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Abstract: Ecosystem service is an emerging concept that grows to be a hot research area in ecology. Spatially ex-
plicit ecosystem service values are important for ecosystem service management. However, it is difficult to quantify 
ecosystem services. Remote sensing provides images covering Earth surface, which by nature are spatially explicit. 
Thus, remote sensing can be useful for quantitative assessment of ecosystem services. This paper reviews spatially 
explicit ecosystem service studies conducted in ecology and remote sensing in order to find out how remote sensing 
can be used for ecosystem service assessment. Several important areas considered include land cover, biodiversity, 
and carbon, water and soil related ecosystem services. We found that remote sensing can be used for ecosystem ser-
vice assessment in three different ways: direct monitoring, indirect monitoring, and combined use with ecosystem 
models. Some plant and water related ecosystem services can be directly monitored by remote sensing. Most com-
monly, remote sensing can provide surrogate information on plant and soil characteristics in an ecosystem. For 
ecosystem process related ecosystem services, remote sensing can help measure spatially explicit parameters. We 
conclude that acquiring good in-situ measurements and selecting appropriate remote sensor data in terms of resolu-
tion are critical for accurate assessment of ecosystem services.   
Keywords: ecosystem service; remote sensing; spatially explicit assessment; surrogate information 

 
 
1 Introduction 
 
Humans rely upon nature for welfare and survival in 
essence. By treating nature as a stock that provides a 
flow of services, ecosystem service conceptually links 
ecosystems to human welfare, and are growing to be an 
important aspect of ecological research (Norgaard, 
2009). The term ecosystem service was first used by 
Ehrlich and Ehrlich (1981). The development of eco-
system service concept is a convergence of accumulated 
knowledge and perspective stemming from the finite 
nature of natural resources and the study of ecosystems. 
The concept of ecosystem service was defined by Co-
stanza et al. (1997), Daily (1997) and Walter et al. 
(2005). Costanza et al. (1997) defined ecosystem ser-
vices as the representation of goods and services derived 
from ecosystem functions, while Daily (1997) consid-

ered ecosystem services as the conditions and processes 
of natural ecosystem fulfilling human life. In Walter et 
al. (2005), ecosystem services are broadly defined as 
benefits people obtained from ecosystems. Despite this 
latest definition, several scholars considered it as an 
evolving concept (Carpenter et al., 2006; Sachs and 
Reid, 2006). 
  The Millennium Ecosystem Assessment was a monu- 
mental work involving over 1 300 scientists. It intro-
duced a new framework for analyzing ecological-social 
systems. And it also proposed a widely used classifica-
tion of ecosystem services, i.e. supporting, regulating, 
provisioning and cultural services. The Millennium 
Ecosystem Assessment has considerably moved ecosys-
tem service science forward. Nevertheless, ecosystem 
service science is still at an early stage of development. 
Studies after the Millennium Ecosystem Assessment are 
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addressing new scientific challenges to quantify the 
benefits that nature provides to humans. Approaches are 
required to improve ecosystem service assessment for 
projecting and managing flows of ecosystem services 
(Balmford et al., 2008). Among several studies concen-
trating on ecosystem service assessment, Nelson et al. 
(2009) stressed the urgency and the importance of un-
derstanding and mapping the spatial heterogeneity of 
ecosystem services. The spatially explicit ecosystem 
service information is needed for maximizing conserva-
tion objectives (Polasky et al., 2008). Local manage-
ment agencies also need to consider the spatial pattern 
of ecosystem services in landscapes to better accommo-
date their perceptions of values. However, spatially ex-
plicit values of ecosystem services across landscapes are 
still lacking (Balmford et al., 2002; Walter et al., 2005). 

Remote sensing can provide a solution because it can 
acquire images over Earth surface. The spatially explicit 
nature of remotely sensed imagery allows several eco-
system service issues to be examined, especially the 
extent and location of ecosystem services. Nevertheless, 
Aplin (2005) and Newton et al. (2009) noted that remote 
sensing specialists have perhaps focused on technologi-
cal issues as the major concern rather than ecological 
problems. On the other hand, ecologists have insuffi-
cient background in addressing ecological problems at 
regional, landscape, and global scales (Barrios, 2007). 
Spatially explicit ecosystem service studies could be 
marginalized by the potential division between the two 
research communities. 

The purpose of this paper is to bridge this gap by 
presenting a general review of ecosystem service related 
research in ecology and remote sensing. Several key 
areas are considered such as land cover, biodiversity, 
carbon, water and soil related ecosystem service. By 
discussing how remote sensing technique can be used 
for ecosystem service assessment in these areas, the pa-
per gives some recommendations. 
 

2 Remote Sensing of Ecosystem Services 
 
2.1 Land cover as a proxy measure of ecosystem ser-
vices 
Land cover was used as a proxy measure of ecosystem 
services because of its multiple linkages to carbon stor-
age, watershed protection, and other types of services 
(Konarska et al., 2002). Land cover affects a range of 

ecosystem services through the differences among key 
ecological variables and processes, such as biodiversity, 
structure and composition of natural communities that 
alter the biogeochemical cycles, micro-climate and 
ecohydrology of ecosystems (Maes et al., 2009; Reyers 
et al., 2009). For each land cover type, the services pro-
vided by the ecosystem are identified and given a 
monetary value based on previous studies and original 
calculations. The estimated per hectare value of each 
ecosystem (the sum of all ecosystem services) is then 
multiplied by the area of each biome to find the total 
monetary value of the ecosystem. For example, Co-
stanza et al. (1997) calculated the total area covered by 
17 biomes, and on this basis they estimated the global 
ecosystem service value. Konarska et al. (2002) de-
clared that the spatial scale on which the land cover is 
measured significantly influences both the extent of 
ecosystem service and its valuation. Remotely sensed 
imagery is becoming available at increasingly finer spa-
tial, spectral, and temporal resolutions. At present, 
coarse spatial resolution data such as Advanced Very 
High Resolution Radiometer (AVHRR, 1 km) are used 
for mapping global land cover, for its broad spatial cov-
erage of its images (Konarska et al., 2002). Medium 
resolution spatial data, such as Landsat (30 m) are 
widely used for mapping land covers. Based on its 30+ 
years of accumulated data (now being released), Landsat 
data are extensively being used for ecosystem service 
change monitoring (Zhao et al., 2004; Wang et al., 
2006). In regions with small scale land use, high resolu-
tion spatial data, such as Quickbird (< 5 m), are required 
(Hu et al., 2008). 
 
2.2 Biodiversity 
A theoretical analysis conducted by Eamus et al. (2005) 
demonstrated the effect of basic ecosystem structure and 
biodiversity on ecosystem services. The relationship 
between biodiversity and the provision of ecosystem 
services is controversial and heated debate. However, in 
most studies, it is found that high species richness is 
required to remain a high degree of ecosystem services 
(Balvanera et al., 2006; Benayas et al., 2009). Main-
taining biodiversity is considered as an efficient way to 
enhance ecosystem services. 

Monitoring biodiversity is an essential component in 
conservation ecology. It is related to the abundance, 
species richness, diversity, growth, or biomass of or-
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ganisms present (Walter et al., 2005). Remote sensing 
can be valuable in biodiversity monitoring because of 
the following three reasons. First, areas with high bio-
diversity are difficult for field investigations (Wiens et 
al., 2009). Second, monitoring at the regional scale is 
urgently needed. Third, remotely sensed spectral char-
acteristics respond to different biodiversity conditions 
(Foody and Cutler, 2003; Carlson et al., 2007). It should 
be noted that the most widely used biodiversity meas-
urement correlating with remote sensing is the number 
of species or species richness. While different defini-
tions of biodiversity exist, the majority of studies are 
conducted at the species level. Species richness is a 
common measurement of biodiversity because it is easy 
to quantify. It is also a good surrogate for some other 
forms of biodiversity (e.g. genetic and ecological diver-
sity) (Gaston and Spicer, 2004; Eamus et al., 2005; 
Isbell et al., 2009). 

