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Abstract: El Niño and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific 
sea-air interactions. An asymptotic method of solving equations for the ENSO model is proposed. Based on a class of 
oscillator of ENSO model and by employing a simple and valid method of the variational iteration, the coupled system 
for a sea-air oscillator model of interdecadal climate fluctuations is studied. Firstly, by introducing a set of functionals 
and computing the variationals, the Lagrange multipliers are obtained. And then, the generalized variational iteration 
expressions are constructed. Finally, by selecting appropriate initial iteration, and from the iterations expressions, the 
approximations of solution for the sea-air oscillator ENSO model are solved successively. The approximate dissipative 
travelling wave solution of equations for corresponding ENSO model is studied. It is proved from the results that the 
method of the variational iteration can be used for analyzing the sea surface temperature anomaly in the equatorial Pa-
cific of the sea-air oscillator for ENSO model. 
Keywords: El Niño-Southern Oscillator model; variational iteration; sea-air oscillator 

 
 
1 Introduction 
 
El Niño and Southern Oscillation (ENSO) is an abnor-
mal event happening in the atmosphere and tropical Pa-
cific Ocean. The oscillatory nature of ENSO involves 
both positive and negative sea-air feedbacks. And a 
positive sea surface temperature (SST) anomaly in the 
equatorial eastern Pacific has been studied. This anom-
aly reduces the zonal SST gradient and the strength of 
the southern oscillation circulation, resulting in weaker 
trade winds around the equator. The weaker trade winds 
in turn cause the ocean circulation to change and then 
reinforce the SST anomaly. The phenomenon of the 
ENSO is a very attractive object of research in the in-
ternational academic circles. Some researchers have 
studied a class of ENSO model, such as the interdecadal 
climate fluctuations for the exchanges between the trop-

ics and extratropics (Gu and Philander, 1997), the Kel-
vin waves in the tropics (Lin and Ceng, 1999), the me-
ridional wind forced low frequency disturbances in the 
tropical ocean (Lin et al., 1999), the interaction change 
of the structure of the ENSO mode (An and Wang, 
2000), the decadal variations in the subtropical cells and 
equatiorial Pacific SST (Nonaka et al., Xie and 
McCreary, 2001), the slowdown of the meridional 
overturning circulation in the upper Pacific Ocean 
(McPhaden and Zhang, 2002), the stability for linear 
and non-linear evolution equations (Lin et al., 2002; 
Wang, 2002), and the perturbed solution of the coupled 
ocean-atmosphere model for ENSO (Lin and Mo, 2004). 
Mo et al. also studied the perturbed solution of a sea-air 
oscillator model for the ENSO (Mo et al., 2006a), the 
homotopic method of solving a class of ENSO sea-air 
oscillator (Mo et al., 2006b; Mo, 2009b), the mechanism 
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of the equatorial eastern ENSO (Mo et al., 2006c), the 
sea-air oscillator model for the ENSO (Mo et al., 2007a), 
the perturbed mechanism of western boundary under-
currents in the Pacific (Mo et al., 2007b), the asymptotic 
solution for a class of sea-air oscillator model for 
El-Nino-southern oscillation (Mo and Lin, 2008a), and 
the travelling wave solution for ENSO tropic sea-air 
coupled oscillator (Mo and Lin, 2008b).  

Recently, approximation methods have been developed 
and improved (Bobkova, 2005; Marques, 2006; Ni and 
Wei, 2006). Using the asymptotic method, Mo discussed 
a class of nonlinear problems (Mo, 2009a; 2009c; 2009d; 
2009e). In this paper we study a class of ENSO model by 
using a simple and special method in approximate theory. 
And it is proved from the results that the method of the 
variational iteration can be used for analyzing the sea 
surface temperature anomaly in the equatorial Pacific of 
the sea-air oscillator for ENSO model. 
 

2 Model of Sea-Air Oscillator of ENSO 
 
In the ENSO oscillator model, the variations of both the 
eastern and western Pacific anomaly patterns should be 
considered. We study only an oscillator model, i.e. a 
sea-air coupled oscillator model. In this paper, by using 
the method of variational iteration (He, 2002; 2006), 
approximate solution of the equations for the model is 
obtained. 

