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Abstract: This study applied a multivariate model based on three simulated sensors to estimating water quality 
variables in Shitoukoumen Reservoir, Changchun City, Jilin Province, China, including concentration of total sus-
pended matter, concentration of chlorophyll-a and non-pigment matter absorption. Two field campaigns for spectra 
measurements with a total of 40 samples were carried out on June 13 and September 23, 2008. The in-situ spectra 
were recalculated to the spectral bands and sensitivities of the instruments applied in this paper, i.e. Landsat TM, 
Alos and P6, by using the average method. And the recalculated spectra were used for estimating water quality vari-
ables by the single model and multivariate model. The results show that the multivariate model is superior to the 
single model as the multivariate model takes the combined effects of water components into consideration and can 
estimate water quality variables simultaneously. According to R2 and RMSE, Alos is superior to other sensors for 
water quality variables estimation although the precision of non-pigment matter absorption inversion performed the 
second. 
Keywords: remote sensing; inland water quality; Alos; water components absorption; absorption coefficient 

 
 
1 Introduction 

 
There are four substances that mainly influence the dis-
tribution of light underwater, including water itself, 
phytoplankton, nonalgal particles and colored dissolved 
organic matter (CDOM) (Alison and James, 2005; 
Prieur and Sathyendranath, 1981). And light variability 
determines the primary production and the structure of 
ecosystem in the water column (Zepp et al., 1998). 
Therefore, accurate inversion of water quality variables 
is significant to improve the water ecosystem and evalu-
ate the status of water pollution. 

Compared with traditional methods, remote sensing is 
more effective for its real-time and large-scale water 
quality monitoring, especially when integrating the in- 
situ sampling. With the development of remote sensing 
sensors, land satellites have widely served water quality 
monitoring, such as Landsat TM/ETM+, SPOT and 

MODIS. The components in water make different con-
tributions to water spectrum, therefore many scholars at 
home and abroad estimated the water quality variables 
according to specific spectrum responses of water com-
ponents in some wave bands (David et al., 2004; Hell-
weger et al., 2004); Liu et al., 2006; Yang et al., 2004. 
The common methods for water quality inversion were 
single wave band, band ratio and so on, but they can 
only estimate single water quality variable. Additionally, 
the Neural Network method is usually a ″black box″ 
operation, which is not easily controlled.  

The main objective of this study was to inverse three 
variables simultaneously using three simulated sensors 
(Landsat TM-5, Alos and P6), including concentration of 
total suspended matter (CTSS), concentration of chloro-
phyll-a (CCHL) and non-pigment matter absorption (aCDM). 
Non-pigment matter is the combination of nonalgal parti-
cles and colored dissolved organic matter, because they 
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have similar absorption properties which can be described 
by index model. Also, we can select the specific bands for 
different water quality variables in order to improve the 
inversion precision. Specific objectives include 1) evalu-
ating the precision of the multivariate model applied in 
this paper by comparing with single model; and 2) find-
ing out which remote sensing sensor is the best for inver-
sion, Landsat TM, Alos or P6. 

 
2 Study Area 

 
Shitoukoumen Reservoir in Changchun City, Jilin Prov-
ince, China, was selected as the study area, which is lo-
cated between 43°51′18″–43°57′54″N and 125°43′48″– 
125°50′06″E. The Shuangyang River and the Chalu River 
flow into the reservoir in the upstream (Fig. 1). As an 
indispensable water source of Changchun City and Jiutai 
City, Shitoukoumen Reservoir is in storage of 702×106 
m3, with a drainage area of 4 975.6 km2 and a surface area 
of 94.2 km2, respectively (Xu et al., 2007b). It is situated 
in north temperate sub-humid continental monsoon cli-
mate zone. The mean annual temperature is 5.3℃ and 
annual precipitation ranges from 369.9 mm to 667.9 mm, 
of which 80% happens from June to September. The av-
erage annual evaporation is as high as 1 658.1 mm, which 
might result in drought and serious water shortage at the 
maximum from April to June (Xu et al., 2007a). 
 