For plant species, individual species and species as-
semblages can be directly identified by high resolution 
spatial and spectral satellite sensors using land cover 
mapping methods (Turner et al., 2003; Lass et al., 2005). 
The basic method for land cover mapping is criticized 
because it does not directly resolve the biochemical or 
structural properties of vegetation, which are closely 
linked with taxonomic diversity. Moreover, it has been 
tested that increasing species richness was linked to in-
creasing spectral diversity through increasing bio-
chemical diversity. Based on this theory, Zarco-Tejada 
and Miller (1999) exploited systematic species differ-
ences at the Boreal Ecosystem-Atmosphere Study 
(BOREAS) forest site by focusing on the wavelength 
ranges that are sensitive to foliar chlorophyll content. 
Fuentes et al. (2001) used both remote sensing derived 
water content and the abundance of different plant pig-
ments to produce accurate local vegetation types of the 
Canadian boreal forest. In a more direct way, species 
diversity can be assessed by examining the relationships 
between spectral radiance values recorded from remote 
sensors and species distribution patterns recorded from 
field observations. Carlson et al. (2007) predicted spe-
cies richness in Hawaii using a combination of four 
biochemically distinct wavelength observations centered 
at 530, 720, 1201, and 1523 nm acquired by the Na-
tional Aeronautics and Space Administration (NASA) 
Airborne Visible and Infrared Imaging Spectrometer 
(AVIRIS). 

Animal assemblages monitoring relies on environ-
mental characteristics. Habitat heterogeneity has long 
been recognized as a fundamental variable indicative of 
species diversity, in terms of both richness and abun-
dance. Patchiness in vegetation cover, which is related 
to landscape heterogeneity and high species richness, 
can be measured as variability in the normalized differ-
ence vegetation index (NDVI) (Gould, 2000). But 
NDVI cannot be applied uniformly across gradients 
from subtropical to arid landscapes. It is particularly 
problematic under semiarid and arid conditions. One of 
the inherent problems is that the spectral signature of 
vegetation is often masked by the backdrops of exposed 
geological features and soils (Elvidge and Lyon, 1985; 
Huete and Jackson, 1987). A typical strategy in arid 
landscapes is to develop land cover maps that charac-
terize vegetation patterns. Various vegetation cover 
classes are attributed with relevant biodiversity ratings 
because many species are restricted to discrete habitats 
in arid area (Fuller et al., 1998). Or special indexes are 
needed to efficiently remove the effect from the exposed 
soil, litter, etc. (Muldavin et al., 2001). For animal as-
semblages, the canopy vertical distribution information 
is consistently found to be the strongest predictor of 
species richness and functions best in areas dominated 
by forest, scrub, suburban and wetland species. For ex-
ample, the three dimensional structure of the canopy is 
the essential driver of arthropod diversity in forests. The 
maximum tree height provides information about tall 
tree in a plot, which is a surrogate for habitat continuity 
(Ohlson et al., 1997). The structural diversity of the 
vegetation, including the density of the canopy layer and 
forest gaps, etc., is associated with the beetle assem-
blages (Müller and Brandl, 2009). By combining infor-
mation about the known habitat requirements of species 
with remote sensing derived land cover maps, precise 
estimates of potential species ranges and patterns of 
species richness are possible. Light Detection and 
Ranging (LiDAR) is an optical remote sensing technol-
ogy that can acquire the information on canopy structure. 
LiDAR works based on the use of laser light which is 
emitted from a source (normally an aircraft), and then 
reflected back to a sensor. Three dimensional canopy 
structures can be reflected by properties of reflected 
light back to the sensor. LiDAR can also measure the 
elevation of a site, which indicates the precipitation and 
temperature characteristics of an animal habitat. For 
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example, Müller and Brandl (2009) had successfully 
used LiDAR derived variables to model both the species 
richness and composition of forest beetles in a moun-
tainous region in southeastern Germany. For marine 
coral reefs, habitat variables including water depth, live 
coral and structural complexity could also be derived 
from LiDAR. And Knudby et al. (2007) provided a 
complete review of the potential of remote sensing in 
mapping these habitat variables maps. 
 
2.3 Carbon flux related ecosystem services 
Up to 90% of the carbon exchange between the terres-
trial bio-geosphere and the atmosphere is mediated by 
plants (Ozanne et al., 2003). Carbon fixation by vegeta-
tion, the photosynthetic conversion of carbon dioxide to 
biomass, provides the basis for crop and forest yields. It 
creates the energetic foundation of nearly all the com-
munities on earth and further the foundation of all other 
ecosystem services. Carbon fixation by vegetation can 
be represented as ecosystem productivity. The gross 
primary productivity (GPP) is the total amount carbon 
fixated by photosynthesis. The net ecosystem exchange 
(NEE) is obtained by subtracting ecosystem respiration 
(ER) from GPP. NEE gives the net amount of carbon 
untaken or released. The important issue of ecosystem 
productivity forms a large part of remote sensing re-
search. It can be concluded that the development of 
ecosystem productivity monitoring parallels the devel-
opment of remote sensing techniques, especially the 
optical remote sensing (wavelength coverage 0.3–18 μm, 
containing visible, near-, middle- and far-infrared radia-
tion). 

Remote sensing technique has been used to monitor 
ecosystem productivity over a long period. Monteith 
(1972; 1977) introduced the light use efficiency (LUE) 
concept, which was modified by Prince (1991). GPP 
was expressed as the product of the absorbed photosyn-
thetically active radiation (PAR), defined as absorbed 
solar radiation between 0.4 and 0.7 μm wavelength, and 
the efficiency, with which the absorbed PAR can be 
converted into primary production as follow: 

GPP = PAR × fPAR × ε 

where fPAR represents the fraction of PAR absorbed by 
the canopy. The amount of PAR absorbed by the canopy 
is the difference between the PAR incident upon the 
canopy and the amount of PAR being reflected from and 

transmitted through the canopy. ε is the photosynthetic 
efficiency term of a specific plant type. All the three 
parameters are spatial and temporal variables (Damm et 
al., 2010). Hilker et al. (2008) described the details of 
how remote sensing acted in LUE model. They con-
cluded that remote sensing is developing to become a 
unique possibility for investigating model parameters in 
a spatially explicit fashion. Physical models, such as 
turbid models and geometric optical models, have been 
developed to quantitatively describe the process of ra-
diation transfer among the canopy and its interaction. 
Strategies have been studied to transform the remotely 
sensed image to obtain the surface parameters, such as 
leaf area index (LAI), surface temperature and soil wa-
ter content. These comprise the kernels of optical re-
mote sensing techniques. 

The launch of NASA's Terra satellite platform in 
1999 with the moderate resolution imaging spectrora- 
diometer (MODIS) instrument on-board initiated a new 
era in remote sensing of the Earth system, with promis-
ing implications for carbon flux research. The MODIS 
has the advantage of its number of spectral bands (36 in 
total, 7 of them primarily designed for the study of 
vegetation and land surface) and the daily monitoring 
frequency. The global MODIS 8-day average GPP 
product is generated based on the LUE model (Heinsch 
et al., 2002). Time series of MODIS GPP data are used 
to reflect the crop yield trend. It has strategic and tacti-
cal uses for agriculture and related economics. Running 
et al. (2004) declared that weekly mapping of terrestrial 
GPP should be as routine as the weather data that are 
presented today (like weather maps, maps of GPP might 
even be shown occasionally on the evening news when 
abnormal conditions are discovered). 

The accuracy of LUE model estimates depends on the 
model parameters; however, the great number of pa-
rameters is a limitation of the model, especially regard-
ing the need for specific sensors in some cases. Apart 
from that, the LUE concept can only be used for 
non-wetland terrestrial ecosystems (Paruelo et al., 2010). 
In regional studies, empirical GPP models have the ad-
vantage of providing possibilities for operational im-
plementation. The NDVI, which is proved to directly 
relate to the land cover condition, is applied to estimat-
ing primary productivity. The possibility of predicting 
average primary productivity by its regression relation-
ship with NDVI has been observed in the Arctic tundra 
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(Boelman et al., 2003) and in steppe ecosystems (Wylie 
et al., 2003). NDVI tends to be saturated when biomass 
increases to a high value (Myneni et al., 1995; Hao et al., 
2008), this being especially obvious in evergreen forest 
area (Rahman et al., 2001). Considerable efforts have 
been made to improve NDVI estimation. According to 
Thenkabail et al., (2000) and Gianelle and Vescovo 
(2007), wavebands in the green portion of the spectrum 
combined with other visible and near infrared (NIR) 
wavebands (Green-NDVI) predict green biomass better 
than the broadly used NIR- and red-based NDVI. The 
Enhanced Vegetation Index (EVI) used in the MODIS 
sensor is more highly sensitive to large amounts of bio-
mass. Olofsson et al. (2008) found that correlation coef-
ficients between EVI and GPP are 0.90 for the decidu-
ous vegetation over Scandinavian forests. In addition, 
the use of narrow bands has been found to improve the 
prediction capability. Gianelle et al. (2009) concluded 
that Hyperion and MODIS simulated NDVI and 
Green-NDVI can be used to estimate GPP more accu-
rately than the ETM+ derived NDVI, when quantifying 
growing season GPP at a mountain grassland site in the 
Italian Alps. In aquatic systems, primary productivity 
can be computed from the upper chlorophyll-like pig-
ment concentration or phytoplankton absorption, since 
they can be routinely detected by a space-borne ocean 
color sensor (Eppley et al., 1985; Antoine et al., 1996; 
Behrenfeld et al., 2005). 

