Volume 30 Issue 4
Jul.  2020
Turn off MathJax
Article Contents

ZHENG Wensheng, KUANG Aiping, WANG Xiaofang, CHEN Jing. Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model[J]. Chinese Geographical Science, 2020, 30(4): 677-694. doi: 10.1007/s11769-020-1131-2
Citation: ZHENG Wensheng, KUANG Aiping, WANG Xiaofang, CHEN Jing. Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model[J]. Chinese Geographical Science, 2020, 30(4): 677-694. doi: 10.1007/s11769-020-1131-2

Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model

doi: 10.1007/s11769-020-1131-2
Funds:

Under the auspices of National Social Science Foundation of China (No. 17BJL052)

  • Received Date: 2019-09-20
  • The objective of this study is to develop a framework for re-examining and re-defining the classical concepts of spatial interaction and reorganization in the urban system. We introduce a modified radiation model for spatial interactions, coupled with migration big data, transport accessibility algorithm, and city competitiveness assessment for efficient distribution of the inter-city flow through the network. The Yangtze River Middle Reaches (YRMR) urban agglomeration (UA) is chosen as the case study region to systematically identify and measure its spatial configuration and to gain insights for other UAs’ sustainable development in China. The results are also compared with those computed by the classical gravity model to systematically discuss the applicability of spatial interaction laws and models, and related practical policies for regional sustainable development are discussed based on the findings as well. The conclusions are highlighted below: 1) Combining with the ‘city network paradigm’ and ‘central place theory’ can better express the spatial configurations of city systems in the context of ‘space of flows’; 2) The results validate the potentialities of a multi-analysis framework to assess the spatial configurations of city network based on the improved radiation model and network analysis tools; 3) The applications of spatial interaction models should be considered according to the specific geographical entity and its spatial scale.
  • [1] Anderson J E, van Wincoop E, 2003. Gravity with gravitas:a solution to the border puzzle. American Economic Review, 93(1):170-192. doi: 10.1257/000282803321455214
    [2] Batten D F, 1995. Network cities:creative urban agglomerations for the 21st century. Urban Studies, 32(2):313-327. doi: 10.1080/00420989550013103
    [3] Batty M, 2013. A theory of city size. Science, 340(6139):1418-1419. doi: 10.1126/science.1239870
    [4] Berry B J L, 1964. Cities as systems within systems of cities. Papers in Regional Science, 13(1):147-163. doi:10.1111/j. 1435-5597.1964.tb01283.x
    [5] Blondel V D, Guillaume J L, Lambiotte R et al., 2008. Fast un-folding of communities in large networks. Journal of Statistical Mechanics:Theory and Experiment, 10:10008. doi: 10.1088/1742-5468/2008/10/p10008
    [6] Burger M J, Meijers E J, van Oort F G, 2014. Editorial:the de-velopment and functioning of regional urban systems. Regional Studies, 48(12):1921-1925. doi:10.1080/00343404. 2014.979782
    [7] Camagni R P, Salone C, 1993. Network urban structures in north-ern Italy:elements for a theoretical framework. Urban Studies, 30(6):1053-1064. doi: 10.1080/00420989320080941
    [8] Cao Z, Derudder B, Peng Z W, 2018. Comparing the physical, functional and knowledge integration of the Yangtze River Delta city-region through the lens of inter-city networks. Cities, 82:119-126. doi: 10.1016/j.cities.2018.05.010
    [9] Capello R, Caragliu A, Fratesi U, 2018. Breaking down the border:physical, institutional and cultural obstacles. Economic Geography, 94(5):485-513. doi:10.1080/00130095.2018. 1444988
    [10] Castells M, 1989. The Informational City:Information Technolo-gy, Economic Restructuring and the Urban-Regional Process. Oxford, UK:Basil Blackwell Oxford.
    [11] Christaller W, 1966. Central Places in Southern Germany. Eng-lewood Cliffs, NJ:Prentic Hall.
    [12] Dadashpoor H, Afaghpoor A, Allan A, 2017. A methodology to assess the spatial configuration of urban systems in Iran from an interaction perspective. GeoJournal, 82(1):109-129. doi: 10.1007/s10708-015-9671-1
    [13] Dennis C, Marsland D, Cockett T, 2002. Central place practice:shopping centre attractiveness measures, hinterland boundaries and the UK retail hierarchy. Journal of Retailing and Consumer Services, 9(4):185-199. doi:10.1016/S0969-6989 (01)00021-2
    [14] Department of Urban Socio Economic Investigation, National Bureau of Statistics, 2017. China City Statistical Yearbook. Beijing:China Statistics Press. (in Chinese)
    [15] Fang C L, Yu D L, 2017. Urban agglomeration:an evolving con-cept of an emerging phenomenon. Landscape and Urban Planning, 162:126-136. doi:10.1016/j.landurbplan.2017.02. 014
    [16] Han J, Liu J B, 2018. Urban spatial interaction analysis using inter-city transport big data:a case study of the yangtze river delta urban agglomeration of China. Sustainability, 10(12):4459. doi: 10.3390/su10124459
