CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
Citation: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

doi: 10.1007/s11769-020-1122-3
Funds:

Under the auspices of the National Natural Science Foundation of China (Nos. U19A2042, 41471081, 41671081, 41671087), the National Key Research and Development Program of China (Nos. 2017YFC0505901, 2016YFC050040106, 2016YFA060230302), the Youth Innovation Promotion Association, Chinese Acadmy of Sciences (No. 2018265)

  • Received Date: 2019-06-26
  • Rev Recd Date: 2019-09-09
  • Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands (Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh (247.7 g/(m2·yr)) > mangrove (229.8 g/(m2·yr)) > freshwater marsh (196.7 g/(m2·yr)) > peatland (76.9 g/(m2·yr)). Carbonsq was positively related to mean annual temperature (AMT) and annual precipitation (Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.
  • [1] Ackerman D, Millet D B, Chen X, 2019. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33(1):100-107. doi:10.1029/2018GB 005990
    [2] Baldwin A H, Jensen K, Schönfeldt M, 2014. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Global Change Biology, 20(3):835-850. doi: 10.1111/gcb.12378
    [3] Bernal B, Mitsch W J, 2013. Carbon sequestration in freshwater wetlands in costa rica and botswana. Biogeochemistry, 115(1-3):77-93. doi: 10.1007/s10533-012-9819-8
    [4] Bertolucci E, Galletti A M R, Antonetti C et al., 2015. Chemical and magnetic properties characterization of magnetic nanoparticles. In:Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. Pisa, Italy:IEEE, 1492-1496. doi: 10.1109/I2MTC.2015.7151498
    [5] Bianchi T S, Allison M A, Zhao J et al., 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico:linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119:7-16. doi: 10.1016/j.ecss.2012.12.007
    [6] Black T A, Chen W J, Barr A G et al., 2000. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27(9):1271-1274. doi: 10.1029/1999GL011234
    [7] Bobbink R, Hicks K, Galloway J et al., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecological Applications, 20(1):30-59. doi: 10.1890/08-1140.1
    [8] Boyero L, Pearson R G, Gessner M O et al., 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14(3):289-294. doi: 10.1111/j.1461-0248.2010.01578.x
    [9] Bridgham S D, Johnston C A, Pastor J et al., 1995. Potential feedbacks of northern wetlands on climate change:an outline of an approach to predict climate-change impact. BioScience, 45(4):262-274. doi: 10.2307/1312419
    [10] Bridgham S D, Megonigal J P, Keller J K et al., 2006. The carbon balance of north american wetlands. Wetlands, 26(4):889-916. doi:10.1672/0277-5212(2006)26[889:TCBONA] 2.0.CO;2
    [11] Burdige D J, Zheng S L, 1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments. Limnology and Oceanography, 43(8):1796-1813. doi:10.4319/lo.1998. 43.8.1796
    [12] Chmura G L, Anisfeld S C, Cahoon D R et al., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4):1111. doi:10.1029/2002GB 001917
    [13] Drake B G, 2014. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a chesapeake bay wetland:review of a 28-year study. Global Change Biology, 20(11):3329-3343. doi: 10.1111/gcb.12631
    [14] Fan Z S, McGuire A D, Turetsky M R et al., 2013. The response of soil organic carbon of a rich fen peatland in interior alaska to projected climate change. Global Change Biology, 19(2):604-620. doi: 10.1111/gcb.12041
    [15] Feng X J, Simpson A J, Wilson K P et al., 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 1(12):836-839. doi: 10.1038/ngeo361
    [16] Hågvar S, Klanderud K, 2009. Effect of simulated environmental change on alpine soil arthropods. Global Change Biology, 15(12):2972-2980. doi: 10.1111/j.1365-2486.2009.01926.x
    [17] Helbig M, Chasmer L E, Desai A R et al., 2017. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Global Change Biology, 23(8):3231-3248. doi: 10.1111/gcb.13638