Most studies aiming at estimating NEE using remote 
sensing employ physiological process based models that 
are parameterized for a specific location using flux data 
together with meteorological data; the model output is 
then scaled up using satellite data (Cao et al., 2003). 
The NEE can hardly be calculated solely by remote 
sensing, because spatially explicit respiration rates can 
not be calculated with remote sensing data (Olofsson et 
al., 2008). Rahman et al. (2005) investigated the rela-
tionship between MODIS surface temperature and res-
piration using data from ten flux tower sites across the 
US. They suggest that it may be possible to estimate 
NEE from relatively simple pixel based models, at least 
for some vegetation types. 

Ecosystem productivity marks the first visible step of 
carbon fixation and provides the basis for exploring the 
carbon flux related ecosystem services. Reeves et al. 
(2005) demonstrated that combining 8-day average 
MODIS GPP estimates with a simplified algorithm for 

wheat yield effectively estimated county and state level 
spring wheat yield in Montana, USA. The relationship 
between GPP and crop yield is more significant com-
paring with the relationship between vegetation index 
and crop yield (Rao et al., 1993; Yang, 2009). Carbon 
fixation is also involved in climate regulation, which 
reduces the atmospheric CO2 through plant photosyn-
thesis. Coupled climate-carbon models analyse the in-
fluence of terrestrial plant growth and the feedback 
mechanism between biosphere and climate. Global es-
timation and monitoring of primary productivity is a 
critical component supporting model simulation (Hilker 
et al., 2008). Carbon fixation also influences local cli-
mate dynamics by the exchange of water-heat between 
land and atmosphere. The carbon in the fallen leaves 
enters the soil, providing soil carbon nutrient. Just as 
Eamus et al. (2005) had declared, all ecosystem service 
grinds to a halt in the absence of carbon fixation. 
 
2.4 Water flux related ecosystem services 
For its importance to living systems, water fluxes within 
the continuum of soil, vegetation and atmosphere can be 
seen as the bloodstream of the biosphere (Ripl, 2003), 
driving the materials moving between different ecosys-
tems and altering energy balances in landscapes. 

Processes based hydrological models are mathemati-
cal descriptions of the water flux. Based on the aware-
ness that water flux, erosion and nutrient movement 
processes within the ecosystem are strongly interacting, 
the development of such models tends to combine the 
water flux process with all other major processes within 
a given ecosystem (Ludwig et al., 2005). Numerous 
studies have demonstrated that such models can repre-
sent the natural processes occurring in a specific eco-
system. Thus, they are mechanism models for under-
standing water flux related ecosystem services. For ex-
ample, the result of Soil and Water Integrated Model 
(SWIM) (Krysanova et al., 2007) showed that the water 
discharge and the groundwater recharge in the Elbe ba-
sin were most likely decreased under expected climate 
change. Williams et al. (2010) found that the calibrated 
Water Erosion Prediction Project model (WEPP) could  
quantify water flux and erosion process in the semiarid 
cropland of the Columbia Plateau. Yeh et al. (2006) 
combined the models of soil erosion, sediment trans-
portation, runoff and the nutrient process into an inte-
grated framework. The total annual amounts of soil ero-
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sion, sediment yield, and nutrient load between 1995 
and 1999 were estimated by this integrated model for 
Keelung Watershed, Taiwan. Viney and Sivapalan 
(2001) applied a conceptual Large Scale Catchment 
Model (LASCAM) to the Swan-Avon catchment in 
Western Australia, and found that stream flow, sediment 
yield, and nutrient yields had all increased since Euro-
pean settlement in the catchment. Remote sensing tech-
niques can benefit water flux related ecosystem service 
modeling in three ways (Kite and Pietroniro, 1996; 
Pietroniro and Prowse, 2002; Chen et al., 2005; Liu and 
Li, 2008): 1) by identifying significant areal phenomena 
such as snow cover, surface water (e.g. flooded areas, 
lake areas) or sediment plumes from original remote 
sensing image; 2) by developing relationships between 
remote sensing data and parameters of interest to pro-
vide model parameters such as soil moisture and water 
quality; and 3) by quantifying important surface pa-
rameters such as land cover types and the LAI from re-
mote sensing data. Water absorbs most of the energy in 
the optical wavelengths. Land surface containing water 
or moisture appears dark in contrast to surrounding 
vegetation (Swain and Davis, 1978). Soil moisture 
quantification models based on optical wavelength data 
take the surface radiant temperature as a proxy 
(Haubrock et al., 2008). Microwave remote sensing 
(wavelength coverage 1 mm–1 000 mm) platforms are 
sensitive to water discrimination and are capable of al-
most all weather viewing, which is a distinct advantage 
(Alain and Robert, 2005; Song et al., 2007; Anguela et 
al., 2010). For water flux related ecosystem service 
modeling, the most important difference between optical 
and microwave remote sensing is the penetration depth 
and consequently the depth of the soil layer for which 
the water content can be quantified; the penetration 
depth for optical remote sensing is significantly less 
than for microwave sensing (Haubrock et al., 2008). 

Water fluxes also can be simply divided into ′green′ 
and ′blue′ water (Rockström et al., 1999). Green water is 
the return water flow to the atmosphere as evapotran-
spiration (ET), which includes transpiration by vegeta-
tion, and evaporation from soil, lakes and water inter-
cepted by canopy surfaces. By transporting water from 
the undersurface back into the atmosphere, green water 
alters energy balances in landscapes, regulating the re-
gional climate. Blue water is the total runoff originating 
from the participation of precipitation at the land surface 

(surface runoff) and the participation of soil water 
(groundwater recharge), and drives the materials mov-
ing among different ecosystems.  

Green water is represented as evapotranspiration in 
terms of pure remote sensing. The basic cause of 
evapotranspiration is thought to be the vertical tempera-
ture gradient from land surface to air (Kalma et al., 
2008). Seguin and Itier (1983) proposed an expression 
relating the daily evaporation to daily net radiation by 
means of measuring the surface temperature and air 
temperature, at a given time of day: Surface energy bal-
ance (SEB) is the theoretical foundation of recent re-
motely sensed evapotranspiration. Based on the disposi-
tional scheme of plants and soil in the ecosystem, SEB 
can be divided into one source and two source models. 
One source models (e.g. Surface Energy Balance Algo-
rithm for Land, SEBAL) consider soil and vegetation as 
the sole source (mostly appropriate in the case of uni-
form vegetation coverage). Two source models (e.g. 
Two Source Energy Balance model, TSEB) treat soil 
and vegetation components of the surface energy bal-
ance separately (Minacapilli et al., 2009). The energy 
balance approach employs visible, near-infrared remote 
sensing data to obtain surface parameters such as albedo, 
vegetation index, and uses far-infrared observations to 
transform surface temperature and emissivity, which is 
simultaneously combined with the field measured wind 
speed, air temperature and humidity to calculate the 
evapotranspiration. Remote sensing interprets the sur-
face energy aspects of evapotranspiration, which is a 
different view of the matter cycle from that of the 
ecologist. 

As far as the ecosystem is concerned, plants are regu-
lators of water flux and provide a major discharge path 
for water. For example, forests provide a more stable 
water supply than other ecosystems, thus reducing local 
flooding, soil erosion, sediment accumulation and nu-
trient input to bodies of water downstream (Eamus et al., 
2005). The role of the plant canopy has long been rec-
ognized and applied in water flux studies. In the crop 
evapotranspiration estimation, using Food and Agricul-
ture Organization (FAO) methodology, daily evapotran- 
spiration is computed on the basis of crop coefficient 
and reference evapotranspiration concepts (Doorembos 
and Pruitt, 1977). The reference evapotranspiration from 
a complete green canopy of a standard crop can be pre-
dicted directly from climatic factors (Penman, 1963). 
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The ecologically important function of plants is repre-
sented as the crop coefficient, which is used to adjust 
the reference evapotranspiration. Similar to crop evapo- 
transpiration estimation with FAO methodology, Zhang 
et al. (2001) modeled the evapotranspiration of a vege-
tated area as a function of precipitation, potential evapo- 
transpiration and a plant available moisture index, which 
represents the relative use of water for transpiration. 
Zhang′s model represents the role of plant in regulating 
their available water resources by appropriately weight-
ing the average of the green and blue water fluxes, ad-
justed for rainfall. It has been widely used to evaluate 
the annual water yield from forested land and its re-
sponse to potential deforestation around the world (Sun 
et al., 2005; 2006; Zhang et al., 2008). Remote sensing 
provides multispectral vegetation indices (VIs) to track 
plant growth and estimate the basal crop coefficient and 
plant available moisture index in these models. Gon-
zález-Dugo and Mateos (2008) have declared that the 
determination of crop coefficients from satellite ob-
tained vegetation indices is robust since both VI and the 
crop coefficient are closely related to crop growth vari-
ables such as vegetation ground cover, LAI and biomass. 
Theoretical relationships derived by Choudhury et al. 
(1994), indicate that the detailed connection depends on 
the crop structure and of the way the applied VIs are 
defined. Krishnaswamy et al. (2009) expressed the plant 
available moisture index as a multidata NDVI based 
Mahalanobis distance measure (termed ′eco-climatic 
distance′), and successfully mapped green water and 
blue water fluxes of the tropical forested landscapes in 
southern India. 
 
