CARBON CYCLE OF MARSH IN THE SANJIANG PLAIN

Ma Xuehui(马学慧) Lu Xianguo(吕宪国)

Changchun Institute of Geography, the Chinese Academy of Sciences,

Changchun 130021, P.R. China

(Received 13 August 1996)

ABSTRACT: The Sanjiang Plain of China is a low plain. Its total area is 10.89×10⁴ km² and marsh area takes up 10.20%. Marsh is a kind of vegetation type with strong carbon-fixing ability among the terrestrial ecosystem and carbon cycle performing in the form of carbon dioxide. This paper discusses the fixation of atmospheric CO₂ by marsh plant; the transfer of carbon from marsh to atmosphere; the change of CO₂ and vertical transfer of CO₂ near atmosphere of the earth; the carbon flow among marsh plants, soil and atmosphere. Some scientific data about the biological production, carbon content of marsh plants and the capacity for releasing and fixing are used to explain the carbon cycle of marsh in the Sanjiang Plain.

KEY WORDS: carbon cycle, production of plant, soil respiration, vertical transport of carbon dioxide

Peat growth is a process of being helpful for decreasing the increment of CO₂ content in the air, which is caused by combustion of mineral fuels and human activities in terrestrial ecosystem. But, exploiting marsh, especially peat used to be fuels, implies that organic substance accumulated from atmosphere during the past thousands of years is rapidly oxidized. So the marsh plays an important role in the cycle of biogeochemistry.

The Sanjiang Plain is a low plain formed by the common reaction of the Heilong River, Songhua River and Wusuli River. The total area is 10.89×10^4 km² and marsh area is 1.12×10^4 km², taking up 10.2% of the total area. The Sanjiang Plain is one of the major marsh distribution regions in China.

The cycle of carbon in nature includes the long geological cycle and the short biogeochemical cycle among the terrestrial organism, soil and atmosphere. Through the photosynthesis of green plant, CO_2 in the air is reduced and fixed. As a result, carbon exists in the organic substance in the form of organic carbon. Then when the organic substance is utilized by consumer, carbon is released into atmosphere in the form of carbon dioxide again. From above, we can see that carbon cycle performs in the form of carbon dioxide.

I. FIXATION OF ATMOSPHERIC CO2 BY MARSH PLANT

The assimilation of green plant, which transforms carbon dioxide into organic carbide, makes carbon flow from the atmosphere to the biosphere. Swamp is a kind of vegetation type with strong carbon-fixing ability in the terrestrial ecosystem. Because of the wide distribution of marsh, the range of net primary productivity is quite great. The Sanjiang Plain, located in the north temperate zone, is mainly comprised of eutrophic marsh. So the biological production is not great, ranging from 465.9 g/(m²·a) to 1271.9 g/(m²·a) (Table 1) (Lu et al., 1994; Yi et al., 1988). Carbon content of marsh plant ranges from 39.53% to 44.33% (Table 2). According to Table 3, it is estimated that carbon fixed by marsh plant is 467×10^4 t/a(Lu et al., 1995).

Table 1	Production ·	of marsh	plant in	the	Sanjiang	Plain
---------	--------------	----------	----------	-----	----------	-------

Dominant species	Area	Produ (g·m	Biomass		
	(km²)	Above ground	Below ground	$(g \cdot m^{-2})$	
Carex lasiocarpa	4493.3	426.8	845.1	1271.9	
Glyceria triflora-Carex sp.	591.7	602.2	391.1	993.3	
Caret pseudocuraica	793.2	418.5	47.4	465.9	
Carex sp. without hummock	57.3	337.7	427.9	765.6	
Phragmites communis-Calamagrostis angustifolia	2415.3	450.1	427.9	878.0	
Carex sp. with hummock	2841.7	354.0	427.9	781 .9	

Table 2 Total carbon content in marsh plant in the Sanjiang Plain (dry matter %)

Dominant species	Above ground	Below ground
Carex lasiocarpa	39.53 38.25 – 40.80	44.33 43.35-45.30
Glyceria triflora	$\frac{41.18}{39.75 - 42.60}$	$\frac{42.45}{38.55 - 46.35}$
Carex pseudocuraica	$\frac{41.48}{40.80 - 42.15}$	$\frac{40.80}{40.35 - 41.25}$

