 1995b; Mertikas and Zervakis, 2001), 
we can explore a much better method for converting 
input data into evidence, e.g., exponential functions, 
which may lead to better results.  

As can be seen from Fig. 5a and Fig. 5b, the PAR and 
UAR are poor for the building land and water classes in 
TM model, which is mainly due to the overwhelming 

preponderance of the forest and wetland classes. Some 
studies have demonstrated that the classification accura-
cies of rare classes were usually poor (Wright and Gal-
lant, 2007). It is obvious that the SEMs of PAR and 
UAR of the building land and water classes are higher 
than those of the wetland and forest classes, which indi-
cates that the multi-source data play a positive role in 
increasing the accuracy rates for the rare classes, such as 
building land and water classes in this study. 

As mentioned above, the slope and altitude data con-
tribute to accuracy rates respectively when using the ER 
method for image classification. However, once com-
bining them with TM imagery together, the accuracy 
rate is further improved. The accumulation effect of 
classification accuracy by the ER method is apparent 
and very important in multi-source data classification. 
The method can accumulate slight improvements from 
diverse data sources to achieve a substantial improve-
ment of overall accuracy (Franklin et al., 2002; Sun et 
al., 2008). However, if the evidence derived from single 
data source plays a negative role, the overall result will 
be disturbed due to the accumulation effect characteri-
zation the of ER method, for example the PAR of the 
building land class and UAR of the forest class in this 
study.  

Some researches determine that the accuracy rates of 
the hypothesis which multi-source data referred to were 
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improved greatly (Franklin et al., 2002; Cayuela et al., 
2006). However, in this study, the accuracy rates of the 
hypothesis set (i.e., forest class in this study) supported 
by multi-source data are not improved significantly, and 
the UAR of the class even decreases slightly. It may be 
the reason that the incorporation of ancillary data im-
proves the identification of pixels which are mislabeled 
as forest class in low slope and low altitude areas, thus 
the UARs of water and building land classes improve 
significantly, while the classified area of forest is 
over-predicted in high altitude and slope areas, which 
reduces the UAR of forest slightly. 

 
6  Conclusions  

 
This paper presents a multi-source evidential reasoning 
method for satellite image classification. The prelimi-
nary results suggest that multi-source data fusion is a 
promising method in improving classification results. 
The ER method does better in combining multi-source 
data compared with traditional maximum likelihood 
classifier (MLC). The ER method offers some advan-
tages over MLC: 1) significant improvement in overall 
accuracy rate; 2) improvements in producer′s accuracy 
rate and user′s accuracy rate for almost all classes; and 3) 
a richer description to classification results such as un-
certainty.  

Although better results have been obtained by the ER 
method, it is important to stress that the improvement is 
traded with much time, as it is difficult for us to derive 
reasonable evidence from multi-source data used in the 
ER classification at present, especially for ancillary data, 
which is an issue that requires further research. The 
study area in this paper is relatively small and represents 
only one type of landscape. It is necessary to test the 
application of the ER approach in other larger regions 
characterized by various landscapes. Furthermore, what 
ancillary data should be used and how to integrate these 
data into the ER approach is another issue deserving 
further research.   
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