2.5 Soil-based ecosystem services 
Soil provides the basic physical substrate for human life. 
The majority of ecosystem processes have soil as the 
critical and dynamic regulatory center. The benefit of 
soil to the ecosystem services has been widely described. 
The basic conclusion is that it contributes to most of the 
ecosystem services defined by Millennium Ecosystem 
Assessment (Falkenmark and Rockstrom, 2004; Walter 
et al., 2005; Lavelle et al., 2006; Haygarth and Ritz, 
2009). In the carbon and water related ecosystem ser-
vice discussed above, soil water is released at certain 
rates to sustain plant growth. Nutrients in the soil are 
converted through plant assimilation into plant products. 
Soil participates in climate regulation by controlling 

carbon sequestration with the form of soil organic mat-
ter, and sensible heat flux between soil and atmosphere. 
Besides that, soil also filters toxic substances by adsorp-
tion to the clay surface, determining the quality of sur-
face waters. 

Soils systems are very complex (Ritz, 2008). Knowl-
edge of spatially explicit soil information is a limitation 
to soil mapping by simply aggregating broadly similar 
soil groups. Haygarth and Ritz (2009) pointed out the 
need to map soil services in terms of identifying the land 
areas that are appropriate (or inappropriate) for particu-
lar uses. It gives clear direction to the purpose of, and 
development needs in, soil science. At present, soil or-
ganic carbon (SOC) and soil carbon sequestration are 
most widely mapped (Kern, 1994; Bajtes, 2000; Terra et 
al., 2004; Jones et al., 2005; Stoorvogel et al., 2009). 
The SOC depends on local site specific environmental 
conditions, including soil type, elevation, and plant con-
dition. NDVI is commonly used to estimate the amount 
of photosynthesizing vegetation present, thus detecting 
the proportion of bare soil in a given area. In high soil 
moisture area, assistant moisture related indices are 
necessary. Kheir et al. (2010) used Landsat TM derived 
normalized difference wetness index (NDWI) and soil 
color index (SCI) as explanatory parameters of carbon 
containing soils in Denmark. NDWI and SCI were pre-
dictors of soil saturation, differentiating between high 
carbon soils from moist soils.  

A suite of soil properties is needed to reveal the de-
gree to which soils exert different ecosystem services 
(Palm et al., 2007). Remote sensing can be used to 
characterize various chemical, physical, and biological 
soil surface properties. For example, Demattê et al. 
(2010) evaluated soil density using spectral reflectance 
as evidence of compaction effects. The intensity of 
spectral reflectance of high soil bulk density (compacted) 
soils was higher than for low density (non-compacted) 
soils due to changes in soil structure and porosity. Lo-
bell et al. (2009) found the multi-year average MODIS 
EVI coupled with local information captured one-third 
to one-half of the spatial variation of soil salinity. 
Rogovska and Blackmer (2009) described a significant 
correlation between Green-NDVI and soil acid (pH) and 
calcium carbonate equivalent in areas of the US Corn 
Belt. LiDAR can significantly contribute to soil rough-
ness measurement (Anderson, 2009). 

Soil biota plays an important role in soil based eco-
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system services. They are soil engineers, determining 
the physical and chemical properties through biological 
processes (Barrios, 2007; Ritz et al., 2009). Increased 
efforts to acquire greater knowledge on the spatial dis-
tribution of soil biota would be critical to increase our 
predictive understanding of ecosystem service provision. 
For example, the positive direct impacts of micro- 
symbiosis on crop yield due to increases in plant avail-
able nutrients, especially nitrogen through biological 
nitrogen fixation (BNF) by soil bacteria (e.g. Rhizobium) 
and phosphorus through arbuscular mycorrhizal fungi 
(AMF) (Marshner, 1995; Smith and Read, 1997; Giller, 
2001). The ecosystem service of phosphorus supply can 
be found among closely related AMF species of the same 
genus (Barrios, 2007). Soil biota are highly diversified 
and widely distributed in the complex and heterogeneous 
soil systems. Given the difficulty of studying soil biota in 
landscapes, plant soil biota interactions is of particular 
importance in helping to understand the impacts of soil 
biota at larger scales (Wardle et al., 2004). Spatial infor-
mation about the aboveground canopy obtained using 
remote sensing technologies could lead to inferences 
about the belowground component, which is expected to 
be a new way of assessing spatially explicit soil biota 
related ecosystem services in the future. 
 

3 Evaluation of Remote Sensing for Ecosystem 
Services 
 
3.1 Role of remote sensing in ecosystem service as-
sessment 
Remote sensing is in essence a technique for gathering 
spatial information. Based on the role of remote sensing 

technique, ecosystem service assessment described in 
Part 2 can be divided into three categories: direct moni-
toring, indirect monitoring and in combination with 
ecosystem models (Fig. 1). 

Spectrum radiation directly reflects the character of 
plants and soils in the terrestrial ecosystem. Evapotran-
spiration can be calculated by interpreting the remotely 
sensed image based on the energy theory. Directly 
monitored ecosystem service includes some aspects of 
the plant and water related ecosystem service, including 
plant biodiversity, carbon fixation and green water 
measurement. The greatest limitation to the remote 
sensing technique is that the recorded information is 
constrained to the aboveground canopy and uppermost 
surface layer of the ecosystem. Radar microwaves can 
penetrate into the soil layer because of its relatively long 
wavelength. It can reflect the information for about 3 
mm of the soil layer in wet conditions, and 1 m in dry 
conditions. Optical remote sensing images reflect only 
the top layer of the plant or the bare soil surface. More-
over, remote sensing is an instantaneous monitoring 
technique that stores the surface information at the mo-
ment of recording. It clearly can neither extend back-
ward to historical time periods nor foreword to the fu-
ture. As a result, most ecosystem service assessment can 
not be directly implemented from the remotely sensed 
image. Remote sensing promotes ecosystem service as-
sessment by providing surrogate information. For ex-
ample, the animal assemblages are inferred from the 
remotely sensed plant structure. FAO methodology re-
quires the variables of a plant to reflect its regulation 
function in the ecosystem evapotranspiration. For ecosy-  
stem service relating to the spatial and temporal dy-

 

 
Fig. 1 Framework of ecosystem service assessment with remote sensing 
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namic processes, such as flood regulation, soil erosion 
and so on, ecosystem process models have proved to be 
increasingly effective. Remotely sensed spatial data 
provide important inputs for these models running at 
landscape to regional scales. 
 
