Volume 29 Issue 4
Aug.  2019
Turn off MathJax
Article Contents

YANG Jing, CHENG Changxiu, SONG Changqing, SHEN Shi, ZHANG Ting, NING Lix-in. Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors[J]. Chinese Geographical Science, 2019, 20(4): 614-625. doi: 10.1007/s11769-019-1059-6
Citation: YANG Jing, CHENG Changxiu, SONG Changqing, SHEN Shi, ZHANG Ting, NING Lix-in. Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors[J]. Chinese Geographical Science, 2019, 20(4): 614-625. doi: 10.1007/s11769-019-1059-6

Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors

doi: 10.1007/s11769-019-1059-6
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41771537), Fundamental Research Funds for the Central Universities.
More Information
  • Corresponding author: CHENG Changxiu.E-mail:chengcx@mail.bnu.edu.cn
  • Received Date: 2018-09-05
  • Rev Recd Date: 2018-06-15
  • Publish Date: 2019-08-01
  • Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic style, and their interaction on characteristic of cluster. Based on data of earthquakes not less than moment magnitude (Mw) 5.6 from 1960 to 2014, this study used the spatial-temporal scan method to identify earthquake clusters. The results indicate that seismic spatial-temporal clusters can be classified into two types based on duration:persistent clusters and burst clusters. Finally, we analysed the spatial heterogeneity of the two types. The main conclusions are as follows:1) Ninety percent of the persistent clusters last for 22-38 yr and show a high clustering likelihood; ninety percent of the burst clusters last for 1-1.78 yr and show a high relative risk. 2) The persistent clusters are mainly distributed in interplate zones, especially along the western margin of the Pacific Ocean. The burst clusters are distributed in both intraplate and interplate zones, slightly concentrated in the India-Eurasia interaction zone. 3) For the persistent type, plate interaction plays an important role in the distribution of the clusters' likelihood and relative risk. In addition, the tectonic style further enhances the spatial heterogeneity. 4) For the burst type, neither plate activity nor tectonic style has an obvious effect on the distribution of the clusters' likelihood and relative risk. Nevertheless, interaction between these two spatial factors enhances the spatial heterogeneity, especially in terms of relative risk.
  • [1] Berryman K R, Cochran U A, Clark K J et al., 2012. Major earthquakes occur regularly on an isolated plate boundary fault. Science, 336(6089):1690-1693. doi:10.1126/science. 1218959
    [2] Copley A, Avouac J P, Royer J Y, 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate:implications for the forces driving plate motions. Journal of Geophysical Research:Solid Earth, 115(B3):B03410. doi:10.1029/2009JB 006634
    [3] Faenza L, Marzocchi W, Serretti P et al., 2008. On the spa-tio-temporal distribution of M 7.0+ worldwide seismicity with a non-parametric statistics. Tectonophysics, 449(1-4):97-104. doi: 10.1016/j.tecto.2007.11.066
    [4] Gao Junqin, Ouyang Hua, Lei Guangchun et al., 2011. Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê alpine wetland, Qing-hai-Tibet Plateau. Chinese Geographical Science, 21(1):27-35. doi: 10.1007/s11769-011-0439-3
    [5] Hall T R, Nixon C W, Keir D et al., 2018. Earthquake clustering and energy release of the African-Arabian rift system. Bulletin of the Seismological Society of America, 108(1):155-162. doi: 10.1785/0120160343
    [6] Hanks T C, Kanamori H, 1979. A moment magnitude scale. Journal of Geophysical Research:Solid Earth, 84(B5):2348-2350. doi: 10.1029/JB084iB05p02348
    [7] Iaffaldano G, Husson L, Bunge H P, 2011. Monsoon speeds up Indian plate motion. Earth and Planetary Science Letters, 304(3-4):503-510. doi: 10.1016/j.epsl.2011.02.026
    [8] Jagoutz O, Royden L, Holt A F et al., 2015. Anomalously fast convergence of India and Eurasia caused by double subduction. Nature Geoscience, 8(6):475-478. doi: 10.1038/ngeo2418
    [9] Jiang C S, Wu Z L, 2005. Test of the preshock accelerating mo-ment release (AMR) in the case of the 26 December 2004 Mw 9.0 Indonesia earthquake. Bulletin of the Seismological Society of America, 95(5):2016-2025. doi: 10.1785/0120050018
    [10] Kagan Y Y, Jackson D D, 2000. Probabilistic forecasting of earthquakes. Geophysical Journal International, 143(2):438-453. doi: 10.1046/j.1365-246X.2000.01267.x
    [11] Kagan Y Y, Jackson D D, 2010. Earthquake forecasting in diverse tectonic zones of the globe. Pure and Applied Geophysics, 167(6-7):709-719. doi: 10.1007/s00024-010-0074-4
    [12] Kagan Y Y, Jackson D D, 2012. Whole earth high-resolution earthquake forecasts. Geophysical Journal International, 190(1):677-686. doi: 10.1111/j.1365-246X.2012.05521.x