Table 3 Estimating value of annual fixation of CO₂ by marsh plant in the Sanjiang Plain

Dominant species	Biomass above ground $(\times 10^4 \text{ t/a})$	Fixation of C $(\times 10^4 \text{ t/a})$	Biomass below ground $(\times 10^4 \text{ t/a})$	Fixation of C (×10 ⁴ t/a)
Carex lasiocarpa	191.77	76.71	383.77	170.13
Glyceria triflora-Carex sp.	33.59	13.28	3.76	1.59
Carex pseudocuraica	35.63	14.25	23.14	9.82
Carex sp. without hummock	1.93	0.77		
Phragmites communis- Calamagrostis angustifolia	108.72	43.49	227.40*	96.76*
Carex sp. with hummock	100.60	40.24		
Total	471.84	188.74	638.07	278.25

^{*} the figure is the sum of Carex sp. without hummock, Phragmites communis-Calamagrostis angustifolia and Carex sp. with hummock

II. THE TRANSFER OF CARBON FROM MARSH SOIL TO ATMOSPHERE

In the natural marsh ecosystem, the litter is returned to marsh at a time. In the aquatic environment, the remnant piled up on the surface is decomposed and transformed by microorganism. Finally, carbon is released from soil to atmosphere in the form of CO₂. Thus CO₂ is exchanged between soil and atmosphere.

The soil respiration ranges from 1.081 to 1.781 kg/(m²·a). The rate of soil respiration observed is as follows: peat soil is 1.781 kg/(m²·a); peat marsh soil and humus soil are 1.431 kg/(m²·a); meadow marsh soil is 1.081 kg/(m²·a). All types of marsh release 1463.4×10^4 t of CO_2 , containing 395.1×10^4 t of carbon each year (Table 4).

Soil type	Area (km²)	Annual soil respiratory rate (kg/m²)	Release of CO ₂ (×10 ⁴ t/a)	Release of carbon (×10 ⁴ t/a)
Peat soil	326	1.781	58.1	15.7
Meadow marsh soil	4262	1.081	460.7	124.4
Peat marsh soil and humus soil	6601	1.431	944.6	255.0
Total	11189		1463.4	395.1

Table 4 Carbon released from marsh soil in the Sanjiang Plain

III. CO2 DENSITY AND CO2 FLUXES ON MARSH SURFACE LAYER

1. Changes of CO₂ Density on Marsh Surface Layer

In the course of growth of marsh plant, CO_2 exchanges between plant and atmosphere through photosynthesis and respiration of green plant. The daily and seasonal changes of CO_2 density are notable in plant canopy and marsh (Table 5).

2. Vertical Transfer of CO2 on the Surface Layer

Marsh obtains CO_2 through turbulent flow between soil and air. So the CO_2 flux is expressed by this formula:

$$F_c = f \cdot K_c \cdot \frac{\partial C}{\partial Z}$$

where: f—the converting coefficient from mg/kg to g/cm³, $f = 1.67 \times 10^{-9}$

 K_c —the turbulent exchange coefficient

 $\frac{\partial C}{\partial Z}$ —vertical density of CO_2

According to this formula and observations of wind and temperature, we can figure out the daily changes of CO₂ fluxes in different growing periods of Carex lasiocarpa. The results indi-

cate that CO_2 fluxes present relatively large positive value during June and August, which means CO_2 flows from atmosphere to marsh. On the contrary, during the other months CO_2 fluxes present relatively small negative value, which means CO_2 flows from marsh to atmosphere (Table 6). As far as the whole year is concerned, the positive value is greater than the negative value.