3.2 How to improve accuracy 
Remote sensing has proved to be useful, but it is not a 
panacea for ecosystem service assessment. Accuracy 
remains critical among the numerous challenges inher-
ent in remote sensing techniques. The authors empha-
size two aspects of improving the accuracy of ecosystem 
service assessment. 
3.2.1 Fieldwork is important 
Remote sensing is not an alternative to field surveys. The 
establishment of regional empirical models needs field 
data. Ecosystem service measurements derived from re-
mote sensing and spatial analyses must be validated with 
reference to ground truth. The importance of fieldwork 
simultaneously corresponding to remote sensing is em-
phasized (Barlow, 2009). Carlson et al. (2007) stated that 
the species richness prediction algorithm developed in 
one area is unique and it cannot be directly applied to 
other areas or different vegetation regimes. Buchanan et 
al. (2009) suggested that a remote sensing based system 
should involve continued collaboration between those 
who have biodiversity monitoring skills and remote 
sensing practitioners. Field observation is also an impor-
tant basis for the improvement of remote sensing tech-
nique. In the paper of Yan et al. (2008), predicted GPP 
from the LUE model did not agree well with observed 
GPP from the eddy flux towers for estuarine wetland. 
Further analysis found that LUE model did not fit the 
specific ecosystem. Also ground based measurements of 
lateral carbon flow and CH4 emission are needed to close 
the carbon budget of estuarine wetlands. 
3.2.2 Select ′ideal′ data resolution 
Remotely sensed imagery with global coverage is be-
coming available in increasingly fine spatial and tem-
poral resolutions. It has been found that improvement in 
data resolution could increases the identification of 
small patch in the landscape (Konarska et al., 2002). 
However, finer spatial resolution does not guarantee 
more accurate ecosystem service estimates. Olofsson et 
al. (2008) found the MODIS EVI at 250 m resolution 
was very noisy for the GPP of coniferous forests, while 
MODIS EVI at 1 km resolution can be used for the 

analysis, although the mechanism for this is unknown. 
Classification accuracies of forest decrease when the 
spatial resolution becomes finer than 60–80 m because 
fine resolution data may produce better results for indi-
vidual trees rather than forest classes (Woodcock and 
Strahler, 1987). The influence of data resolution on 
ecosystem service monitoring is ubiquitous. All field 
based empirical relationships in ecosystem service 
monitoring depends on data resolution. It is essential 
that the spatial and temporal resolution of remote sens-
ing data being matched to the sample size of field data 
and the relevant scales of ecosystem service being 
mapped. Contrary conclusion may be reached if data at 
different resolutions is used. Analysis to determine if 
pixel size does influence ecosystem service is needed 
before the application of a remotely sensed image in a 
given situation. The authors defined ′ideal′ resolution as 
the one that could distinguish the key patterns of eco-
system service; this should jointly consider the extent of 
fragmented ecosystems of landscapes and the need of 
local management. 

In addition, new tools contributing to ecosystem ser-
vice assessment keep emerging. For example, passive 
technique has detected chlorophyll fluorescence emitted 
in two broad bands with peaks at about 685 nm and 740 
nm. Damm et al. (2010) shows for the first time that in-
cluding sun induced fluorescence in the LUE model im-
proves the prediction of diurnal courses of GPP. Quanti-
fication of sun induced fluorescence yield may become a 
powerful tool to better understand spatio-temporal varia-
tions of carbon related ecosystem service at large scale.  

Night satellite images comprise a global dataset de-
rived as a mosaic of hundreds of orbits of the Defense 
Meteorological Satellite Program′s Operational Lines-
can System (DMSP OLS). Studies of the imagery have 
shown that it corresponds to the extent of urban land 
cover, population density, energy consumption, green-
house gas emission and other socio-economic parame-
ters (Sutton and Costanza, 2002). These images are ex-
pected to provide spatial explicit parameters related to 
marketed economic activity within the ecosystem ser-
vice ecological-social framework. 
 
4 Discussion and Conclusions  
 
Remote sensing is a technique for collecting spatial in-
formation about the Earth′s ecosystems. Ecosystem ser-
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vice is a science with issues that can be answered in a spa-
tially explicit way. The application of remote sensing 
should have the potential to address the basic issues of 
spatially quantifying the ecosystem services. This paper 
reviews the current ecosystem service related works in 
both fields. Two points should be mentioned: 1) remote 
sensing has been widely used to quantify ecosystem char-
acterization (Cohen and Goward, 2004; Ustin et al., 2004; 
Wulder et al., 2004; Muraoka and Koizumi, 2009; Newton 
et al., 2009). Only those applications in relation to some 
specific ecosystems and the goods and benefits ecosys-
tems provided to people are included here; and 2) eco-
logical service is an integrated concept combining the 
ecological and social system—the ecologist wants to 
quantify specific ecosystem services, while the economist 
applies economic values to the changes in ecosystem ser-
vices. Only ecological issues in ecosystem service are 
considered in this paper because remote sensing is a tech-
nique for monitoring biophysical characteristics of eco-
systems. Cultural services in the Millennium Ecosystem 
Assessment are not included in this paper for the same 
reason. 

Several key topics are included such as land cover, 
biodiversity and carbon, water and soil related ecosys-
tem service. The traditional remote sensing researches 
of Earth elements (carbon, water and soil) monitoring 
coincides with important ecosystem service issues, for 
the reason that carbon, water and soil are natural gifts 
that ecosystems provide for mankind. Some plant and 
water related ecosystem services can be directly inferred 
by interpreting the remotely sensed image. For ecosys-
tem service that can not be directly monitored, remote 
sensing facilitate the assessment by providing surrogate 
information for the status of plants and soils, which have 
important roles in ecosystem service provision. Remote 
sensing can also provide spatial inputs for dynamic 
ecosystem service model. 

Accurate assessment is a never ending topic in remote 
sensing applications. The authors recommend a focus on 
collecting precise field data and selecting ′ideal′ data 
resolution to improve the resulted accuracy. The authors 
also conclude that the development of remote sensing 
techniques should benefit the accurate ecosystem ser-
vice assessment in the future. 
 
References 
 
Alain P, Robert L, 2005. A review of Canadian remote sensing 

and hydrology, 1999–2003. Hydrological Processes, 19(1): 
285–301. DOI: 10.1002/hyp.5771 

Anderson K, 2009. Remote sensing of soil surface properties. 
Progress in Physical Geography, 33(4): 457–473. DOI: 10.11- 
77/0309133309346644 

Anguela T P, Zribi M, Baghdadi N et al., 2010. Analysis of local 
variation of soil surface parameters with terrasar-x radar data 
over bare agricultural fields. IEEE Transactions on Geoscience 
and Remote Sensing, 48(2): 874–881. DOI: 10.1109/TGRS.20- 
09.2028019  

Antonie D, André J, Morel A, 1996. Oceanic primary production: 
2. Estimation at global scale from satellite (Coastal Zone Color 
Scanner) chlorophyll. Global Biogeochemical Cycles, 10(1): 
57–69. DOI: 10.1029/95GB02832 

Aplin P, 2005. Remote sensing: Ecology. Progress in Physical 
Geography, 29(1): 104–13. DOI: 10.1191/030913305pp437pr 

Bajtes N H, 2000. Effects of mapped variation in soil conditions 
on estimates of soil carbon and nitrogen stocks for South 
America. Geoderma, 97(1–2): 135–144. DOI: 10.1016/S0016- 
7061(00)00031-8 

Balmford A, Bruner A, Cooper P et al., 2002. Economic reasons 
for conserving wild nature. Science, 297(5583): 950–953. DOI: 
10.1126/science.1073947 

Balmford A, Rodrigues A S L, Walpole M et al., 2008. The Eco-
nomics of Biodiversity and Ecosystems: Scoping the Science. 
Cambridge: European Commission. 

Balvanera P, Pfisterer A B, Buchmann N et al., 2006. Quantifying 
the evidence for biodiversity effects on ecosystem functioning 
and services. Ecology Letters, 9(10): 1146–1156. DOI: 10.111- 
1/j.1461-0248.2006.00963.x 

Barlow J, 2009. Editor's Choice: Assessing biodiversity by remote 
sensing in mountainous terrain. Journal of Applied Ecology, 
46(4): 946. DOI: 10.1111/j.1365-2664.2009.01684.x 

Barrios E, 2007. Soil biota, ecosystem services and land produc-
tivity. Ecological Economics, 64(2): 269–285. DOI: 10.1016/j. 
ecolecon.2007.03.004  

Behrenfeld M J, Boss E, Siegel D A et al., 2005. Carbon-based 
ocean productivity and phytoplankton physiology from space. 
Global Biogeochemical Cycles, 19(1): GB1006. DOI: 10.1029/ 
2004GB002299 

Benayas J M R, Newton A C, Diaz A et al., 2009. Enhancement 
of biodiversity and ecosystem services by ecological restora-
tion. Science, 325(5944): 1121–1124. DOI: 10.1126/science.11- 
72460 

Boelman N T, Stieglitz M, Rueth H M et al., 2003. Response of 
NDVI, biomass, and ecosystem gas exchange to long-term 
warming and fertilization in wet sedge tundra. Oecologia, 
135(3): 414–421. DOI: 10.1007/s00442-003-1198-3 

Buchanan G M, Nelson A, Mayaux P et al., 2009. Delivering a 
global, terrestrial, biodiversity observation system through re-
mote sensing. Conservation Biology, 23(2): 499–502. DOI: 
10.1111/j.1523-1739.2008.01083.x 

Cao M K, Prince S D, Li K R et al., 2003. Response of terrestrial 
carbon uptake to climate interannual variability in China. 
Global Change Biology, 9(4): 536–546. DOI: 10.1046/j.1365- 



 FENG Xiaoming, FU Bojie, YANG Xiaojun et al. 532

2486.2003.00617.x 
Carlson K M, Asner G P, Hughes R F et al., 2007. Hyperspectral 

remote sensing of canopy biodiversity in Hawaiian lowland 
rainforests. Ecosystems, 10(4): 536–549. DOI: 10.1007/s1002- 
1-007-9041-z 

Carpenter S R, DeFries R, Dietz T et al., 2006. Millennium eco-
system assessment: Research needs. Science, 314(5797): 257– 
258. DOI: 10.1126/science.1131946 

Chen J, Chen X, Ju W et al., 2005. Distributed hydrological 
model for mapping evapotranspiration using remote sensing 
inputs. Journal of Hydrology, 305(1–4): 15–39. DOI: 10.1016/ 
j.jhydrol.2004.08.029 

Choudhury B J, Ahmed N U, Idso S B et al., 1994. Relations 
between evaporation coefficients and vegetation indices stud-
ied by model simulations. Remote Sensing of Environment, 
50(1): 1–17. DOI: 10.1016/0034-4257(94)90090-6  

Cohen W, Gowaed S N, 2004. Landsat′s role in ecological appli-
cations of remote sensing. BioScience, 54(6): 535–545. 

