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ABSTRACT: This paper presents a new perspective on the nature of destination competition in spatial
interaction models. The concept of destinations competing with one another on the basis of their spa
tial proximity to each other 5 compared with an alternative point of view which argues that compet+
tion takes place on the basis of similarities in the spatial influences of competing destinations on dect
sion makers at origins. Potential movers at an origin are facing a set of destinations w hich compete for
their attention. T his paper argues that the movers’ choices are conditioned by the relative size and
number of influences they see (w here influence is directly proportional to destination size and inversely
proportional to distance) . A small amount of supporting empirical evidence concerning recreat ional
day- trips, and population migration, is presented.
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I. INTRODUCTION

A common view point in the spatial interaction literature is that it is necessary to acknow+
edge spatial structure effects and/or destination competition in interaction models ( Batten et
al., 1986; Boots et al., 1988; Fik, 1988; Fik et al., 1990; Getis, 1991; Guy, 1987;
Haynes et al. 1984; Ishikawa, 1987; Jayet, 1990; Lo, 1991a, 1991b; Miller et al. , 1991;
Pooler, 1993, 1994a, 1994b, 1995a, 1995b; Roy, 1985, 1990; Roy et al., 1992). One line
of thought is that the spatial proximity of destinations to one another effects the ability of spa
tial interaction models to forecast accurately the flows to them. The idea is that models which
do not take into account such proximity effects are misspecified ( Fotheringham, 1983a,
1983b; Fotheringham et al., 1989). The misspecification is thought to reflect the idea that
spatial decision makers do not view the destinations in a spatial cluster as individuals, but rather

as agroup. When it comes time to model the flows to the cluster, it does not draw trips as ex
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pected. Herein this is called the ¢ spatial proximity’ perspective on competing destinations.

T his paper presents an alternative view point on competition among destinations termed the
‘ spatial influence’ perspective. In contrast to the proximity effect described above, it argues
that destinations compete for the attention of potential movers on the basis of the spatial influ-
ence which they have on spatial decision makers at origins. The idea is that destinations exert
an ‘ influence’ on potential movers at origins ( where ‘ influence’ consists of the combined ef
fects of size and distance). From the point of view of the origin therefore, movers are faced
with aset of destinations competing for their attention. It is hypothesized that when several of
these destinations have very similar levels of influence on a particular origin, the potential
movers at that origin do not differentiate among those destinations, but instead group them
mentally into an ¢ aspatial cluster’ . As a consequence, when it comes time to model the actual
flows to that set of destinations, they do not draw as many trips as expected (in exactly the
same way that spatially clustered destinations draw few er movers than expected in the proxim+
ty thesis). This suggests that atraditional interaction model will overpredict the amount of in-
teraction to the destinations in the competing set having similar influences.

T he competition effect identified is a simple one, and one which is considered to occur
within the confines of traditional spatial interaction models. Nevertheless, as far as this author
is aware, it has not been identified previously in the context of interaction modelling.

T he idea of a competition effect among spatial influences facing potential movers at an or+
gin professes nothing more than the well known concept of the zone of indifference. Within
spatial theory, the consumer who is equally distant from three equally sized facilities is consid-
ered to be indifferent with respect to spatial choice among the three destinations. T he implicit
idea is that if the attractivities of the three destinations at the consumer’ s location are uniform,
there is nothing for him, or her, to choose among them. The paper essentially takes this well
accepted idea and applies it to the problem of modelling spatial interaction ( Pooler, 1992). In
the traditional approach, spatial indifference is determined by the physical location of the dect
sion maker. In this paper, the spatial indifference is with respect to the spatial influences, and
is determined by the relative location of the decision maker.

Destinations which are widely separated in space, or which vary greatly in size and/ or dis-
tance from a given origin, may exert nevertheless identical influences on decision makers at that
origin. The position taken here is that competition for would-be movers takes place among such
spatially diverse sets of destinations. In the tradition of Webber ( 1964), they could be called
competing destinations without propinquity. This contrasts sharply with the spatial proximity
perspective w hich predicts competition only by spatial association.