    [18] Hessen D O, Ågren G I, Anderson T R et al., 2004. Carbon sequestration in ecosystems:the role of stoichiometry. Ecology, 85(5):1179-1192. doi: 10.1890/02-0251
    [19] Kayranli B, Scholz M, Mustafa A et al., 2010. Carbon storage and fluxes within freshwater wetlands:a critical review. Wetlands, 30(1):111-124. doi: 10.1007/s13157-009-0003-4
    [20] Kettunen A, Kaitala V, Lehtinen A et al., 1999. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry, 31(12):1741-1749. doi: 10.1016/S0038-0717(99)00093-0
    [21] Kirkby C A, Richardson A E, Wade L J et al., 2013. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry, 60:77-86. doi: 10.1016/j.soilbio.2013.01.011
    [22] Lang B, Rall B C, Scheu S et al., 2014. Effects of environmental warming and drought on size-structured soil food webs. Oikos, 123(10):1224-1233. doi: 10.1111/j.1600-0706.2013.00894.x
    [23] LeBauer D S, Treseder K K, 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2):371-379. doi: 10.1890/06-2057.1
    [24] Li Zi, Zhang Zhongsheng, Xue Zhenshan et al., 2019. Molecular fingerprints of soil organic matter in a typical freshwater wetland in Northeast China. Chinese Geographical Science, 29(4):700-708. doi: 10.1007/s11769-019-1062-y
    [25] Loomis M J, Craft C B, 2010. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, georgia, USA. Soil Science Society of America, 74(3):1028-1036. doi: 10.2136/sssaj2009.0171
    [26] Macdonald J A, Fowler D, Hargreaves K J et al., 1998. Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmospheric Environment, 32(19):3219-3227. doi: 10.1016/S1352-2310(97)00464-0
    [27] Martina J P, Currie W S, Goldberg D E et al., 2016. Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere, 7(9):e01459. doi: 10.1002/ecs2.1459
    [28] Mitsch W J, Bernal B, Nahlik A M et al., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4):583-597. doi: 10.1007/s10980-012-9758-8
    [29] Morris J T, Bradley P M, 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnology and Oceanography, 44(3):699-702. doi:10.4319/lo.1999.44. 3.0699
    [30] Nadelhoffer K J, Emmett B A, Gundersen P et al., 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398(6723):145-148. doi: 10.1038/18205
    [31] Nakatsubo T, Uchida M, Sasaki A et al., 2015. Carbon accumulation rate of peatland in the High Arctic, Svalbard:implications for carbon sequestration. Polar Science, 9(2):267-275. doi: 10.1016/j.polar.2014.12.002
    [32] Noe G B, Hupp C R, 2005. Carbon, nitrogen, and phosphorus accumulation in floodplains of atlantic coastal plain rivers, USA. Ecological Applications, 15(4):1178-1190. doi: 10.1890/04-1677
    [33] O'Lear H A, Blair J M, 1999. Responses of soil microarthropods to changes in soil water availability in tallgrass prairie. Biology and Fertility of Soils, 29(2):207-217. doi: 10.1007/s003740050546
    [34] Page S E, Rieley J O, Banks C J, 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2):798-818. doi:10.1111/j.1365-2486.2010. 02279.x
    [35] Peng S S, Piao S L, Ciais P et al., 2013. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature, 501(7465):88-92. doi: 10.1038/nature12434
    [36] Reay D S, Dentener F, Smith P et al., 2008. Global nitrogen deposition and carbon sinks. Nature Geoscience, 1(7):430-437. doi: 10.1038/ngeo230
    [37] Reddy K R, DeLaune R D, 2008. Biogeochemistry of Wetlands:Science and Applications. Boca Raton:CRC Press, 1779.
    [38] Sackett T E, Classen A T, Sanders N J, 2010. Linking soil food web structure to above- and belowground ecosystem processes:a meta-analysis. Oikos, 119(12):1984-1992. doi: 10.1111/j.1600-0706.2010.18728.x
    [39] Schuur E A G, McGuire A D, Schädel C et al., 2015. Climate change and the permafrost carbon feedback. Nature, 520(7546):171-179. doi: 10.1038/nature14338
    [40] Song Y Y, Song C C, Meng H N et al., 2017. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100:175-185. doi: 10.1016/j.ecoleng.2016.12.025