Costanza R, d′Arge R, de Groot R et al., 1997. The value of the 
world′s ecosystem services and natural capital. Nature, 387: 
253–260. DOI: 10.1038/387253a0 

Daily G C, 1997. Nature's Services: Societal Dependence on 
Natural Ecosystems. Washington, D.C.: Island Press.  

Damm A, Elbers J, Erler A et al., 2010. Remote sensing of 
sun-induced fluorescence to improve modeling of diurnal cour- 
ses of gross primary production (GPP). Global Change Biology, 
16(1): 171–186. DOI: 10.1111/j.1365-2486.2009.01908.x 

Demattê J A M, Nanni M R, da Silva A P et al., 2010. Soil density 
evaluated by spectral reflectance as an evidence of compaction 
effects. International Journal of Remote Sensing, 31(2): 403– 
422. DOI: 10.1080/01431160902893469 

Doorembos J, Pruitt W O, 1977. Crop water requirements. Rome: 
FAO Irrigation and Drainage Paper No. 24. 

Eamus D, Macinnis-Ng C M O, Hose G C et al., 2005. Ecosys-
tem services: An ecophysiological examination. Australian 
Journal of Botany, 53(1): 1–19. 

Ehrlich P R, Ehrlich A H, 1981. Extinction: The Causes and Con-
sequences of the Disappearance of Species. New York, NY: 
Random House.  

Elvidge C D, Lyon R J P, 1985. Influence of rock-soil spectral 
variation of the assessment of green biomass. Remote Sensing 
of Environment, 17(3): 265–279. DOI: 10.1016/0034-4257(85) 
90099-9 

Eppley R W, Stewart E, Abbott M R et al., 1985. Estimating 
ocean primary production from satellite-derived chlorophyll: 
Introduction to regional differences and statistics for the 
Southern California Bight. Journal of Plankton Research, 7(1): 
57–70. 

Falkenmark M, Rockstrom J, 2004. Balancing Water for Humans 
and Nature: The New Approach in Ecohydrology. London: 
Earthscan. 

Foody G M, Cutler M E J, 2003. Tree biodiversity in protected 
and logged Bornean tropical rain forests and its measurement 
by satellite remote sensing. Journal of Biogeography, 30(7): 
1053–1066. DOI: 10.1046/j.1365-2699.2003.00887.x 

Fuentes D A, Gamon J A, Qiu H et al., 2001. Mapping Canadian 
boreal forest vegetation using pigment and water absorption 
features derived from the AVIRIS sensor. Journal of Geo-
physical Research, 106(D24): 33565–33577. DOI: 10.1029/20- 
01JD900110 

Fuller R M, Groom G B, Mugisha S et al., 1998. The integration 
of field survey and remote sensing for biodiversity assessment: 
A case study in the tropical forests and wetlands of Sango. 
Biological Conservation, 86(3): 379–391. DOI: 10.1016/S000- 
6-3207(98)00005-6  

Gaston K J, Spicer J I, 2004. Biodiversity: An Introduction. Ox-
ford: Blackwell Science Ltd. 

Gianelle D, Vescovo L, 2007. Determination of green herbage 
ratio in grasslands using spectral reflectance. Methods and 
ground measurements. International Journal of Remote Sens-
ing, 28(5): 931–942. DOI: 10.1080/01431160500196398 

Gianelle D, Vescovo L, Marcolla B et al., 2009. Ecosystem car-
bon fluxes and canopy spectral reflectance of a mountain 
meadow. International Journal of Remote Sensing, 30(2): 
435–449. DOI: 10.1080/01431160802314855 

Giller K E, 2001. Nitrogen Fixation in Tropical Cropping Systems. 
Wallingford: CAB International. 

Gould W, 2000. Remote sensing of vegetation, plant species 
richness and regional biodiversity hotspots. Ecological Appli-
cations, 10: 1861–1870. DOI: 10.1890/1051-0761(2000)010[1- 
861:RSOVPS]2.0.CO;2 

González-Dugo M P, Mateos L, 2008. Spectral vegetation indices 
for benchmarking water productivity of irrigated cotton and 
sugarbeet crops. Agricultural Water Managemnt, 95(1): 48–58. 
DOI: 10.1016/j.agwat.2007.09.001 

Hao Chengyuan, Wu Shaohong, Xu Chuanyang, 2008. Compari-
son of some vegetation indices in seasonal information. Chi-
nese Geographical Science, 18(3): 242–248. DOI: 10.1007/s1- 
1769-008-0242-y 

Haubrock S, Chabrillat S, Kuhnert M et al., 2008. Surface soil 
moisture quantification and validation based on hyperspectral 
data and field measurements. Journal of Applied Remote Sens-
ing, 2: 023552. DOI: 10.1117/1.3059191 

Haygarth P M, Ritz K, 2009. The future of soils and land use in 
the UK: Soil systems for the provision of land-based ecosystem 
services. Land Use Policy, 26: 187–197. DOI: 10.1016/j.landu- 
sepol.2009.09.016  

Heinsch F A, Reeves M, Votava P et al., 2002. User's Guide GPP 
and NPP (MOD17A2/A3) Products NASA MODIS Land Al-
gorithm. Available at: http://www.ntsg.umt.edu/modis/MOD17- 
UsersGuide.pdf. 

Hilker T, Coops N C, Wulder M A et al., 2008. The use of remote 
sensing in light use efficiency based models of gross primary 
production: A review of current status and future requirements. 
Science of the Total Environment, 404(2–3): 411–423. DOI: 
10.1016/j.scitotenv.2007.11.007 

Hu H B, Liu W J, Cao M, 2008. Impact of land use and land 
cover changes on ecosystem services in Menglun, Xishuang-
banna, Southwest China. Environmental Monitoring and As-
sessment, 146: 147–156. DOI: 10.1007/s10661-007-0067-7 



 Remote Sensing of Ecosystem Services: An Opportunity for Spatially Explicit Assessment  533

Huete A R, Jackson R D, 1987. Suitability of spectral indices for 
evaluating vegetation characteristics on arid rangelands. Re-
mote Sensing of Environment, 23(2): 213–232. DOI: 10.1016/ 
0034-4257(87)90038-1 

Isbell F I, Polley H W, Wilsey B J, 2009. Biodiversity, productiv-
ity and the temporal stability of productivity: Patterns and 
processes. Ecology Letter, 12: 443–451. DOI: 10.1111/j.1461- 
0248.2009.01299.x 

Jones R J A, Hiederer R, Rusco E et al., 2005. Estimating organic 
carbon in the soils of Europe for policy support. European 
Journal of Soil Science, 56(5): 655–671. DOI: 10.1111/j.1365- 
2389.2005.00728.x 

Kalma J D, McVicar T R, McCabe M F, 2008. Estimating land 
surface evaporation: A review of methods using remotely 
sensed surface temperature data. Surveys in Geophysics, 
29(4–5): 421–469. DOI: 10.1007/s10712-008-9037-z 

Kern J S, 1994. Spatial patterns of soil organic carbon in the con-
tiguous United States. Soil Science Society of America Journal, 
58: 439–455. 