We now consider the following coupled equations, 
which describes the coupled effect between the atmos-
phere and ocean in tropical Pacific (Lin and Ceng, 
1999)： 

20,
a a

a
a

u uDu C D Q
t x t x

φ φ φ∂ ∂ ∂ ∂
+ + = + + = −

∂ ∂ ∂ ∂
 

2, 0
s s

s x
s

u η η udu C dη
t x t x

τ∂ ∂ ∂ ∂
+ + = + + =

∂ ∂ ∂ ∂
 

and also consider the coupled relations of the tempera-
ture functions of atmosphere and ocean: 

0, 0a s ηβyu βyu
y y
φ∂ ∂

+ = + =
∂ ∂

 

where ua and us are the temperature functions of atmos-
phere and ocean respectively;φ is the gravitational pote- 
ntial function of atmosphere; η is the potential function 
of mixed layer thickness of ocean; Ca and Cs are the 
gravitational wave speeds of atmosphere and ocean re-
spectively; β is the Rossby parameter; D and d are 

Rayleigh friction and Newton cooling coefficient of 
ocean and atmosphere respectively; Q is the calefaction 
rate of ocean for atmosphere; τx is the wind stress. We 
take Q = KOT and τx=KSua, where T is the sea surface 
temperature, KO and KS are rates of the sea surface tem-
perature and the temperature functions of atmosphere 
respectively. And let T=κη, where κ is a rate of the 
mixed layer thickness of ocean. Thus we have Q = KHη 
and KH = κKO. Through the dimensioness treatment: x= 
C(1/2β)x′, t = (1/2β)t′, ya = (1/2β)1/2ya′, ys = Cs(1/2β)1/2ys′, 
ua = Caua′, us = Caus′, 2 ',aCφ φ= 2 '.sη C η= The original 
coupled equations can be turned into the following cou-
pled equations (form the prime is omitted): 

1 10,
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(1) 
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s a
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  (2) 

with 
1 10, 0
2 2

a s ηyu yu
y y
φ∂ ∂

+ = + =
∂ ∂

      (3) 

where a = CS/Ca, D = D (2 )β Ca, d = ( 2
SC d) / (2 )β . 

From equations (1) and (2), we have 

1( ) ( ) ( )
a a
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H

u u D u K η
t x
φ φα φ−∂ ± ∂ ±
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 (4)
         

( ) ( ) ( )
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u η u η d u η K u
t x
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∂ ∂    
(5) 

We first consider the calefaction rate (Q = 0) of ocean 
for atmosphere and the wind stress (τx = 0), thus the 
corresponding non-dissipative equations for equations 
(3) and (4) are as follows: 

1( ) ( ) ( ) 0
a a

au u D u
t x
φ φα φ−∂ ± ∂ ±

± + ± =
∂ ∂

    (6) 

( ) ( ) ( ) 0
s s

su η u η d u η
t x

∂ ± ∂ ±
± + ± =

∂ ∂
     (7) 

The characteristic equations of the non-dissipative 
equations (6) and (7) are 

1
d d d( ) d d d( ),
1 1 1( ) ( )

a s

a s
t x u t x u η

D u d u η
φ

α φ−

± ±
= = = =

±± − ± − ±  (8) 

It is not difficult to obtain the first integrals of Equation 
(8), given as 1

1x t cα− =∓  and 2ln( ) ,au Dt cφ± + =  

3x t c=∓  and 4ln( ) ,au η dt c± + = where ci (i = 1, 2, 3, 
4) are arbitrary constants. Thus the general solutions for 
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equations (4) and (5) are obtained as follows: 
1

01exp( ( , ))au Dt x t yφ α± −± = − +Φ ∓       (9) 

02exp( ( , ))su η dt x t y±± = − +Φ ∓        (10) 

where 0i
±Φ (i = 1, 2) are arbitrary functions. Consider-

ing Equation (3), we have 
1 1 2

01 01
1( , ) ( )
4

x t y x t yα α± − ± −Φ = Ψ∓ ∓ ∓  

2
02 02

1( , ) ( )
4

x t y x t y± ±Φ = Ψ∓ ∓ ∓  

where 0i
±Ψ  (i = 1, 2, 3, 4) are arbitrary functions, too. 