    [13] Kulldorff M, Heffernan R, Hartman J et al., 2005. A space-time permutation scan statistic for disease outbreak detection. PLoS Medicine, 2(3):e59. doi: 10.1371/journal.pmed.0020059
    [14] Lay T, 2015. The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409:133-146. doi: 10.1016/j.epsl.2014.10.047
    [15] Leat P T, Jordan T A, Flowerdew M J et al., 2018. Jurassic high heat production granites associated with the Weddell Sea rift system, Antarctica. Tectonophysics, 722:249-264. doi: 10.1016/j.tecto.2017.11.011
    [16] Liu M, Stein S, 2016. Mid-continental earthquakes:spatiotemporal occurrences, causes, and hazards. Earth-Science Reviews, 162:364-386. doi: 10.1016/j.earscirev.2016.09.016
    [17] Loveless J P, Allmendinger R W, Pritchard M E et al., 2010. Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc. Tectonics, 29(2):TC2001. doi: 10.1029/2009TC002465
    [18] Luo W, Jasiewicz J, Stepinski T et al., 2016. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Let-ters, 43(2):692-700. doi: 10.1002/2015GL066941
    [19] Main I, 1996. Statistical physics, seismogenesis, and seismic hazard. Reviews of Geophysics, 34(4):433-462. doi: 10.1029/96RG02808
    [20] Mukhopadhyay B, Acharyya A, Dasgupta S, 2011. Potential source zones for Himalayan earthquakes:constraints from spatial-temporal clusters. Natural Hazards, 57(2):369-383. doi: 10.1007/s11069-010-9618-2
    [21] Mulargia F, Stark P B, Geller R J, 2017. Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?. Physics of the Earth and Planetary Interiors, 264:63-75. doi:10.1016/j.pepi. 2016.12.002
    [22] Parsons T, Geist E L, 2014. The 2010-2014.3 global earthquake rate increase. Geophysical Research Letters, 41(13):4479-4485. doi: 10.1002/2014GL060513
    [23] Rehman K, Burton P W, Weatherill G A, 2014. K-means cluster analysis and seismicity partitioning for Pakistan. Journal of seismology, 18(3):401-419. doi: 10.1007/s10950-013-9415-y
    [24] Schorlemmer D, Hirata N, Ishigaki Y et al, 2018. Earthquake detection probabilities in Japan. Bulletin of the Seismological Society of America, 108(2):702-717. doi: 10.1785/0120170110
    [25] Scholz C H, 2002. The Mechanics of Earthquakes and Faulting. 2nd ed. Cambridge:Cambridge University Press.
    [26] Sharma A S, Baker D N, Bhattacharyya A et al., 2013. Complexity and extreme events in geosciences:an overview. In:Sharma A S, Bunde A, Dimri V P, et al. (eds). Extreme Events and Natural Hazards:the Complexity Perspective. Washington:American Geophysical Union, 1-16.
    [27] Shen S, Cheng C X, Song C Q et al., 2018. Spatial distribution patterns of global natural disasters based on biclustering. Nat-ural Hazards, 92(3):1809-1820. doi: 10.1007/s11069-018-3279-y
    [28] Stadler G, Gurnis M, Burstedde C et al., 2010. The dynamics of plate tectonics and mantle flow:from local to global scales. Science, 329(5995):1033-1038. doi: 10.1126/science.1191223
    [29] Storchak D A, Di Giacomo D, Bondár I et al., 2013. Public release of the ISC-GEM global instrumental earthquake catalogue (1900-2009). Seismological Research Letters, 84(5):810-815. doi: 10.1785/0220130034
    [30] Wang C L, Liang C T, Deng K et al., 2018. Spatiotemporal dis-tribution of micro-earthquakes and implications around the seismic gap between the Wenchuan and Lushan earthquakes. Tectonics, 37(1). doi: 10.1029/2018TC004979
    [31] Wang J F, Li X H, Christakos G et al., 2010. Geographical detec-tors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Inter-national Journal of Geographical Information Science, 24(1):107-127. doi: 10.1080/13658810802443457
    [32] Wu C Q, Guyer R, Shelly D et al., 2015. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California. Geophysical Journal International, 202(2):914-919. doi: 10.1093/gji/ggv194
    [33] Zaliapin I, Ben-Zion Y, 2013. Earthquake clusters in southern California I:identification and stability. Journal of Geophysical Research:Solid Earth, 118(6):2847-2864. doi: 10.1002/jgrb.50179
    [34] Zaliapin I, Ben-Zion Y, 2013. Earthquake clusters in southern California Ⅱ:classification and relation to physical properties of the crust. Journal of Geophysical Research:Solid Earth, 118(6):2865-2877. doi: 10.1002/jgrb.50178
    [35] Zaliapin I, Ben-Zion Y, 2016. A global classification and charac-terization of earthquake clusters. Geophysical Journal Inter-national, 207(1):608-634. doi: 10.1093/gji/ggw300
    [36] Zhang T, Gordon R G, Mishra J K et al., 2017. The Malpelo Plate Hypothesis and implications for nonclosure of the Co-cos-Nazca-Pacific plate motion circuit. Geophysical Research Letters, 44(16):8213-8218. doi:10.1002/2017GL 073704
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(398) PDF downloads(251) Cited by()