Kheir R B, Greve M H, Bocher P K et al., 2010. Predictive map-
ping of soil organic carbon in wet cultivated lands using classi-
fication-tree based models: The case study of Denmark. Jour-
nal of Environmental Management, 91(5): 1150–1160. DOI: 
10.1016/j.jenvman.2010.01.001 

Kite G, Pietroniro A, 1996. Remote sensing application in hydro-
logical modeling. Hydrological Science, 41(4): 563–591. DOI: 
10.1080/02626669609491526 

Knudby A, LeDrew E, Newman C, 2007. Progress in the use of 
remote sensing for coral reef biodiversity studies. Progress in 
Physical Geography, 31(4): 421–434. DOI: 10.1177/03091333- 
07081292 

Konarska K M, Sutton P C, Castellon M, 2002. Evaluating scale 
dependence of ecosystem service valuation: a comparison of 
NOAA-AVHRR and Landsat TM datasets. Ecological Econom-
ics, 41(3): 491–507. DOI: 10.1016/S0921-8009(02)00096-4 

Krishnaswamy J, Bawa K S, Ganeshaiah K N et al., 2009. Quan-
tifying and mapping biodiversity and ecosystem services: Util-
ity of a multi-season NDVI based Mahalanobis distance surro-
gate. Remote Sensing of Environment, 113(4): 857–867. DOI: 
10.1016/j.rse.2008.12.011 

Krysanova V, Hattermann F, Wechsung F, 2007. Implications of 
complexity and uncertainty for integrated modeling and impact 
assessment in river basins. Environmental Modelling and Soft-
ware, 22(5): 701–709. DOI: 10.1016/j.envsoft.2005.12.029 

Lass L W, Prather T S, Glenn N F et al., 2005. A review of remote 
sensing of invasive weeds and example of the early detection 
of spotted knapweed (Centaurea Maculosa) and babysbreath 
(Gypsophila Paniculata) with a hyperspectral sensor. Weed 
Science, 53(2): 242–251. DOI: 10.1614/WS-04-044R2 

Lavelle P, Decaëns T, Aubert M et al., 2006. Soil invertebrates 
and ecosystem services. European Journal of Soil Biology, 42: 
3–15. DOI: 10.1016/j.ejsobi.2006.10.002 

Liu Xianzhao, Li Jiazhu, 2008. Application of SCS model in es-
timation of runoff from small watershed in Loess Plateau of 
China. Chinese Geographical Science, 18(3): 235–241. DOI: 

10.1007/s11769-008-0235-x 
Lobell D B, Lesch S M, Corwin D L et al., 2009. Regional-scale 

Assessment of soil salinity in the Red River Valley using 
multi-year MODIS EVI and NDVI. Journal of Environmental 
Quality, 39(1): 35–41. 

Ludwig J A, Wilcox B P, Breshears D D et al., 2005. Vegetation 
patches and runoff-erosion as interacting ecohydrological 
processes in semiarid landscapes. Ecology, 86(2): 288–297. 
DOI: 10.1890/03-0569 

Maes W H, Heuvelmans G, Muys B, 2009. Assessment of land 
use impact on water-related ecosystem services capturing the 
integrated terrestrial-aquatic system. Environmental Science 
and Technology, 43(19): 7324–7330. DOI: 10.1021/es900613w 

Marshner H, 1995. Mineral Nutrition of Higher Plants. London: 
Academic Press. 

Minacapilli M, Agnese C, Blanda F et al., 2009. Estimation of 
actual evapotranspiration of mediterranean perennial crops by 
means of remote-sensing based surface energy balance models. 
Hydrology and Earth System Sciences, 13(7): 1061–1074. DOI: 
10.5194/hess-13-1061-2009 

Monteith J L, 1972. Solar-radiation and productivity in tropical 
ecosystems. Journal of Applied Ecology, 9(3): 747–766. DOI: 
10.2307/2401901 

Monteith J L, 1977. Climate and the efficiency of crop production 
in Britain. Philosophical Transactions of Royal Society of 
London Series B-Biological Sciences, 281(980): 277–294. 

Muldavin E H, Neville P, Harper G, 2001. Indices of grassland 
biodiversity in the Chihuahuan Desert ecoregion derived from 
remote sensing. Conservation Biology, 15(4): 844–855. DOI: 
10.1046/j.1523-1739.2001.015004844.x 

Muraoka H, Koizumi H, 2009. Satellite Ecology (SATECO)— 
Linking ecology, remote sensing and micrometeorology, from 
plot to regional scale, for the study of ecosystem structure and 
function. Journal of Plant Research, 122(1): 3–20. DOI: 
10.1007/s10265-008-0188-2 

Müller J, Brandl R, 2009. Assessing biodiversity by remote sens-
ing in mountainous terrain: the potential of LiDAR to predict 
forest beetle assemblages. Journal of Applied Ecology, 46(4): 
897–905. DOI: 10.1111/j.1365-2664.2009.01677.x 

Myneni R B, Hall F G, Sellers P J et al., 1995. The interpretation 
of spectral vegetation indices. IEEE Transactions on Geo-
sciences and Remote Sensing, 33(2): 481–468. DOI: 10.1109/3- 
6.377948 

Nelson E, Mendoza G, Regetz J et al., 2009. Modeling multiple 
ecosystem services, biodiversity conservation, commodity 
production, and tradeoffs at landscape scales. Frontiers in 
Ecology and the Environment, 7(1): 4–11. DOI: 10.1890/0800- 
23 

Newton A C, Hill R A, Echeverría C et al., 2009. Remote sensing 
and the future of landscape ecology. Progress in Physical Ge-
ography, 33(4): 528–546. DOI: 10.1177/0309133309346882 

Norgaard R B, 2009. Ecosystem services: From eye-opening 
metaphor to complexity blinder. Ecological Ecomomics, 69(6): 
1219–1227. DOI: 10.1016/j.ecolecon.2009.11.009 

Ohlson M, Söderström L, Hörnberg G et al., 1997. Habitat quali-



 FENG Xiaoming, FU Bojie, YANG Xiaojun et al. 534

ties versus long-term continuity as determinants of biodiversity 
in boreal old-growth swamp forests. Biological Conservation, 
81(3): 221–231. DOI: 10.1016/S0006-3207(97)00001-3 

Olofsson P, Lagergren F, Lindroth A et al., 2008. Towards opera-
tional remote sensing of forest carbon balance across Northern 
Europe. Biogeosciences, 5: 817–832. 

Ozanne C M P, Anhuf D, Boulter S L et al., 2003. Biodiversity 
meets the atmosphere: A global view of forest canopies. Sci-
ence, 301(5630): 183–186. DOI: 10.1126/science.1084507 

Palm C, Sanchez P, Ahamed S et al., 2007. Soils: A contemporary 
perspective. Annual Review of Environment and Resources, 32: 
99–129. 

Paruelo J M, Pineiro G, Baldi G et al., 2010. Carbon stocks and 
fluxes in rangelands of the Rio de la Plata Basin. Rangeland 
Ecology and Management, 63(1): 94–108. DOI: 10.2111/08- 
055.1 

Penman H L, 1963. Vegetation and Hydrology. Harpenden: 
Commonwealth Bureau of Soils. 

Pietroniro A, Prowse T, 2002. Applications of remote sensing in 
hydrology. Hydrological Processes, 16(8): 1537–1541. DOI: 
10.1002/hyp.1018 

Polasky S, Nelson E, Camm J et al., 2008. Where to put things? 
Spatial land management to sustain biodiversity and economic 
returns. Biological Conservation, 141(6): 1505–1524. DOI: 
10.1016/j.biocon.2008.03.022  

Prince S D, 1991. Satellite remote-sensing of primary production— 
  Comparison of results for Sahelian grasslands 1981–1988. In-

ternational Journal of Remote Sensing, 12(6): 1301–1311. DOI: 
10.1080/01431169108929727 

Rahman A F, Gamon J A, Fuentes D A et al., 2001. Modeling 
spatially distributed ecosystem flux of boreal forests using hy-
perspectral indices from AVIRIS imagery. Journal of Geo-
physical Research, 106(D24): 33579–33591. DOI: 10.1029/20- 
01JD900157 

Rahman A F, Sims D A, Cordova V D et al., 2005. Potential of 
MODIS EVI and surface temperature for directly estimating 
per-pixel ecosystem C fluxes. Geophysical Research Letters, 
32: L19404. DOI: 10.1029/2005GL024127 

Rao G H, Gupta R K, Nadham T S V et al., 1993. NOAA/AVHR- 
R vegetation indices as district level wheat growth indicators. 
Advances in Space Research, 13(5): 249–252. DOI: 10.1016/ 
0273-1177(93)90552-M 

Reeves M C, Zhao M, Running S W, 2005. Usefulness and limits 
of MODIS GPP for estimating wheat yield. International 
Journal of Remote Sensing, 26(7): 1403–1421. DOI: 10.1080/ 
01431160512331326567 

Reyers B, O'Farrell P J, Cowling R M et al., 2009. Ecosystem 
services, land-cover change, and stakeholders: Finding a sus-
tainable foothold for a semiarid biodiversity hotspot. Ecology 
and Society, 14(1): 38. Available at: http://www.ecologyandso- 
ciety.org/vol14/iss1/art38/ 

Ripl W, 2003. Water: The bloodstream of the biosphere. Philoso-
phical Transactions of the Royal Society Lond B Biological 
Sciences, 358(1440): 1921–1934. DOI: 10.1098/rstb.2003.1378 

Ritz K, 2008. Soil as a paradigm of a complex system. In: 

Ramsden J J et al. (eds.). Complexity and Security. Amsterdam:  
IOS Press. 