And from equations (9) and (10), we obtain the follow-
ing traveling wave solution: 
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3 Variational Iteration 
 

Set ,a sv u w uφ η± ±= ± = ± , and inducting the travel-
ling wave transforms 1 , .x t x tξ α ζ−

± ±= ± = ∓ Then 
equations (6) and (7) are 

0, 0v wDv dw
ξ ζ
± ±

± ±
±
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     (15) 

Introducing the following functionals 1 [ ],F v± ± 2[ ]iF w±  
(He, 2002; 2006): 
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where , , , sv w η u± ± ± ±  are the restricted variables of 
, , , ,sv w uη± ± ± ± respectively (He, 2002) and λi± (i=1, 2) 

are Lagrange multipliers. Computing the variationals 
1 2δ [ ], δ [ ]F v F w± ± ± ± of the functionals in equations (16) 

and (17), we have 
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Then we have only 
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Thus we can have 
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From the above depictions, we construct the follow-
ing iteration sequences { a

nu }, { s
nu }, { nφ }, { nη } for the 

solutions of the original coupled equations (1)–(3):
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  We can know that if selecting initial approximations 
0 0 0 0, , ,a su u ηφ  are the solutions of the corresponding 

reduced equations for equations (1)–(3), then { a
nu }, 

{ s
nu }, { nφ }, { nη } are the uniformly convergent sequ- 

ence functions using the fixed point theorem (de Jager 
and Jiang, 1996).  Therefore ( lim ,a a

nn
u u

→∞
= lim ,s s

nn
u u

→∞
=  

φ = lim , lim )n nn n
η ηφ

→∞ →∞
=  is a set of solution for the cou-

pled equations between the atmosphere and ocean in 
tropical Pacific. 
 

4 Approximate Solution of Coupled Equations 
 
In order to obtain the approximate solution of coupled 
equations (1)–(3), we assume that the zero-th order ap-
proximate solutions are decided by Equation (15) 

0 0 0 0 0 0,a sv u v w u η wφ± ± ± ±= ± = = ± =  

Therefore, the solutions of equations (11)–(14) are 
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From the iteration expansions of the relation (20)– 
(23), we obtain first order approximate solutions 

1 1 1 1, , ,a su u ηφ for the equations (1)–(3).
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  From the iteration expansions of the relation (20)–(23) 
and equations (26)–(29), we obtain second order ap- 

proximate solutions 2 2 2 2, , ,a su u φ η  for the equations 
(1)–(3): 
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where 1 1 1 1, , ,a su u ηφ  denote by equations (26)–(29), 
and the arbitrary functions depend on Equation (3) and 
initial conditions for the original mode. 

Analogously, using the iteration expansions of the re-
lation (20)–(23) and equations (31)–(35), we can obtain 
m-th order approximate solutions , , ,a s

m m m mu u ηφ  
( 2, 3, )m =  for the equations (1)–(3) of the coupled 
effect between the atmosphere and ocean in tropical Pa-
cific, successively. 
 

5 Discussion and Conclusions  
 
In order to investigate the ENSO that is a very compli-
cated natural phenomenon in atmospheric physics we 
need to develop a basic model for the sea-air oscillator. 
And we solve the ENSO model by using the approxima-

tion method. The method of the variational iteration is a 
simple and valid method. 

 In the method of the variational iteration, we first se-
lect appropriated variational Lagrange multipliers 

( 1, 2, 3, 4)i iλ =  and assume that the non-dissipative 
equations are the zero-th order approximate traveling 
solution. Naturally, in this way, we can obtain faster the 
travelling wave solution of the coupled equations. 

The method of the variational iteration is an approxi-
mate analytic method, which differs from general nu-
merical method. The expansion of solution using the 
method of the variational iteration can be made by con-
tinuously performing analytic operations. Thus, from 
approximate solutions, we can study further the qualita-
tive and quantitative behaviors of the temperature 
anomaly in the equatorial Pacific, the thermocline 
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anomaly and the zonal wind stress anomaly and so on, 
about which no discussion is given in this paper. 
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