    [17] He J H, Li C, Yu Y et al., 2017. Measuring urban spatial interac-tion in Wuhan Urban Agglomeration, Central China:a spatially explicit approach. Sustainable Cities and Society, 32:569-583. doi: 10.1016/j.scs.2017.04.014
    [18] Hesse M, 2010. Cities, material flows and the geography of spatial interaction:urban places in the system of chains. Global Networks, 10(1):75-91. doi:10.1111/j.1471-0374.2010. 00275.x
    [19] Hesse M, 2016. On borrowed size, flawed urbanisation and emerging enclave spaces:the exceptional urbanism of Lux-embourg, Luxembourg. European Urban and Regional Studies, 23(4):612-627. doi: 10.1177/0969776414528723
    [20] Hou H P, Liu Y L, Liu Y F et al., 2015. Using inter-town network analysis in city system planning:a case study of Hubei Province in China. Habitat International, 49:454-465. doi: 10.1016/j.habitatint.2015.06.016
    [21] Hubei Provincial Bureau of Statistics, 2017. Hubei Statistical Yearbook. Beijing:China Statistics Press. (in Chinese)
    [22] Huff D L, Jenks G F, 1968. A graphic interpretation of the friction of distance in gravity models. Annals of the Association of American Geographers, 58(4):814-824. doi:10.1111/j. 1467-8306.1968.tb01670.x
    [23] Hui E C M, Li X, Chen T T et al., 2018. Deciphering the spatial structure of China's megacity region:a new bay area-The Guangdong-Hong Kong-Macao Greater Bay Area in the mak-ing. Cities. doi: 10.1016/j.cities.2018.10.011
    [24] Hunan Provincial Bureau of Statistics, 2017. Hunan Statistical Yearbook. Beijing:China Statistics Press. (in Chinese)
    [25] Jiang Y H, Shen J F, 2010. Measuring the urban competitiveness of Chinese cities in 2000. Cities, 27(5):307-314. doi: 10.1016/j.cities.2010.02.004
    [26] Jiangxi Provincial Bureau of Statistics, 2017. Jiangxi Statistical Yearbook. Beijing:China Statistics Press. (in Chinese)
    [27] Kang C, Liu Y, Guo D et al., 2015. A generalized radiation model for human mobility:spatial scale, searching direction and trip constraint. PLoS One, 10(11):e0143500. doi:10.1371/journal. pone.0143500
    [28] Lao X, Zhang X L, Shen T Y et al., 2016. Comparing China's city transportation and economic networks. Cities, 53:43-50. doi: 10.1016/j.cities.2016.01.006
    [29] Lenormand M, Bassolas A, Ramasco J J, 2016. Systematic com-parison of trip distribution laws and models. Journal of Transport Geography, 51:158-169. doi:10.1016/j.jtrangeo. 2015.12.008
    [30] Li F Z, Feng Z M, Li P et al., 2017. Measuring directional urban spatial interaction in China:a migration perspective. PLoS One, 12(1):e0171107. doi: 10.1371/journal.pone.0171107
    [31] Liu X J, Derudder B, Wu K, 2016. Measuring polycentric urban development in China:an intercity transportation network perspective. Regional Studies, 50(8):1302-1315. doi: 10.1080/00343404.2015.1004535
    [32] Malý J, 2016. Impact of polycentric urban systems on in-tra-regional disparities:a micro-regional approach. European Planning Studies, 24(1):116-138. doi:10.1080/09654313. 2015.1054792
    [33] Masucci A P, Serras J, Johansson A et al., 2013. Gravity versus radiation models:on the importance of scale and heterogeneity in commuting flows. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 88(2):022812. doi: 10.1103/PhysRevE.88.022812
    [34] McArthur D P, Kleppe G, Thorsen I et al., 2011. The spatial transferability of parameters in a gravity model of commuting flows. Journal of Transport Geography, 19(4):596-605. doi: 10.1016/j.jtrangeo.2010.06.014
    [35] Meijers E, 2005. Polycentric urban regions and the quest for syn-ergy:is a network of cities more than the sum of the parts? Urban Studies, 42(4):765-781. doi:10.1080/004209805000 60384
    [36] Meijers E, 2007. From central place to network model:theory and evidence of a paradigm change. Tijdschrift Voor Economische en Sociale Geografie, 98(2):245-259. doi: 10.1111/j.1467-9663.2007.00394.x
    [37] Meijers E, Hoogerbrugge M, Cardoso R, 2018. Beyond polycen-tricity:does stronger integration between cities in polycentric urban regions improve performance? Tijdschrift Voor Econo-mische En Sociale Geografie, 109(1):1-21. doi: 10.1111/tesg.12292
    [38] Meijers E J, Burger M J, Hoogerbrugge M M, 2016. Borrowing size in networks of cities:city size, network connectivity and metropolitan functions in Europe. Papers in Regional Science, 95(1):181-198. doi: 10.1111/pirs.12181
    [39] Meijers E J, Burger M J, 2017. Stretching the concept of ‘bor-rowed size’. Urban Studies, 54(1):269-291. doi: 10.1177/0042098015597642
    [40] Mikkonen K, Luoma M, 1999. The parameters of the gravity model are changing:how and why? Journal of Transport Geography, 7(4):277-283. doi:10.1016/s0966-6923(99) 00024-1
    [41] Mulligan G F, Partridge M D, Carruthers J I, 2012. Central place theory and its reemergence in regional science. The Annals of Regional Science, 48(2):405-431. doi: 10.1007/s00168-011-0496-7
    [42] Neal Z, 2010. Refining the air traffic approach to city networks. Urban Studies, 47(10):2195-2215. doi:10.1177/004209800 9357352
    [43] Neal Z, 2011a. Differentiating centrality and power in the world city network. Urban Studies, 48(13):2733-2748. doi: 10.1177/0042098010388954