Proportional views
Related

Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors

doi: 10.1007/s11769-019-1059-6
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41771537), Fundamental Research Funds for the Central Universities.
    Corresponding author: CHENG Changxiu.E-mail:chengcx@mail.bnu.edu.cn

Abstract: Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic style, and their interaction on characteristic of cluster. Based on data of earthquakes not less than moment magnitude (Mw) 5.6 from 1960 to 2014, this study used the spatial-temporal scan method to identify earthquake clusters. The results indicate that seismic spatial-temporal clusters can be classified into two types based on duration:persistent clusters and burst clusters. Finally, we analysed the spatial heterogeneity of the two types. The main conclusions are as follows:1) Ninety percent of the persistent clusters last for 22-38 yr and show a high clustering likelihood; ninety percent of the burst clusters last for 1-1.78 yr and show a high relative risk. 2) The persistent clusters are mainly distributed in interplate zones, especially along the western margin of the Pacific Ocean. The burst clusters are distributed in both intraplate and interplate zones, slightly concentrated in the India-Eurasia interaction zone. 3) For the persistent type, plate interaction plays an important role in the distribution of the clusters' likelihood and relative risk. In addition, the tectonic style further enhances the spatial heterogeneity. 4) For the burst type, neither plate activity nor tectonic style has an obvious effect on the distribution of the clusters' likelihood and relative risk. Nevertheless, interaction between these two spatial factors enhances the spatial heterogeneity, especially in terms of relative risk.

YANG Jing, CHENG Changxiu, SONG Changqing, SHEN Shi, ZHANG Ting, NING Lix-in. Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors[J]. Chinese Geographical Science, 2019, 20(4): 614-625. doi: 10.1007/s11769-019-1059-6
Citation: YANG Jing, CHENG Changxiu, SONG Changqing, SHEN Shi, ZHANG Ting, NING Lix-in. Spatial-temporal Distribution Characteristics of Global Seismic Clusters and Associated Spatial Factors[J]. Chinese Geographical Science, 2019, 20(4): 614-625. doi: 10.1007/s11769-019-1059-6
Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return