T he hypothesized empirical outcome of the spatial proximity perspective on competition is
that interaction is expected to be overpredicted to spatially clustered destinations (the possibility
of agglomeration, rather than competition effects, is discussed in Fotheringham, 1983a). Sim-
ilar ideas apply here. In the spatial influence framew ork, the empirical expectation is that inter-
action is ex pected to be overpredicted to aspatial sets of destinations having similar influences.
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An interesting aspect of this theoretical perspective concerns the hierarchical nature of spa
tial interaction (Bennett et al., 1985; Fik, 1988; Fik et al., 1990). In the same way that
interaction data have a skew ed hierarchical structure, so too do the spatial influences. In other
words, in a typical set of interaction data there will tend to be a larger number of trips over
smaller distances and a smaller number of trips over larger distances. The calculated influences
portray an identical pattern. T he existence of such skewness in spatial interaction data allows
theoretical speculation a priori as to the nature of interaction model misspecification which re-
sults from destination competition of the type proposed. This point will be elaborated on in the
fifth section below.

T he ideas outlined above are set out more fully in the remainder of the paper. Empirically,
the argument is illustrated with respect to two types of data: a set of recreational travel data
(Cesario, 1973, 1974) and a set of population migration data (Tobler, 1983, 1988). For the
two sets of data, each at d different geographical scale, it is shown that interaction, for the
most part, is overand underpredicted in accordance with the hypothesis put forth.

The empirical test is a very simple one. The goal of the present paper is not to develop a
more correctly specified interaction model, but rather to accomplish two other things: first, to
demonstrate that a misspecification does exist in current forms of models and second, to try to

account for that misspecification from the behavioral point of view that is outlined.

II. THE SPATIAL PROXIMITY PERSPECTIVE
ON COMPETING DESTINATIONS

Fotheringham (1983a) argues that spatial interaction models are misspecified with respect
to spatial structure and the effects of competition. In particular, the spatial proximity perspee-
tive argues that traditional models ignore competition effects among spatially grouped destina
tions. Explicit it this is that the models contain the ITA (independence from irrelevant alterna
tives) property. Golledge et al. (1987) define IIA as the situation where ‘ a new alternative
entering a choice set will compete equally with each existing alternative and will obtain a share
of the market by drawing from the existing alternatives in direct proportion to the original
shares of the market held by these existing alternatives’ . The problem of dealing with new or
alternative choices of destinations in interaction models is not a new one ( Stouffer, 1960).

T he proximity perspective suggests that when there is competition for movers among a
spatially clustered set of destinations, traditional interaction models will produce overpredie-
tions, inasmuch as the loyalties of any set of movers electing to travel the distance to the cluster
will be split among the individual members of the cluster. In other words, the spatial decision
makers do not respond to the individual members of the cluster, and it does not draw as many
trips as its individual members would (in total), if they were spatially dispersed. Conversely,
when there are only one or afew isolated destinations available in given area, the lack of com pe-
tition is seen to result in larger than expected observed flows.
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T he proposed solution to this problem is to insert into such models an accessibility term or
population potential of the type developed by the astrophysicist Stewart ( Pooler, 1987). The
potential measures the accessibility of a given destination to all other destinations and its inclu
sion is said to make the interaction model take into account spatial structure effects. Fothering-
ham ( 1983a) presents empirical evidence to this effect. Borgers et al. (1988) refer to such
models as having an ISS ( independence of spatial structure) property. A critical commentary on

the Fotheringham hy pothesis is in Thill (1992) .