3 Methods 

 
Two field campaigns for spectra measurements and cor- 

responding water quality parameters were carried out in  
20 sampling sites on June 13 and September 23, 2008 in 
Shitoukoumen Reservoir. Water samples were collected 
at the center of reservoir to prevent the influence of 
bottom reflection (Fig. 1). All of them were reserved in 
a box with ice for laboratory analysis and inherent opti-
cal properties (IOPs) measurements. 

 
3.1 Remote sensing reflectance measurement and 
processing 
Remote sensing reflectance was measured with a port-
able ASD Fieldspec-FR spectrometer (ASD Inc.), fol-
lowing the Above-water Method (Tang et al., 2004), 
with a field view of 25° and a wavelength range of 
350–2500 nm at an increment of 1 nm. Radiance from 
water surface (Lsw), sky (Lsky) and standard white refer-
ence (Lr) were measured 10 times at each sampling site 
and all the measurements were made at a location with 
minimum shading and without the influences of reflec-
tion from superstructure, boat′s wake or associated foam 
patches and whitecaps (Ma et al., 2006). The viewing 
angles from water surface at zenith angel θ and azimuth 
angle Φ were 40° and 135°, respectively, effectively 
preventing the interference of boat and the influence of 
direct solar radiance.  

Radiance from water surface (Lsw) can approximately 
be regarded as the sum of water leaving radiance (Lw) 
and sky diffused radiance (Lsky). Therefore: 

Lsw = Lw + rLsky             (1) 

where r is the reflectivity of skylight at the air-water 
interface, which depends on wind speed, solar zenith 

 

   
Fig. 1 Location of Shitoukoumen Reservoir in Changchun City, Jilin Province, China and sampling sites 
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angle, viewing geometry, etc. And its value ranges from 
0.026 to 0.028 (Tang et al., 2004). 

Because Lw can be easily obtained from remote sens-
ing, remote sensing reflectance (Rrs) is defined as the 
ratio of water leaving radiance to the downwelling ir-
radiance (Ed(0+)) just above water surface (Ma et al., 
2006). So 

Rrs = Lw / Ed(0+)              (2) 

The Ed(0+) can be expressed as: 

Ed(0+) = Lrπ / ρr             (3) 

where ρr represents the reflectance of the white refer-
ence panel, which is calibrated to 30%.  
  Raw data were transferred into ASCII file with the 
software ASD ViewSpec. One spectrum was selected as 
the water sample reflectance according to the ratio be-
tween Ls and Lsky, the value of which is about 0.028 (Ma 
et al., 2006). 
 
3.2 Inherent optical properties measurement 
Spectral absorption coefficients of particles, colored 
dissolved material and phytoplankton were determined 
in the laboratory for water samples, following the meas-
urement protocols recommended by Giulietta and James 
(2000). Whatman GF/F filters were used to extract total 
particles, including nonalgal particles and phytoplankton. 
The volume of water samples (V) ranged from 50 mL to 
300 mL, according to the concentration of total sus-
pended matter (CTSS). The spectral absorption coeffi-
cients of total particles were calculated by the optical 
density which was measured by a UV2401 spectropho-
tometer (SHIMADZU) with 1 nm interval in the range 
of 350–800 nm. After that, the filters were dipped into 
the acetone for 30–60 minutes to extract the phyto-
plankton from the total particles. The way for determin-
ing the spectral absorption coefficient of nonalgal parti-
cles was the same as total particles. Subsequently, the 
absorption coefficient of phytoplankton was computed 
by subtracting absorption coefficient of nonalgal from 
that of total particles. For CDOM, the water sample was 
filtered under low vacuum on a 0.2 µm Millipore mem-
brane, which had been dipped in the 10% diluted hy-
drochloric acid for 30 minutes. Milli-Q water was used 
as a reference. The absorbance of filtered water was 
measured between 200 nm and 750 nm with the same 
spectrophotometer. Then the absorption coefficients of 
CDOM were calculated with the method proposed by 
Bricaud et al. (1981). 