Ritz K, Black H I J, Campbell C D et al., 2009. Selecting biologi-
cal indicators for monitoring soils: A framework for balancing 
scientific and technical opinion to assist policy development. 
Ecological Indicators, 9(6): 1212–1221. DOI: 10.1016/j.ecolin- 
d.2009.02.009. 

Rockström J, Gordon L, Folke C et al., 1999. Linkages among 
water vapor flows, food production, and terrestrial ecosystem- 
services. Conservation Ecology, 3(2): 5.  

Rogovska N, Blackmer A M, 2009. Remote sensing of soybean 
canopy as a tool to map high pH, calcareous soils at field scale. 
Precision Agriculture, 10(2): 175–187. DOI: 10.1007/s11119- 
008-9087-8 

Running W, Nemani R R, Heinsch F A et al., 2004. A continuous 
satellite-derived measure of global terrestrial primary produc-
tion. BioScience, 54(6): 547–560. DOI: 10.1641/0006-3568(2- 
004)054[0547:ACSMOG]2.0.CO;2 

Sachs J D, Reid W V, 2006. Environment: Investments toward 
sustainable development. Science, 312(5776): 1002. DOI: 10.1- 
126/science.1124822 

Seguin B, Itier B, 1983. Using midday surface temperatures to 
estimate daily evaporation from satellite thermal IR data. In-
ternational Journal of Remote Sensing, 4(2): 371–383. DOI: 
10.1080/01431168308948554 

Smith S E, Read D J, 1997. Mycorrhizal Symbiosis. New York: 
Academic Press. 

Song Dongsheng, Zhao Kai, Guan Zhi, 2007. Advances in re-
search on soil moisture by microwave remote sensing in China. 
Chinese Geographical Science, 17(2): 186–191. DOI: 10.1007/ 
s11769-007-0186-7 

Stoorvogel J J, Kempen B, Heuvelink G B M et al., 2009. Im-
plementation and evaluation of existing knowledge for digital 
soil mapping in Senegal. Geoderma, 149(1–2): 161–170. DOI: 
10.1016/j.geoderma.2008.11.039 

Sun G, McNulty S G, Lu J et al., 2005. Regional annual water 
yield from forest lands and its response to potential deforesta- 
tion across the southeastern United States. Journal of Hydrol-
ogy, 308: 258–268. DOI: 10.1016/j.jhydrol.2004.11.021 

Sun G, Zhou G, Zhang Z et al., 2006. Potential water yield reduc-
tion due to forestation across China. Journal of Hydrology, 
328(3–4): 548–558. DOI: 10.1016/j.jhydrol.2005.12.013 

Sutton P C, Costanza R, 2002. Global estimates of market and 
non-market values derived from nighttime satellite imagery, land 
cover, and ecosystem service valuation. Ecological Economics, 
41(3): 509–527. DOI: 10.1016/S0921-8009(02)00097-6  

Swain P H, Davis S M, 1978. In Remote Sensing: The Quantita-
tive Approach. New York: McGraw-Hill. 

Terra J A, Shaw J N, Reeves D W et al., 2004. Soil carbon rela-
tionships with terrain attributes, electrical conductivity, and soil 
survey in a coastal plain landscape. Soil Science, 169(12): 
819–831. 

Thenkabail P S, Smith R B, De Pauw E, 2000. Hyperspectral 
vegetation indices and their relationships with agricultural crop 
characteristics. Remote Sensing of Environment, 71(2): 158– 



 Remote Sensing of Ecosystem Services: An Opportunity for Spatially Explicit Assessment  535

182. DOI: 10.1016/S0034-4257(99)00067-X 
Turner W, Spector S, Gardiner N et al., 2003. Remote sensing for 

biodiversity science and conservation. Trends in Ecology and 
Evolution, 18(6): 306–314. DOI: 10.1016/S0169-5347(03)000- 
70-3 

Ustin S L, Roberts D A, Gamon J A et al., 2004. Using imaging 
spectroscopy to study ecosystem processes and properties. 
BioScience, 54(6): 523–534. DOI: 10.1641/0006-3568(2004) 
054[0523:UISTSE]2.0.CO;2 

Viney N R, Sivapalan M, 2001. Modelling catchment processes in 
the Swan-Avon river basin. Hydrological Processes, 15(13): 
2671–2685. DOI: 10.1002/hyp.301 

Walter V R et al., 2005. Ecosystems and Human Well-being: Syn-
thesis Report. Washington, DC: Island Press. 

Wang Z M, Zhang B, Zhang S Q et al., 2006. Changes of land use 
and of ecosystem service values in Sanjiang Plain, Northeast 
China. Environmental Monitoring and Assessment, 112(1–3): 
69–91. DOI: 10.1007/s10661-006-0312-5 

Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecologi- 
cal linkages between aboveground and belowground biota. 
Science, 304(5677): 1629–1633. DOI: 10.1126/science.10948- 
75 

Wiens J, Sutter R, Anderson M K et al., 2009. Selecting and con-
serving lands for biodiversity: The role of remote sensing. Re-
mote Sensing of Environment, 113(7): 1370–1381. DOI: 
10.1016/j.rse.2008.06.020  

Williams J D, Dun S, Robertson D S et al., 2010. WEPP simula-
tions of dryland cropping systems in small drainages of north-
eastern Oregon. Journal of Soil and Water Conservation, 65(1): 
22–23. DOI: 10.2489/jswc.65.1.22 

Woodcock C E, Strahler A H, 1987. The factor of scale in remote 
sensing. Remote Sensing of Environment, 21(3): 311–332. DOI: 
10.1016/0034-4257(87)90015-0 

Wulder M A, Hall R J, Coops N C et al., 2004. High spatial reso- 

  lution remotely sensed data for ecosystem characterization. 
BioScience, 54(6): 511–521. DOI: 10.1641/0006-3568(2004) 
054[0511:HSRRSD]2.0.CO;2 

Wylie B K, Johnson D A, Laca E et al., 2003. Calibration of re-
motely sensed, coarse resolution NDVI to CO2 fluxes in a 
sagebrush-steppe ecosystem. Remote Sensing of Environment, 
85(2): 243–255. DOI: 10.1016/S0034-4257(03)00004-X 

Yan Y, Zhao B, Chen J Q et al., 2008. Closing the carbon budget 
of estuarine wetlands with tower-based measurements and 
MODIS time series. Global Change Biology, 14(7): 1690–1702. 
DOI: 10.1111/j.1365-2486.2008.01589.x 

Yang C, 2009. Evaluating high resolution SPOT 5 satellite im-
agery to estimate crop yield. Precision Agriculture, 10(4): 
292–303. DOI: 10.1007/s11119-009-9120-6 

Yeh S, Wang C, Yu H, 2006. Simulation of soil erosion and nu-
trient impact using an integrated system dynamics model in a 
watershed in Taiwan. Environmental Modelling and Software, 
21: 937–948. DOI: 10.1016/j.envsoft.2005.04.005 

Zarco-Tejada P J, Miller J R, 1999. Land cover mapping at 
BOREAS using red edge spectral parameters from CASI im-
agery. Journal of Geophysical Research, 104(D22): 27921– 
27933. 

Zhang L, Dawes W R, Walker G R, 2001. Response of mean an-
nual evapotranspiration to vegetation changes at catchment 
scale. Water Resources Research, 37(3): 701–708. DOI: 10.10- 
29/2000WR900325 

Zhang X P, Zhang L, McVicar T R et al., 2008. Modelling the 
impact of afforestation on average annual streamflow in the 
Loess Plateau, China. Hydrological Processes, 22(12): 1996– 
2004. DOI: 10.1002/hyp.6784 

Zhao B, Kreuter U, Li B et al., 2004. An ecosystem service value 
assessment of land-use change on Chongming Island, China. 
Land Use Policy, 21(2): 139–148. DOI: 10.1016/j.landusepol. 
2003.10.003

 


