Volume 29 Issue 5
Oct.  2019
Turn off MathJax
Article Contents

JIN Cui, LUO Xue, XIAO Xiangming, DONG Jinwei, LI Xueming, YANG Jun, ZHAO Deyu. The 2012 Flash Drought Threatened US Midwest Agroecosystems[J]. Chinese Geographical Science, 2019, 20(5): 768-783. doi: 10.1007/s11769-019-1066-7
Citation: JIN Cui, LUO Xue, XIAO Xiangming, DONG Jinwei, LI Xueming, YANG Jun, ZHAO Deyu. The 2012 Flash Drought Threatened US Midwest Agroecosystems[J]. Chinese Geographical Science, 2019, 20(5): 768-783. doi: 10.1007/s11769-019-1066-7

The 2012 Flash Drought Threatened US Midwest Agroecosystems

doi: 10.1007/s11769-019-1066-7
Funds:  Under the auspices of the National Natural Science Foundation of China (No. 41801340), Natural Science Foundation of Liaoning, China (No. 20180550238), the Key Research Program of Frontier Sciences by Chinese Academy of Sciences (No. QYZDB-SSW-DQC005)
More Information
  • Corresponding author: ZHAO Deyu.E-mail:zhaody@igsnrr.ac.cn
  • Received Date: 2018-10-10
  • Rev Recd Date: 2019-02-03
  • Publish Date: 2019-10-01
  • In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July.~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1-2 weeks earlier in 2012 compared to the other years of 2010-2014; 2) the drought had a more severe impact on agroecosystems (crop and grassland) than on forests; 3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence (SIF) and gross primary production (GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest (1.76 Pg C/yr) during 2010-2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling.
  • [1] Asner G P, Alencar A, 2010. Drought impacts on the amazon forest:the remote sensing perspective. New Phytologist, 187(3):569-578. doi: 10.1111/j.1469-8137.2010.03310.x
    [2] Basara J B, Maybourn J N, Peirano C M et al., 2013. Drought and associated impacts in the great plains of the United States-a review. International Journal of Geosciences, 4(6B):72-81. doi: 10.4236/ijg.2013.46A2009
    [3] Bigler C, Gavin D G, Gunning C et al., 2007. Drought induces lagged tree mortality in a subalpine forest in the Rocky Moun-tains. Oikos, 116(12):1983-1994. doi: 10.1111/j.2007.0030-1299.16034.x
    [4] Boryan C, Yang Z W, Mueller R et al., 2011. Monitoring US ag-riculture:the US Department of Agriculture, National Agri-cultural Statistics Service, Cropland Data Layer Program.
    [5] Geocarto International, 26(5):341-358. doi: 10.1080/10106049.2011.562309
    [6] Boyer J S, Byrne P, Cassman K G et al., 2013. The U.S. drought of 2012 in perspective:a call to action. Global Food Security, 2(3):139-143. doi: 10.1016/j.gfs.2013.08.002
    [7] Breshears D D, Cobb N S, Rich P M et al., 2005. Regional vege-tation die-off in response to global-change-type drought. Pro-ceedings of the National Academy of Sciences of the United States of America, 102(42):15144-15148. doi:10.1073/pnas. 0505734102
    [8] Chen T, van der Werf G R, Gobron N et al., 2014. Global cropland monthly gross primary production in the year 2000. Bio-geosciences, 11(14):3871-3880. doi: 10.5194/bg-11-3871-2014
    [9] Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058):529-533. doi: 10.1038/nature03972
    [10] Cook B I, Ault T R, Smerdon J E, 2015. Unprecedented 21st cen-tury drought risk in the American Southwest and central plains. Science Advances, 1(1):e1400082. doi:10.1126/sciadv. 1400082
    [11] Dai A G, 2011. Drought under global warming:a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1):45-65. doi: 10.1002/wcc.81
    [12] Dai A G, 2013. Increasing drought under global warming in ob-servations and models. Nature Climate Change, 3(1):52-58. doi: 10.1038/nclimate1633
    [13] Daly C, Taylor G H, Gibson W P et al., 2000. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE, 43(6):1957-1962. doi:10.13031/2013. 3101
    [14] Dunn A L, Barford C C, Wofsy S C et al., 2007. A long-term rec-ord of carbon exchange in a boreal black spruce forest:means, responses to interannual variability, and decadal trends. Global Change Biology, 13(3):577-590. doi: 10.1111/j.1365-2486.2006.01221.x
    [15] Farooq M, Wahid A, Kobayashi N et al., 2009. Plant drought stress:effects, mechanisms and management. Agronomy for Sustainable Development, 29(1):185-212. doi: 10.1051/agro:2008021
    [16] Frank D, Reichstein M, Bahn M et al., 2015. Effects of climate extremes on the terrestrial carbon cycle:concepts, processes and potential future impacts. Global Change Biology, 21(8):2861-2880. doi: 10.1111/gcb.12916