The concentration of total particles was determined 
by weighting discrepancy. After four hours dried in the 
oven at 105 , the Whatman GF/C filters were weighted ℃

with electronic balance and used to filtrate water sam-
ples and then dried and weighted again. The concentra-
tion was computed by the ratio of weighting discrepancy 
and volume of water samples filtrated. The spectropho-
tometric determination method was used to measure 
chlorophyll-a concentration. First filtered water samples 
though Whatman GF/F filter and extracted with ethanol 
(90%) at 80℃, then measured the absorbencies at 665 
nm and 750 nm with UV2401 spectrophotometer. The 
chlorophyll-a concentrations were eventually acquired 
from calculation (Moed and Hallegraeff, 1978). 
 
3.3 Inversion models 
Some single or multivariate models for water quality 
variables estimation have been raised in previous re-
searches (Carpenter and Carpenter, 1983; Giardino et al., 
2001; Kabbara et al., 2008).  

The forms of the single models are as follows (Su et 
al., 2008):  
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where Y presents a water quality parameter; Xi is the 
reflectance of the ith specific spectral band, or the ith 
ratio of reflectance of different spectral bands, or the ith 
other recalculated band reflectance; c0 and ci are the re-
gression coefficients.  

For multivariate model, 
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where ρBi, ρGi,  ρRi are the band ratios of B/IR, G/IR and 
R/IR of the ith water sample, respectively; βij represents 
the regression coefficients, and n is the number of water 
quality measurements. 

The multivariate model can also be expressed as: 

Y=XM                    (8) 
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where Y is water quality variable; X is band ratio; and M 
is the regression coefficient. 

In this study, Matlab R2007a software was used for 
the data processing and water quality variables model-
ing. The matrix operations and the least squared estima-
tor were carried out to calculate the regression coeffi-
cient matrix of the multivariate model. The descriptive 
statistics for water quality variables, such as mean, 
variance, root mean square error, and so on, were esti-
mated by the Origin 8.0. 
 
4 Results 
 
4.1 In-situ water spectra and water quality variables  
The measured remote sensing reflectance spectra 
(350–800 nm) are shown in Fig. 2. The reflectance has 
been established in full spectral resolution (1 nm), so 
that the spectra can be recalculated to the spectral bands 
and sensitivities of the instruments applied (Dekker et 
al., 2001), including the Landsat TM-5, Alos and P6 in 
this study (Table 1). By averaging the reflectance over 
the entire width of spectral band as the image data, the 
recalculated spectra can be used for estimating water 
quality variables (Fig. 3). 

Table 2 lists the values of water quality variables 
measured in June and Semptember, including CTSS, 
CCHL and aCDM. The averages of CTSS and aCDM are hig- 

her in June than that in September, but CCHL lower. And 
they are used to establish water quality estimation mod-
els based on the recalculated remote sensing reflectance.  

Table 1 Information of different remote sensing sensors 
in this study 

Remote sensing 
sensor 

Wave  
band 

Wave range  
(nm) 

Spatial 
resolution (m)

Blue (B) 450–520 
Green (G) 520–600 
Red (R) 630–690 

Landsat TM-5 

Infrared (IR) 760–900 

30 

Blue (B) 420–500 
Green (G) 520–600 
Red (R) 610–690 

Alos 

Infrared (IR) 760–890 

10 

Green (G) 520–590 

Red (R) 620–680 

P6 

Infrared (IR) 770–860 

23 

 
4.2 Water quality variables estimation by single mo- 
del  
Single model for estimating water quality variables was 
established in this study for comparing with the multi-
variate model. In order to choose appropriate bands for 
water quality variables estimation, we analyzed the cor-
relativity of band ratio and in-situ datasets (Table 3). 
The B/IR band ratio of Alos shows a high correlation for 