III. AN ALTERNATIVE PERSPECTIVE ON
THE DESTINATION CHOICE PROCESS

Central to the proximity perspective on destination competition discussed above, is the be-
havioural assum ption that movers first choose a single general region with which to interact,
and then choose a specific site from among many within that region. The idea is that destina
tion choice is a twe-stage hierarchical process, that is, that potential movers do not consider all
destinations simultaneously, but choose broad regions before they choose specific sites. Essen
tial to the argument is the further assumption that the specific sites are grouped spatially with
in the regions. It is easy to concur with the point of view that the decision process is hierarch+
cal, that is, that potential movers do not consider all possible destinations simultaneously in
their decision process. It is an appealing idea intuitively. The spatial choice literature recognizes
also this dimension of the decision process (Eagle, 1988; Fotheringham et al., 1989; Lieber
et al., 1988). Interaction modellers acknowledge also that only a portion of destinations may
be considered and evaluated by movers (Horowitz, 1991) .

A theoretical justification for suggesting that movers reduce the size or complexity of the
choice set is to suggest that this is a behavioural mechanism for coping with uncertainty. Faced
with too much information in a decision, potential movers have a need to reduce the complexity
of the choice set, either by eliminating a portion of the destinations from the choice set, or by
grouping them. Thus, a‘ reduction of uncertainty principle’ provides a theoretical rationale for
saying that the destination choice process is hierarchical

It is not easy to agree, however, that the reduced sets of competing destinations will be
contiguous in space as anorm. Consider, as an example, the selection of universities by poten-
tial students. It is difficult to accept the idea that most students (withing their own country)
first select a general region, or spatial cluster of institutions, and thereafter choose a specific
site within the region or cluster. More likely, such decisions are based on a choice among a very
large number of institutions having a variety of influences on decision makers. In this situation
the “ size’ variable in the calculation of influence might well be considered to represent a large
number of variables such as past experience, cost, institutional image, programs available, in-
formation availability, and so on.

Nevertheless, spatial theory assumes that each institution has some overall informational,

— 215, —



size-related ¢ impact’ on the spatial decision m aker which is tempered by distance. T he question
which arises, is how decision makers reduce complexity when faced with a choice among a large
number of such spatial influences.

T his paper argues that the spatial complexity is reduced by the act of mentally grouping
the incoming influences into sets of like values. T his is the same argument which is made with
in the spatial proximity viewpoint except that the grouping is not done spatially. It seems rea
sonable to surmise that there exists some first, large total choice set, of dozens or hundreds of
potential destinations, from which potential trip makers select among some more limited choice
set based on the mental grouping of destinations perceived to be similar.

It is clear that within the spatial influence perspective on competing destinations, the mat
ter of the spatial proximity of the reduced set of destinations to one another may be irrelevant
entirely. T he choice spatial process suggested is a hierarchical one, which reduces the size of
the choice set, and hence the uncertainty, but one that does not imply spatial proximity of the
reduced set of destinations.

T he general thrust of the spatial influence thesis being presented here is very similar to
that of the traditional spatial proximity perspective. In both cases it is argued that the spatial
decision making process is a hierarchical, two stage process wherein large amounts of informa
tion need to be reduced in some manner. In both cases it is agreed that this is accomplished, at
least in part, by the grouping of like alternatives into sets. The principal difference is that, in
the proximity thesis, the grouping is considered to be done spatially, while in the present dis-
cussion it is considered to be accomplished aspatially, according to the influences of the destina

tion on the spatial decision makers.
IV. SPATIAL INFLUENCE

Given a geographical area with a set of n randomly distributed points, where each point
may be simultaneously an origin and a destination, the predicted probability of spatial interae-

tion pi at a location at distances d1,. .. dm from m potential destinations is defined as
Pi= of (di) 2af(ds) (1
=
where @; is the size or attractivity of the destinations and

DPi= 10 (2)

j=1
Not all destinations interact necessarily with a particular origin, and m may be less than

n. Here Pj is interpretable as a prediction of the manner in which the total interaction from a
single origin is proportioned among a set of m destinations. It is the probability that a trip
maker at i will travel to a particular destination j. In Pooler (1992), the entropy of the P;’s
measured at the origin, is defined as the ¢ spatial uncertainty’ faced by the potential movers.
In the present paper, the predicted probability of interaction in equation ( 1) is described
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as the spatial influence of a destination on an origin. The phrase is employed because it is con
sidered to represent a convenient and intuitive shorthand for the probability of interaction. De-
cision makers respond to information, and spatial influence is considered to be directly propor
tional to the information available to potential movers concerning destinations.