Table 5 Characteristic value of CO2 density on surface layer of Carex (mg/kg)

Date	Altitude (cm)	Plant phenophase and plant height (cm)	Min Appear t	Max ime (h)	Daily average Daily range
Jan. 13	100	no plant growth	340 12:00	390 03:00	370 50
Feb. 28	100	no plant growth	$\frac{350}{10:00-12:00}$	$\frac{390}{18,00-07,00}$	$\frac{377}{40}$
Apr. 28	100	flower bud stage 5 - 18	$\frac{360}{16:00}$	$\frac{610}{22;00}$	440 250
May 18 - 19	50	flowering stage	$\frac{370}{13,00}$	$\frac{540}{07:00}$	$\frac{460}{170}$
May 16 – 19	150	15 – 20	$\frac{380}{13:00}$	$\frac{530}{07:00}$	$\frac{456}{150}$
Jun. 22 - 23	50	fruit stage	$\frac{314}{16:00}$	$\frac{464}{22:00}$	$\frac{342}{150}$
jun. 22 – 23	150	50	$\frac{318}{16:00}$	$\frac{462}{22:00}$	<u>375</u> 144
Jul. 20 – 21	50 150	maturing stage	$\frac{314}{10:00-13:00}$	438 04:00	372 114
	130		$\frac{324}{13:00}$	416 01:00 430	37 <u>1</u> 92 380
Aug. 25 - 26	50	yellow-maturity stage	$\frac{340}{16,00}$	$\frac{450}{22:00-04:00}$	<u>380</u> 90
Aug. 23 = 26	150	55	$\frac{330}{13:00}$	$\frac{435}{04:00}$	$\frac{374}{105}$
Sopt 5 - 6	50	yellow-maturing stage	$\frac{340}{16:00}$	$\frac{400}{19:00-01:00}$	386 60
Sept. 5 – 6	150	55	$\frac{340}{13:00}$	$\frac{410}{22:00-01:00}$	383 70

Table 6 CO2 flux of Carex lasiocarpa in different growing periods

Date	Growing period	Daily average flux of CO_2 $(\times 10^{-8} \text{ kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$	Wind speed at height of 1.5 m (m/s)	Daily average temperature at height of 1.5 m (°C')
May 18 - 19,1993	flowering stage	-0.35	1.07	15.25
June 20 - 21,1994	fruit stage	1.71	0.48	21.18
July 20 - 21,1994	maturing stage	1.20	1.21	24.63
Aug. 25 – 27, 1992	maturing stage	0.47	1.63	19.49
Sept. 5 – 6,1992	yellow-maturity stage	-0.22	1.00	17.80
Oct. 17 - 18,1994	withering stage	-0.15	2.54	7.28

IV. THE CARBON FLOWS AMONG MARSH PLANT, SOIL AND ATMOSPHERE

In the marsh ecosystem in the Sanjiang Plain, the total annual plant biomass is 11.1×10^6 t/a, the fixation amount of C is 4.67×10^6 t/a. The organic matter containing C is transferred into soil system, then returned to air in the form of CO_2 , the release amount of carbon from soil to atmosphere is 3.95×10^6 t/a. From those figures, we can see that the accumulation of carbon is larger than decomposition of carbon. So peat would be accumulated on the surface to some extent, including mineral marsh. The peat accumulation becomes a increasing carbon pool. When hydrothermal condition is steady enough, peat in marsh is isolated from the atmosphere cycle of carbon. To sum up, it is clear that the accumulation of peat is helpful for decreasing CO_2 content in the air. However, when we drain off the water from marsh and utilize the dried marsh in different ways, the marsh will be CO_2 source instead of CO_2 sink, the pattern of carbon cycle will be changed. The results research show that if the water is drained off from every mire on the earth, a great amount of carbon will be released, which equals to 35% to 50% of the amount of carbon caused by chopping the forest and burning chemical fuels.

REFERENCES

- Lu Xianguo, Yang Qing, Ma Xuehui, 1994. Preliminary research on the primary production of the marsh plants in the Sanjiang Plain. In: Wetland Environment and Peatland Utilization. Changehun: Jilin People's Publishing House.
- Lu Xianguo, Wang Dexuan, 1995. Research on carbon cycle of peatland. Network Research on Resource, Ecology and Environment, 6(2):20 22. (in Chinese)
- Yi Fuke et al., 1988. Types of marsh and its exploitation and utilization in the Sanjiang Plain. In: Mire Research in China. Beijing; Science Press. (in Chinese)