    [41] Sulman B N, Desai A R, Mladenoff D J, 2013. Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems, 16(3):491-507. doi: 10.1007/s10021-012-9624-1
    [42] Sundareshwar P V, Morris J T, Koepfler E K et al., 2003. Phosphorus limitation of coastal ecosystem processes. Science, 299(5606):563-565. doi: 10.1126/science.1079100
    [43] Sutfin N A, Wohl E E, Dwire K A, 2016. Banking carbon:a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41(1):38-60. doi: 10.1002/esp.3857
    [44] Tao B X, Song C C, Guo Y D, 2013. Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, sanjiang plain, China. Wetlands, 33(4):727-736. doi: 10.1007/s13157-013-0432-y
    [45] Turetsky M R, Treat C C, Waldrop M P et al., 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an alaskan peatland. Journal of Geophysical Research, 113(G3):G00A10. doi: 10.1029/2007JG000496
    [46] Turunen J, Roulet N T, Moore T R et al., 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles, 18(3):GB3002. doi: 10.1029/2003GB002154
    [47] Valiela I, Geist M, McClelland J et al., 2000. Nitrogen loading from watersheds to estuaries:verification of the waquoit bay nitrogen loading model. Biogeochemistry, 49(3):277-293. doi: 10.1023/A:1006345024374
    [48] Vitousek P M, Howarth R W, 1991. Nitrogen limitation on land and in the sea:how can it occur? Biogeochemistry, 13(2):87-115. doi: 10.1007/BF00002772
    [49] Vitousek P M, Porder S, Houlton B Z et al., 2010. Terrestrial phosphorus limitation:mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1):5-15. doi: 10.1890/08-0127.1
    [50] Wall D H, Nielsen U N, Six J, 2015. Soil biodiversity and human health. Nature, 528(7580):69-76. doi: 10.1038/nature15744
    [51] Wan S Q, Hui D F, Wallace L et al., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2):GB2014. doi: 10.1029/2004GB002315
    [52] Waughman G J, Bellamy D J, 1980. Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology, 61(5):1185-1198. doi: 10.2307/1936837
    [53] Whiting G J, Chanton J P, 2001. Greenhouse carbon balance of wetlands:methane emission versus carbon sequestration. Tellus B:Chemical and Physical Meteorology, 53(5):521-528. doi: 10.3402/tellusb.v53i5.16628
    [54] Wissing L, Kölbl A, Schad P et al., 2014. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma, 228-229:90-103. doi: 10.1016/j.geoderma.2013.12.012
    [55] Yang Jisong, Liu Jingshuang, Yu Junbao et al., 2005. Effects of water table and nitrogen addition on CO2 emission from wetland soil. Chinese Geographical Science, 15(3):262-268. doi: 10.1007/s11769-005-0039-1
    [56] Zhang Z S, Craft C, Xue Z S et al., 2016. Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, Northeast China. Ecological Indicators, 70:114-124. doi:10.1016/j.ecolind.2016. 05.041
    [57] Zhang Z S, Xue Z S, Lu X G et al., 2017. Warming in spring and summer lessens carbon accumulation over the past century in temperate wetlands of Northeast China. Wetlands, 37(5):829-836. doi: 10.1007/s13157-017-0915-3
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(353) PDF downloads(98) Cited by()

Proportional views
Related

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

doi: 10.1007/s11769-020-1122-3
Funds:

Under the auspices of the National Natural Science Foundation of China (Nos. U19A2042, 41471081, 41671081, 41671087), the National Key Research and Development Program of China (Nos. 2017YFC0505901, 2016YFC050040106, 2016YFA060230302), the Youth Innovation Promotion Association, Chinese Acadmy of Sciences (No. 2018265)

Abstract: Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands (Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh (247.7 g/(m2·yr)) > mangrove (229.8 g/(m2·yr)) > freshwater marsh (196.7 g/(m2·yr)) > peatland (76.9 g/(m2·yr)). Carbonsq was positively related to mean annual temperature (AMT) and annual precipitation (Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.

CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
Citation: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return