T he spatial influence perspective on destination competition can be portrayed in the form of
amap. Fotheringham (1983a) used such a diagrammatic example to illustrate the spatial prox
imity perspective. As a analogous illustration of the spatial influence perspective, consider Fig.

1, where there are four destinations at given distances from a single origin.

L4 Ongin
- Destnation

—_ l — Dhstance betrween
ongin and destinatuon

Fig. 1 Spatial competition with respect to influences of destinations on an origin

T he sizes of the destinations are as follows: D= 1, D= 2 and D3 and D4s= 3. Given the
sizes (and the distances in Fig. 1), and assuming that f(d; )= dfjl in equation ( 1), destina
tions 1,2 and 3 have equal influences on the origin of Pj= 0. 17 for each, while destination 4
has a larger influence of P; = 0. 50. Accordingly, a traditional interaction model will assign
fifty percent of movers to destination 4, and 17 percent to each of the other three destinations.
In contrast to this perspective on the prediction of spatial interaction, the position taken here is
that movers respond differentially to particular influence levels, and therefore there will be less
observed interaction than expected to the three competing destinations with equal Pj.

If the spatial influence perspective is supported, the misspecification of the gravity model
will show up in overpredictions of movement to the competing destinations, and in a corre-
sponding underprediction to the other ( D4) destination. Before the discussion goes on to com
sider some empirical evidence of this effect, it is useful to speculate first about the nature of in-
teraction model misspecification which is expected to result from the destination competition

process outlined above.
V. INTERACTION DATA SKEWNESS AND DESTINATION COMPET ITION

It is very well known that most frequency distributions of spatial interaction data are pos+
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tively skewed, that is, there are a large number of shorter trips and a smaller number of longer
trips. Given that the spatial influences are equivalent to spatial interactions, the same pattern of
skew ness can be expected in their frequency distributions. There will be normally a large nunm-
ber of small influences and a small number of large influences. Given the assumptions of the
spatial influence point of view on destination competition, and given the skewness in the fre-
quency distributions of the influences, what is the expected nature of misspecification? One ex
pects to find:

(1) that there are more, smaller influences; this indicates that there are more destinations
competing among themselves at lower Py levels, and hence there should be overpredictions as-
sociated with these smaller P;’ s, and

(2) that there are fewer, larger influences; this indicates that there are fewer destinations
competing among themselves at higher P levels, and therefore flows associated with larger
P’ s should be underpredicted.

T he em pirical test looks for evidence of these two effects.
VI SOME EMPIRICAL EVIDENCE OF OVER AND UNDERPREDICTION

T he empirical test is simply whether existing spatial interaction model predictions display
the properties described in (i) and (ii) of the preceding section. If so, this may provide some
indication of the presence of destination competition of the type proposed. It is important to
point out, however, that such an empirical test does not support conclusively the idea put
forth. T here may be several other possible explanations for patterns of overand underpredie-
tion. Such alternative explanations are discussed in the conclusion.