    [17] Granier A, Reichstein M, Bréda N et al., 2007. Evidence for soil water control on carbon and water dynamics in European for-ests during the extremely dry year:2003. Agricultural and For-est Meteorology, 143(1-2):123-145. doi:10.1016/j.agrformet. 2006.12.004
    [18] Guanter L, Zhang Y G, Jung M et al., 2014. Global and time-resolved monitoring of crop photosynthesis with chloro-phyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14):E1327-E1333. doi: 10.1073/pnas.1320008111
    [19] Hoerling M, Eischeid J, Kumar A et al., 2014. Causes and pre-dictability of the 2012 great plains drought. Bulletin of the American Meteorological Society, 95(2):269-282. doi:10. 1175/BAMS-D-13-00055.1
    [20] Ji L, Peters A J, 2003. Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sensing of Environment, 87(1):85-98. doi:10.1016/S 0034-4257(03)00174-3
    [21] Jin C, Xiao X M, Wagle P et al., 2015. Effects of in-situ and rea-nalysis climate data on estimation of cropland gross primary production using the vegetation photosynthesis model. Agri-cultural and Forest Meteorology, 213:240-250. doi: 10.1016/j.agrformet.2015.07.003
    [22] Jin Z N, Ainsworth E A, Leakey A D B et al., 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US midwest. Global Change Biology, 24(2):e522-e533
    [23] Joiner J, Guanter L, Lindstrot R et al., 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology, simulations, and application to GOME-2. Atmospheric Meas-urement Techniques, 6(10):2803-2823. doi: 10.5194/amt-6-2803-2013
    [24] Kellner O, Niyogi D, 2014. Assessing drought vulnerability of agricultural production systems in context of the 2012 drought. Journal of Animal Science, 92(7):2811-2822. doi: 10.2527/jas.2013-7496
    [25] Kumar A, Chen M Y, Hoerling M et al., 2013. Do extreme climate events require extreme forcings? Geophysical Research Letters, 40(13):3440-3445. doi: 10.1002/grl.50657
    [26] Liu Y, Zhou Y, Ju W et al., 2014. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11(10):2583-2599. doi: 10.5194/bg-11-2583-2014
    [27] Lobell D B, Roberts M J, Schlenker W et al., 2014. Greater sensi-tivity to drought accompanies maize yield increase in the U.S. midwest. Science, 344(6183):516-519. doi:10.1126/science. 1251423
    [28] Mallya G, Zhao L, Song X C et al., 2013. 2012 midwest drought in the United States. Journal of Hydrologic Engineering, 18(7):737-745. doi: 10.1061/(ASCE)HE.1943-5584.0000786
    [29] McKee T B, Doesken N J, Kleist J, 1993. The relationship of drought frequency and duration to time scales. In:Proceedings of the Eighth Conference on Applied Climatology. Anaheim, California:AMS, 17-22.
    [30] Mesinger F, DiMego G, Kalnay E et al., 2006. North American regional reanalysis. Bulletin of the American Meteorological Society, 87(3):343-360. doi: 10.1175/BAMS-87-3-343
    [31] Mo K C, Lettenmaier D P, 2016. Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4):1169-1184. doi: 10.1175/JHM-D-15-0158.1
    [32] Mueller N D, Butler E E, McKinnon K A et al., 2016. Cooling of US midwest summer temperature extremes from cropland in-tensification. Nature Climate Change, 6(3):317-322. doi: 10.1038/nclimate2825
    [33] Naumann G, Alfieri L, Wyser K et al., 2018. Global changes in drought conditions under different levels of warming. Geo-physical Research Letters, 45(7):3285-3296. doi: 10.1002/2017GL076521
    [34] Noormets A, Gavazzi M J, Mcnulty S G et al., 2010. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Global Change Biology, 16(1):272-287. doi:10.1111/j. 1365-2486.2009.01928.x
    [35] Otkin J A, Anderson M C, Hain C et al., 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14(4):1057-1074. doi: 10.1175/JHM-D-12-0144.1
    [36] Otkin J A, Anderson M C, Hain C et al., 2016. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 218-219:230-242. doi:10.1016/j.agrformet. 2015.12.065
    [37] Otkin J A, Svoboda M, Hunt E D et al., 2018. Flash droughts:a review and assessment of the challenges imposed by rap-id-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5):911-919. doi: 10.1175/BAMS-D-17-0149.1
    [38] Phillips O L, van der Heijden G, Lewis S L et al., 2010. Drought-mortality relationships for tropical forests. New Phy-tologist, 187(3):631-646. doi:10.1111/j.1469-8137.2010. 03359.x
    [39] Reddy A R, Chaitanya K V, Vivekanandan M, 2004. Drought-induced responses of photosynthesis and antioxidant metabo-lism in higher plants. Journal of Plant Physiology, 161(11):1189-1202. doi: 10.1016/j.jplph.2004.01.013