 
Table 2 Measured values of different water quality variables in different sampling times 

CTSS (mg/L) CCHL (μg/L) aCDM (440nm) (1/m) 
Sampling time 

Range Average Range Average Range Average 

June 12.50–121.00 40.03±26.82 12.90–36.38 24.76±6.77 1.79–18.07 5.78±4.42 

September 15.29–57.29 23.79±10.94 15.75–47.52 35.23±7.95 2.26–6.25 4.15±1.12 

 

 

Fig. 2 In-situ remote sensing reflectance spectra in Shitoukoumen Reservoir in June (a) and September (b) 2008   
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Table 3 Correlation coefficients between different band ratios and water quality variables 

Landsat TM-5 Alos P6 
Variable 

B/IR G/IR R/IR B/IR G/IR R/IR G/IR R/IR 

CTSS –0.770 –0.578 –0.579 –0.807 –0.774 –0.614 –0.781 –0.653 

CCHL –0.101 –0.554 0.057 –0.214 0.046 0.037 0.016 0.003 

aCDM –0.392 –0.287 –0.204 –0.444 –0.367 –0.238 –0.406 –0.274 

 

 
Fig. 3 In-situ remote sensing reflectance spectra of 
Alos bands 1–4 spectra in Shitoukoumen Reservoir 

 
CTSS and aCDM. While Landsat TM is the best for chlo-
rophyll-a estimation. For P6 sensor, the correlation co-
efficients are the lowest. 

All band ratios are highly related to CTSS and the 
maximum correlation coefficient is at the B/IR of Alos. 
The max absolute correlation coefficient of aCDM esti-
mation is at the same band ratio of Alos with the value 
only 0.444. But for CCHL, only the G/IR of Landsat TM 
presents high coefficient. 
  Water quality variables, CTSS, aCDM and CCHL, were 
inversed separately by B/IR band ratio of Alos, B/IR of 
Alos and G/IR of Landsat TM (Fig. 4). Single models 
for CTSS, aCDM and CCHL estimation were selected ac-
cording to the best fitting correlation coefficient. 
 
4.3 Water quality variables estimation by multivari-
ate model  
A total of 40 samples were used for least squared estima-
tor of regression coefficients. The regression coefficient 
matrixes M for Alos, Landsat TM and P6 are as follows: 

For Alos: 
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For Landsat TM: 
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45.41 63.33 4.03
9.39 68.36 10.79
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For P6: 

    

CHL TSS CDM
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31.42 52.26 3.55
2.06 43.06 5.95
3.14 45.20 7.88
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Fig. 4 Water quality variables estimated by single models 
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Compared with the single model, multivariate model 
presents higher precision and significantly less degree of 
dispersion around the line of equivalence as shown in 
Fig. 5. The results show that Alos is superior to other 
sensors for water quality variable estimation although 
the precision of aCDM is the second. 

 

  
Fig. 5 Water quality variables estimated and measured 

 for different sensors 
 

Table 4 demonstrates the descriptive statistics of dif-
ferent sensors for estimating water quality variables. 
The correlation efficient (R2) and root mean square error 
(RMSE) of Alos demonstrate that it is best for water 
quality variables estimation, except for aCDM. P6 is the 

lowst effective for CCHL estimation. The inversion of 
aCDM has poor accuracy among all the remote sensing 
sensors, which is opposite to CTSS estimation. 

 
Table 4 Descriptive statistics of different sensors 

for water quality variables estimation 
Landsat TM-5 Alos P6 

Variable
R2 RMSE R2 RMSE R2 RMSE 

CTSS 0.750 4.26 0.766 3.98 0.746 4.31 

CCHL 0.443 5.11 0.652 3.19 0.003 9.14 

aCDM 0.420 1.45 0.374 1.57 0.356 1.61 

 
 

5 Discussion 
 

5.1 Comparison between single model and multi-
variate model 
Single model and multivariate model are applied to es-
timating water quality variables in Shitoukoumen Res-
ervoir from the simulated remote sensing sensors, in-
cluding Landsat TM-5, Also and P6. The errors of the 
estimated parameters by multivariate model are smaller 
than that by single model. The comparison of the in-situ 
measured data and estimated data are shown in Fig. 4 
and Table 4.  