    [44] Neal Z P, 2011b. From central places to network bases:a transition in the U.S. urban hierarchy, 1900-2000. City & Community, 10(1):49-75. doi: 10.1111/j.1540-6040.2010.01340.x
    [45] Reilly W J, 1929. Methods for the Study of Retail Relationships. Texas:University of Texas.
    [46] Ren Y, Ercsey-Ravasz M, Wang P et al., 2014. Predicting com-muter flows in spatial networks using a radiation model based on temporal ranges. Nature Communications, 5:5347. doi: 10.1038/ncomms6347
    [47] Sassen S, 2002. Locating cities on global circuits. Environment and Urbanization, 14(1):13-30. doi:10.1630/0956247021012 86034
    [48] Simini F, González M C, Maritan A et al., 2012. A universal model for mobility and migration patterns. Nature, 484(7392):96-100. doi: 10.1038/nature10856
    [49] Stefanouli M, Polyzos S, 2017. Gravity vs radiation model:two approaches on commuting in Greece. Transportation Research Procedia, 24:65-72. doi: 10.1016/j.trpro.2017.05.069
    [50] Tan Y T, Xu H, Zhang X L, 2016. Sustainable urbanization in China:a comprehensive literature review. Cities, 55:82-93. doi: 10.1016/j.cities.2016.04.002
    [51] Taylor P J, Hoyler M, Verbruggen R, 2010. External urban rela-tional process:introducing central flow theory to complement central place theory. Urban Studies, 47(13):2803-2818. doi: 10.1177/0042098010377367
    [52] Taylor P J, Derudder B, Faulconbridge J et al., 2014. Advanced producer service firms as strategic networks, global cities as strategic places. Economic Geography, 90(3):267-291. doi: 10.1111/ecge.12040
    [53] Thapa R B, Murayama Y, 2010. Drivers of urban growth in the Kathmandu valley, Nepal:examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1):70-83. doi: 10.1016/j.apgeog.2009.10.002
    [54] Tian Y, Wang L, 2019. Mutualism of intra-and inter-prefecture level cities and its effects on regional socio-economic devel-opment:a case study of Hubei Province, Central China. Sus-tainable Cities and Society, 44:16-26. doi:10.1016/j.scs. 2018.09.033
    [55] Ullman, E L, 1941. A theory of location for cities. American Journal of Sociology, 46(6):853-864.
    [56] van Meeteren M, Poorthuis A, Derudder B et al., 2016. Pacifying Babel's Tower:a scientometric analysis of polycentricity in urban research. Urban Studies, 53(6):1278-1298. doi: 10.1177/0042098015573455
    [57] Wang F H, Xu Y Q, 2011. Estimating O-D travel time matrix by Google Maps API:implementation, advantages, and implica-tions. Annals of GIS, 17(4):199-209. doi:10.1080/19475683. 2011.625977
    [58] Watts D J, Strogatz S H, 1998. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440-442. doi: 10.1038/30918
    [59] Wesolowski A, O'Meara W P, Eagle N et al., 2015. Evaluating spatial interaction models for regional mobility in Sub-Saharan Africa. PLoS Computational Biology, 11(7):e1004267. doi: 10.1371/journal.pcbi.1004267
    [60] Xia C, Zhang A Q, Wang H J et al., 2019. Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth:a case study of the Yangtze River middle reaches megalopolis, China. Land Use Policy, 82:158-168. doi: 10.1016/j.landusepol.2018.12.007
    [61] Yang H R, Dijst M, Witte P et al., 2019. Comparing passenger flow and time schedule data to analyse High-Speed Railways and urban networks in China. Urban Studies, 56(6):1267-1287. doi: 10.1177/0042098018761498
    [62] Ye Qiang, Zhang Lixuan, Peng Peng, et al., 2017. The network characteristics of urban agglomerations in the Middle Reaches of the Yangtze River based on Baidu migration data. Economic Geography, 37(8):53-59. (in Chinese)
    [63] Zhang T L, Sun B D, Li W, 2017. The economic performance of urban structure:from the perspective of Polycentricity and Monocentricity. Cities, 68:18-24. doi:10.1016/j.cities.2017. 05.002
    [64] Zhao Ziyu, Wei Ye, Wang Shijun et al., 2017. Measurement of directed alternative centricity and power of directed weighted urban network:a case of population flow network of China during ‘Chunyun’ period. Geographical Research, 36(4):647-660. (in Chinese)
    [65] Zhen F, Qin X, Ye X Y et al., 2019. Analyzing urban development patterns based on the flow analysis method. Cities, 86:178-197. doi: 10.1016/j.cities.2018.09.015
    [66] Zheng Wensheng, Run Jiying, Zhuo Rongrong et al., 2016. Evo-lution process of urban spatial pattern in Hubei Province based on DMSP/OLS nighttime light data. Chinese Geographical Science, 26(3):366-376. doi: 10.1007/s11769-016-0814-1
    [67] Zhong C, Arisona S M, Huang X F et al., 2014. Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28(11):2178-2199. doi: 10.1080/13658816.2014.914521
    [68] Zhou D, Xu J C, Wang L et al., 2015. Assessing urbanization quality using structure and function analyses:a case study of the urban agglomeration around Hangzhou Bay (UAHB), China. Habitat International, 49:165-176. doi:10.1016/j. habitatint.2015.05.020
    [69] Zipf G K, 1946. The P1P2/D hypothesis:on the intercity movement of persons. American Sociological Review, 11(6):677-686.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(248) PDF downloads(74) Cited by()