T he analysis employs spatial interaction model predictions produced by T obler ( 1988).
T he Tobler model is

ki ") Pi P}
o e L PP 5

In this model M j; is the predicted movement, and P; and P; are the sizes of the origins and des-
tinations respectively ( a BASIC calibration program to calibrate the model is in Tobler, 1988).
The ki and k;’ terms are interpretable as pushes and pulls, or emissivities and attractivities,
and act as proportionality constants in the model. They have the same normalizing effects as

balancing factors in traditional constrained interaction models and are defined as
Pk}’ P;
ki= (2ri— D) Dok (4)
— dj —dj
and

, , P ik P;
W= (2= 2N 2 (5)

The k values are calibrated with respect to observed in and out movement rates (r; and rj’ re-
spectively), and the population potential ( or accessibility) of origins and destinations. In the
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model, T obler sets the power term on dij to unity. Tobler (1988) states that the model yields

abetter fit than either doubly constrained or totally constrained models of the Wilson family
(1983). T he model is discussed in Fotheringham et al. (1989), and Golledge and Stimson

(1987).

One set of data which Tobler employs in model ( 3) originate with Cesario (1973, 1974),
and includes recreational day-trips from ten counties to five parks in northeastern Pennsylvania.
T he observed travel and distance data are in Cesario (1973) and Tobler (1988). The map is re-
produced in Baxter and Ewing ( 1979) and Pooler ( 1992). The observed migration and distance
matrices are in Cesario ( 1973), Slater (1974) and Tobler (1988). In the present paper, the
one small correction to the distance matrix given in a footnote in Cesario (1974) is not used, at
though Tobler ( 1988) noted and used it. T here are 33 461 trips over amaximum of 115 miles
(one way) in a single day. These data are employed also by Slater (1974), and Baxter et al.
(1979). The size terms in equations (3), (4) and (5) are represented by the marginal sums of
the observed flows. For purposes of comparison, the observed and predicted trips are presented

in Table 1.

Table 1 Observed and predicted trips from counties to parks Pennsylvania recreat ional travel data

To From county
park 1 2 3 4 5 6 7 8 9 10
. 46 50 230 307 255 376 385 17 63 8
Big Pocono
31 110 394 208 347 191 325 9 113 8
35 33 6970 520 3366 313 1121 7 101 20
Gouldsboro
197 531 5019 1033 2614 737 1546 53 682 72
Hickory 333 1670 141 1458 4586 253 1263 26 1886 12
Run 211 889 2242 1071 4559 417 1292 34 876 36
Promised 84 71 977 315 303 150 499 87 48 124
Land 42 109 929 237 523 23 3717 21 156 34
69 91 1917 387 595 848 981 6 40 18
Tobyhanna
86 275 1650 438 1062 364 709 26 311 32

The upper set of numbers in each row represents the observed trips. T he counties are: 1 Berks, 2 Carbon, 3 Lackaw anna,

4 Lehigh, 5 Luzeme, 6 Monme, 7 Northampton, 8 Pike, 9 Schuylkill, 10 W ayne.

T he spatial influences are calculated using equation (1), where f (d;)= dj, and where
the total observed inflows to parks are used as the attractivity term d;. The influences are cal
culated for the ten counties with respect to the influences of the five parks on them (Table 2).

T able 2 illustrates that the values of the spatial influences are highly skewed. There is a
preponderance of very low values (52 percent are less than 0. 100) and a scarcity of larger val

ues (only eighteen percent are greater than 0.300).
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Table 2 Spatial influences of parks on counties Pennsylvania recreational travel data

From On county

park 1 2 3 4 5 6 7 8 9 10
Big Pocono 0.080 0.021 0.012 0.126 0.017 0.273 0.123 0.101 0.025 0.022
Gouldsboro 0.056 0.011 0.765 0.162 0.268 0.149 0.262 0.039 0.036 0.077
Hickory Run 0.621 0.918 0.008 0.494 0.656 0.070 0.259 0.095 0.908 0.024
Promised Land 0.121 0.016 0.064 0.098 0.017 0.071 0.109 0.727 0.016 0.807
Tobyhanna 0.119 0.034 0.152 0.121 0.043 0.437 0.247 0.037 0.016 0.070