    [40] Reichstein M, Ciais P, Papale D et al., 2007. Reduction of eco-system productivity and respiration during the European summer 2003 climate anomaly:a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3):634-651. doi: 10.1111/j.1365-2486.2006.01224.x
    [41] Reyer C P O, Leuzinger S, Rammig A et al., 2013. A plant's per-spective of extremes:terrestrial plant responses to changing climatic variability. Global Change Biology, 19(1):75-89. doi: 10.1111/gcb.12023
    [42] Schaefer K, Schwalm C R, Williams C et al., 2012. A model-data comparison of gross primary productivity:results from the North American carbon program site synthesis. Journal of Geophysical Research-Biogeosciences, 117(G3):G03010. doi: 10.1029/2012JG001960
    [43] Schwalm C R, Williams C A, Schaefer K et al., 2010. Assimilation exceeds respiration sensitivity to drought:a FLUXNET synthesis. Global Change Biology, 16(2):657-670. doi:10. 1111/j.1365-2486.2009.01991.x
    [44] Schwalm C R, Williams C A, Schaefer K et al., 2012. Reduction in carbon uptake during turn of the century drought in western North America. Nature Geoscience, 5(8):551-556. doi: 10.1038/ngeo1529
    [45] Sitch S, Huntingford C, Gedney N et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and cli-mate-carbon cycle feedbacks using five Dynamic Global Veg-etation Models (DGVMs). Global Change Biology, 14(9):2015-2039. doi: 10.1111/j.1365-2486.2008.01626.x
    [46] Svoboda M, LeComte D, Hayes M et al., 2002. The drought mon-itor. Bulletin of the American Meteorological Society, 83(8):1181-1190. doi: 10.1175/1520-0477-83.8.1181
    [47] van der Molen M K, Dolman A J, Ciais P et al., 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Mete-orology, 151(7):765-773. doi:10.1016/j.agrformet.2011.01. 018
    [48] Vicente-Serrano S M, 2007. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards, 40(1):173-208. doi: 10.1007/s11069-006-0009-7
    [49] Wehner M, Easterling D R, Lawrimore J H et al., 2011. Projections of future drought in the continental united states and mexico. Journal of Hydrometeorology, 12(6):1359-1377. doi: 10.1175/2011JHM1351.1
    [50] Williams I N, Torn M S, Riley W J et al., 2014. Impacts of climate extremes on gross primary production under global warming. Environmental Research Letters, 9(9):101002. doi: 10.1088/1748-9326/9/9/094011
    [51] Wolf S, Eugster W, Ammann C et al., 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environmental Research Letters, 8(3):089501. doi: 10.1088/1748-9326/8/3/035007
    [52] Wuebbles D, Meehl G, Hayhoe K et al., 2014. CMIP5 climate model analyses:climate extremes in the United States. Bulletin of the American Meteorological Society, 95(4):571-583. doi: 10.1175/BAMS-D-12-00172.1
    [53] Xiao X M, Hollinger D, Aber J et al., 2004a. Satellite-based mod-eling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4):519-534. doi: 10.1016/j.rse.2003.11.008
    [54] Xiao X M, Zhang Q Y, Braswell B et al., 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of En-vironment, 91(2):256-270. doi: 10.1016/j.rse.2004.03.010
    [55] Xin Q C, Broich M, Suyker A E et al., 2015. Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the midwestern United States. Agricultural and Forest Meteorology, 201:111-119. doi: 10.1016/j.agrformet.2014.11.004
    [56] Zeng N, Zhao F, Collatz G J et al., 2014. Agricultural green revo-lution as a driver of increasing atmospheric CO2 seasonal am-plitude. Nature, 515(7527):394-397. doi:10.1038/nature 13893
    [57] Zhang L, Xiao J F, Li J et al., 2012. The 2010 spring drought reduced primary productivity in southwestern China. Envi-ronmental Research Letters, 7(4):045706. doi: 10.1088/1748-9326/7/4/045706
    [58] Zhang Y G, Guanter L, Berry J A et al., 2014. Estimation of vege-tation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 20(12):3727-3742. doi:10.1111/gcb. 12664
    [59] Zhang Y, Xiao X M, Jin C et al., 2016. Consistency between sun-induced chlorophyll fluorescence and gross primary pro-duction of vegetation in North America. Remote Sensing of Environment, 183:154-169. doi: 10.1016/j.rse.2016.05.015
    [60] Zhang Y Q, Yu Q, Jiang J et al., 2008. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4):757-767. doi:10. 1111/j.1365-2486.2008.01538.x
    [61] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994):940-943. doi:10.1126/science. 1192666
    [62] Zscheischler J, Mahecha M D, von Buttlar J et al., 2014. A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3):035001. doi: 10.1088/1748-9326/9/3/035001
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(496) PDF downloads(199) Cited by()