Proportional views
Related

Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model

doi: 10.1007/s11769-020-1131-2
Funds:

Under the auspices of National Social Science Foundation of China (No. 17BJL052)

Abstract: The objective of this study is to develop a framework for re-examining and re-defining the classical concepts of spatial interaction and reorganization in the urban system. We introduce a modified radiation model for spatial interactions, coupled with migration big data, transport accessibility algorithm, and city competitiveness assessment for efficient distribution of the inter-city flow through the network. The Yangtze River Middle Reaches (YRMR) urban agglomeration (UA) is chosen as the case study region to systematically identify and measure its spatial configuration and to gain insights for other UAs’ sustainable development in China. The results are also compared with those computed by the classical gravity model to systematically discuss the applicability of spatial interaction laws and models, and related practical policies for regional sustainable development are discussed based on the findings as well. The conclusions are highlighted below: 1) Combining with the ‘city network paradigm’ and ‘central place theory’ can better express the spatial configurations of city systems in the context of ‘space of flows’; 2) The results validate the potentialities of a multi-analysis framework to assess the spatial configurations of city network based on the improved radiation model and network analysis tools; 3) The applications of spatial interaction models should be considered according to the specific geographical entity and its spatial scale.

ZHENG Wensheng, KUANG Aiping, WANG Xiaofang, CHEN Jing. Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model[J]. Chinese Geographical Science, 2020, 30(4): 677-694. doi: 10.1007/s11769-020-1131-2
Citation: ZHENG Wensheng, KUANG Aiping, WANG Xiaofang, CHEN Jing. Measuring Network Configuration of the Yangtze River Middle Reaches Urban Agglomeration: Based on Modified Radiation Model[J]. Chinese Geographical Science, 2020, 30(4): 677-694. doi: 10.1007/s11769-020-1131-2
Reference (69)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return