The counties are: 1 Beiks, 2 Carbon, 3 Lackawanna, 4 Lehigh, 5 Luzerne, 6 Montoe, 7 Northampton, 8 Pike, 9
Schuylkil, 10 Wayne

In testing the hypotheses proposed here, the influences of the parkson the counties are d+
vided into two subgroups, and the extent to which the model over or underpredicts the flows in
each of the subgroups is examined . In order to accomplish this , all values of influence below
0. 100 are taken as representing the small influences, and the remaining values (0. 101 and
above) as the large ones (this split makes the division between large and small 52 and 48 per
cent respectively). Examination of the Tobler model predictions indicates that for these data,
of the 26 smaller influences, 84 percent have the observed interaction overpredicted, while for
the remaining 24 larger influences, 75 percent are underpredicted. This difference is highly sig-
nificant at 0. 001 under chi square. Therefore, with these data, there exists a significant pat
tern of overprediction of flows when influences are small, and an underprediction when the in
fluences are large.

As a further test of the hypothesis of model misspecification, and analysis is undertaken
employing Tobler’ s model results with a different set of data, at a different geographical scale.
T obler (1983) calibrates the model with respect to population migration among the nine United
States census regions. T he data represent the 1965— 1970 time period (US Bureau of the Cen
sus, 1973) . The observed and predicted migrations are presented in Table 3. T he spatial influ
ences for these data are in Table 4 and they also show a definitive pattern of skew. Of 72 total
influences, 82 percent have values less than 0. 200, while only eighteen percent have values
greater than 0. 201. An examination of the overand underpredictions in the Tobler model pre-
dictions of spatial interaction reveals a pattern which is consistent, in part, with the hypothesis
being tested. Of the 58 smaller influences having values less than 0. 200 in this data set, 65
percent are overpredicted by the model. Similarly, of the 34 smallest influences having values
less than 0. 100, an even greater proportion, 74 percent, are overpredicted. For the remaining
fourteen spatial influences, with values greater than 0.200, the model underpedicts fifty per-
cent of the interactions.

T he empirical results indicate that spatial interaction is overand underpredicted in accor
dance with the general hy potheses which have been set out. It was hypothesized that when the

spatial influences ( of destinations on origins) are relatively smaller and more numerous, spatial



Table 3 Observed and predicted united states migration between census regions

To region
1 2 3 4 5 6 7 8 9

.
From region

0 180048 79223 26887 198144 17995 35563 30528 110792

I Boston 0 209775 86140 27689 167029 25378 39795 33536 89838
) New Youk 283049 0 300345 67280 718673 55094 93434 87987 268458
W
306706 0 263426 82075 621842 79533 125880 108356 286494
. 87267 237229 0 281791 551483 230788 178517 172711 394481
1eago 87600 182188 0 277992 538838 162674 257592 189358 438015
4 O 29877 60681 286580 0 143860 49892 185618 181868 274629
e 31343 73130 311178 0 183911 63625 177513 126355 245050
s Chal 130830 382565 346407 92308 0 252189 192223 89389 279739
rlest
rarieston 110542 322923 351669 118372 0 262295 215033 102517 282299
21434 53772 287340 49828 316650 0 141679 27409 87938
6 Birmingham
24789 54939 156367 55581 384554 0 124582 50829 134408
- bl 30287 64645 161645 177980 199466 121366 0 134229 289880
a 30008 69399 191052 126915 253481 97062 0 107446 271136
‘ 21450 43749 97808 113683 89806 25574 158006 0 437255
8 Salt Lake City
26682 78592 149792 98100 101026 40906 96300 0 395933

72114 133122 229764 165405 266305 66324 252039 342948
57728 164864 279487 155438 233707 87749 200376 348671 0

9 San Francisco

T he upper set of numbers in each row represents the observed trips. T he census regions are: 1 New England, 2 Mid/ A+
lantic, 3 East North/ Central, 4 West North/ Central, 5 South Atlantic, 6 East South/ Central, 7 West South/ Central, 8 M oun-
tain, 9 Pacific.