Proportional views
Related

The 2012 Flash Drought Threatened US Midwest Agroecosystems

doi: 10.1007/s11769-019-1066-7
Funds:  Under the auspices of the National Natural Science Foundation of China (No. 41801340), Natural Science Foundation of Liaoning, China (No. 20180550238), the Key Research Program of Frontier Sciences by Chinese Academy of Sciences (No. QYZDB-SSW-DQC005)
    Corresponding author: ZHAO Deyu.E-mail:zhaody@igsnrr.ac.cn

Abstract: In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July.~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1-2 weeks earlier in 2012 compared to the other years of 2010-2014; 2) the drought had a more severe impact on agroecosystems (crop and grassland) than on forests; 3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence (SIF) and gross primary production (GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest (1.76 Pg C/yr) during 2010-2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling.

JIN Cui, LUO Xue, XIAO Xiangming, DONG Jinwei, LI Xueming, YANG Jun, ZHAO Deyu. The 2012 Flash Drought Threatened US Midwest Agroecosystems[J]. Chinese Geographical Science, 2019, 20(5): 768-783. doi: 10.1007/s11769-019-1066-7
Citation: JIN Cui, LUO Xue, XIAO Xiangming, DONG Jinwei, LI Xueming, YANG Jun, ZHAO Deyu. The 2012 Flash Drought Threatened US Midwest Agroecosystems[J]. Chinese Geographical Science, 2019, 20(5): 768-783. doi: 10.1007/s11769-019-1066-7
Reference (62)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return