There are two main reasons why the multivariate 
model gets smaller errors in water quality estimation. 
Firstly, the multivariate model has an evident advantage 
with its integrative information for water quality variables 
estimation. The reflectance is determined by combined 
effect of the water components and every wave-band 
contains the information of water. All band ratios were 
selected in this paper to take full advantage of all the wa-
ter components information. Secondly, the water quality 
variables could also be computed simultaneously by mul-
tivariate model. Least squared estimator was used to 
achieve the regression coefficient matrixes with in-situ 
water quality data and then the three variables were in-
versed. But for the single model, different specific band 
ratios were chosen for different variables according to the 
correlation coefficient.   

 
5.2 Different sensors for water quality variables es-
timation 
The average absorption coefficient of photosynthetic ac-
tive radiation wave band (400–700 nm) is used to evalu-
ate the contribution to total absorption of water compo-
nents (Zhang et al., 2006; Le et al., 2008). Figure 6 
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shows the absorption ratios of different water compo-
nents in June and September, including nonalgal parti-
cles, phytoplankton and CDOM. 
 

 

Fig. 6 Ratios of water components absorption 
in June and September 

 
The nonalgal particles and CDOM in June and Sep-

tember were dominant in the total absorption of water 
components, and the absorption of phytoplankton varied 
slightly but performed the last. In June, the absorption 
ratio of CDOM changed from 0.16 to 0.72 and nonalgal 
particles from 0.22 to 0.66. But for phytoplankton, the 
maximum was only 0.32 which accounted for only less 
than one-third of the total absorption. In September, 
CDOM contributed greatly to the total absorption of 
water components with the average ratio 0.43. The ab-
sorption ratio of nonalgal particles declined relatively, 
changing from 0.15 to 0.63. 

The absorption spectra of nonalgal particles and 
CDOM in the range of 350–700 nm decrease with 
wavelength and they dominantly affect water reflectance 
in the blue band in Shitoukoumen Reservoir. Compared 
with P6 and Landsat TM, Alos sensor has broad range of 
blue band and contains 440 nm which is the absorption 
peak for phytoplankton. It maybe contributes to the high 
precision for the estimation of concentration of chloro-
phyll-a. Another superior of the Alos sensor lies in its 
higher spatial resolution. For the inland water, higher 
spatial and temporal resolution is imperative for im-
proving the precision of water quality variables estima-
tion in future due to the influence of land use/cover 
changes (Pan and Ma, 2008). So Alos is the best sensor 
for water quality variables estimation.  

6 Conclusions 
 
Based on the two campaigns of field spectra measure-
ments with a total of 40 samples in Shitoukoumen Res-
ervoir, three water quality variables, concentration of 
total suspended matter (CTSS), concentration of chloro-
phyll-a (CCHL) and non-pigment matter absorption 
(aCDM), were estimated by the single model and multi-
variate model. 

The water surface reflectance depends on the mixture 
of suspended mater, phytoplankton, CDOM and water 
itself. The multivariate model could take full advantage 
of all the water components information and yield more 
accurate water variables estimation results. Also, the 
water quality variables could be computed simultane-
ously. 

The absorption of nonalgal particles and CDOM were 
dominant in Shitoukoumen Reservoir, which influenced 
water surface reflectance in the blue band. Compared 
with Landsat TM and P6, Alos was the best sensor for 
water quality variables estimation. It had broad range of 
blue band and higher spatial resolution. 

However, the sensors were simulated by in-situ spec-
trum datasets in this paper. And the water quality vari-
ables should be mapped utilizing satellite images for 
long term monitoring in the future. 
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