*  Didances are m easured among the cities.

T able 4 Spatial influences of destinations on origins united states migration data

] On region
From region 1 2 3 4 5 6 7 8 9
1 Boston 0 0.283  0.067  0.038 0072  0.041  0.036  0.046
2 New Yok 0.600 0 0.254  0.136 0290  0.154  0.143  0.122 0152
3 Chicago 0.140  0.254 0 0.390 0,234  0.264  0.262  0.205 0224
4 Omaha 0.038  0.064  0.184 0 0,071  0.080  0.151  0.127 0118
5 Charleston 0.109  0.208  0.167  0.107 0 0.268  0.159  0.097 0128
6 Birmingham 0.037  0.065  0.113 0.072 0161 0 0.120  0.054 0067
7 Dallas 0.038  0.063  0.116  0.142 0098  0.125 0 0.104 0131
8 Salt Lake Cty ~ 0.012  0.019  0.033  0.043 0022  0.020 0.039 0 0.135
9 San Francisco  0.028  0.045  0.066  0.073  0.053  0.047  0.087  0.250 0

T he census regions are: 1 New England, 2 Mid/ Atlantic, 3 East North/ Central, 4 West North/ Central, 5 South At
lantic, 6 East South/ Central, 7 West South/ Central, 8 Mountain, 9 Pacfic.

*  Distances are measured among the cities.
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interaction is expected to be overpredicted to a significant extent. This was the case in both da
tasets considered. Conversely, when the spatial influences are relatively larger and fewer in
number, spatial interaction is expected to be significantly underpredicted. This was true of the
first set of data though not of the second.

An obvious shortcoming of the empirical analysis, especially with respect to the population
migration data, is that better results might be obtained with more detailed data. Nevertheless,
these preliminary findings are provocative, they suggest that further em pirical analyses concern

ing patterns of over and underprediction are warranted.

VII. CONCLUSION

As was indicated at the outset, the purpose of this paper is not to present new models of
spatial interaction but rather to demonstrate that a pattern of misspecification does exist, and to
attempt to account for it. The question remains as to whether the behavioral explanation of
fered here for the pattern of error in the interaction models is an adequate one. The matter is
open to debate. It would be interesting to see alternative attempts to interpret the pattern of
ovetrand underprediction in the models in a com petition framework.

An important cautionary note must be raised again about the interpretation of results. The
hypothesis put forth here may be only one of several explanations for the pattern of over and
underprediction observed. For example, simply the use of altemative forms of the distance de-
terrence function might lead to alternative patterns of predicted flows. Similarly the paper em-
ploys the predicted flows of Tobler’ s ‘ additive’ form of interaction model, while different re-
sults might obtain from the use of the Wilson ‘ multiplicative’ form of model. Further empirical
testing is required before definitive conclusions can be drawn.

With regard to the em pirical results obtained by Fotheringham (1983a) with respect to the
spatial proximity point of view, it appears that the spatial competition effect may be confounded
with a spatial structure effect and, as a result, it is not clear whether empirical results (e. g.,
Fotheringham, 1983a; Fotheringham et al. , 1989) reflect the behavioral postulates, or the
effects of the map pattern. One means of testing for the existence of purely spatial competition
effects (as opposed to map pattern effects) would be to look at a set of interaction data where
there is good reason to believe that there is no spatial proximity, competition effect at work.
Presumably, for such a data set, the usual misspecification bias found in parameter estimates
could be shown not to exist.

In summary, this paper has argued that spatial interaction models are misspecified with re-
spect to competition effects among destinations, but that these effects are not related necessarily
to spatial structure or to the spatial clustering of destinations. The empirical results provide pre-
liminary evidence which suggests that there is a competition effect at work among destinations
with similar spatial influences on origins, regardless of their spatial proximity to one another.
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