XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong. Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia[J]. Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
Citation: XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong. Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia[J]. Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y

Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia

doi: 10.1007/s11769-018-1006-y
Funds:  Under the auspices of the National Key Research and Development Project (No. 2016YFA0602301), National Natural Science Foundation of China (No. 41730643, 41671219, 41771109, 31500400)
More Information
  • Corresponding author: JIA Mingming,E-mail:jiamingming@iga.ac.cn;ZHU Weihong.E-mail:whzhu@ybu.edu.cn
  • Received Date: 2018-03-30
  • Rev Recd Date: 2018-06-26
  • Publish Date: 2018-12-27
  • Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and environmental protection, particularly in the transboundary region that has undergone marked changes. This study aimed to examine the impacts of land cover changes on ecosystem carbon stocks in the transboundary Tumen River Basin (TTRB). We extracted the spatial information from Landsat Thematic Imager (TM) and Operational Land Imager (OLI) images for the years 1990 and 2015 and obtained convincing estimates of terrestrial biomass and soil carbon stocks with the InVEST model. The results showed that forestland, cropland and built-up land increased by 57.5, 429.7 and 128.9 km2, respectively, while grassland, wetland and barren land declined by 24.9, 548.0 and 43.0 km2, respectively in the TTRB from 1990 to 2015. The total carbon stocks encompassing aboveground, belowground, soil and litter layer carbon storage pools have declined from 831.48 Tg C in 1990 to 831.42 Tg C in 2015 due to land cover changes. In detail, the carbon stocks decreased by 3.13 Tg C and 0.44 Tg C in Democratic People's Republic of Korea (North Korea) and Russia, respectively, while increased by 3.51 Tg C in China. Furthermore, economic development, and national policy accounted for most land cover changes in the TTRB. Our results imply that effective wetland and forestland protection policies among China, North Korea, and Russia are much needed for protecting the natural resources, promoting local ecosystem services and regional sustainable development in the transnational area.
  • [1] Aguirre-Gutiérrez J, Seijmonsbergen A C, Duivenvoorden J F, 2012. Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico. Applied Geography, 34:29-37. doi: 10.1016/j.apgeog.2011.10.010
    [2] Arantes A E, Ferreira L G, Coe M T, 2016. The seasonal carbon and water balances of the Cerrado environment of Brazil:Past, present, and future influences of land cover and land use. ISPRS Journal of Photogrammetry and Remote Sensing, 117:66-78. doi: 10.1016/j.isprsjprs.2016.02.008
    [3] Castanho R, Loures L, Cabezas J et al., 2017. Cross-Border Co-operation (CBC) in Southern Europe-An Iberian Case Study. The Eurocity Elvas-Badajoz. Sustainability, 9(3):360. doi: 10.3390/su9030360
    [4] Chen D D, Deng X Z, Jin G et al., 2017. Land-use-change induced dynamics of carbon stocks of the terrestrial ecosystem in Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 101:13-20. doi: 10.1016/j.pce.2017.01.018
    [5] Chen L, Ren C Y, Zhang B et al., 2018. Quantifying Urban Land Sprawl and its Driving Forces in Northeast China from 1990 to 2015. Sustainability, 10(1):188. doi: 10.3390/su10010188
    [6] Collard S, Zammit C, 2006. Effects of land-use intensification on soil carbon and ecosystem services in Brigalow (Acacia har-pophylla) landscapes of southeast Queensland, Australia. Ag-riculture, Ecosystems & Environment, 117(2-3):185-194. doi: 10.1016/j.agee.2006.04.004
    [7] Cui G S, Lee W K, Kim D et al., 2014. Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. Journal of Plant Biology, 57(4):225-238. doi: 10.1007/s12374-014-0165-3
    [8] Davies Z G, Edmondson J L, Heinemeyer A et al., 2011. Mapping an urban ecosystem service:quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology, 48(5):1125-1134. doi: 10.1111/j.1365-2664.2011.02021.x
    [9] Deng X Z, Singh R B, Jiang Q O, 2015. Observations and mod-eling of the climatic impact of land-use changes 2014. Advances in Meteorology, 2015:592636. doi: 10.1155/2015/592636
    [10] Deng X Z, Li Z H, Gibson J, 2016. A review on trade-off analysis of ecosystem services for sustainable land-use management. Journal of Geographical Sciences, 26(7):953-968. doi:10. 1007/s11442-016-1309-9
    [11] Dong Yehui, 2011. Study on the Dynamic Change of Land Use/Cover in the Area of Tumen River Cross Border Region Based on Multi-Source Data. Yanji:Yanbian University. (in Chinese)
    [12] Fiquepron J, Garcia S, Stenger A, 2013. Land use impact on water quality:valuing forest services in terms of the water supply sector. Journal of Environmental Management, 126:113-121. doi: 10.1016/j.jenvman.2013.04.002
    [13] Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734):570-574. doi:10. 1126/science.1111772
    [14] Guo R X, 2012. The Tumen River Delta:development and the environment. Developments in Environmental Science, 10:307-323. doi:  10.1016/b978-0-08-098319-6.00011-x
    [15] Guo R X, 2018. Cross-border ecological preservation and bi-osafety. In:Guo R X (ed). Cross-Border Resource Manage-ment. 3rd ed. Amsterdam:Elsevier, 207-232. doi: 10.1016/b978-0-444-64002-4.00008-8
    [16] Guo Z, Hu D, Zhang F H et al., 2014. An integrated material me-tabolism model for stocks of urban road system in Beijing, China. Science of the Total Environment, 470-471:883-894. doi: 10.1016/j.scitotenv.2013.10.041
    [17] Hamel P, Chaplin-Kramer R, Sim S et al., 2015. A new approach to modeling the sediment retention service (InVEST 3.0):Case study of the Cape Fear catchment, North Carolina, USA. Sci-ence of the Total Environment, 524-525:166-177. doi:10. 1016/j.scitotenv.2015.04.027
    [18] Hao F H, Lai X H, Ouyang W et al., 2012. Effects of land use changes on the ecosystem service values of a reclamation farm in northeast China. Environmental Management, 50(5):888-899. doi: 10.1007/s00267-012-9923-5
    [19] Hou Yuanliang, 2015. The Study on the Tumen River Cross- Border Economic Cooperation. Yanji:Yanbian University. (in Chinese)
    [20] Houghton R A, van der Werf G R, Defries R S et al., 2012. Carbon emissions from land use and land-cover change. Biogeo-sciences, 9(12):5125-5142. doi: 10.5194/bg-9-5125-2012
    [21] Jensen J R, 1986. Introductory Digital Image Processing:A Re-mote Sensing Perspective. Upper Saddle River:Prentice-Hall.
    [22] Jia M M, Wang Z M, Li L et al., 2014. Mapping China's man-groves based on an object-oriented classification of Landsat imagery. Wetlands, 34(2):277-283. doi: 10.1007/s13157-013-0449-2
    [23] Jiang P H, Cheng L, Li M C et al., 2014. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas:A case study of the middle reaches of the Heihe River, China. Ecological Indicators, 46:240-252. doi:10.1016/j. ecolind.2014.06.026
    [24] Johnsson K, 1994. Segment-based land-use classification from SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 60(1):47-53.
    [25] Kang C, Zhang Y L, Wang Z F et al., 2017. The driving force analysis of NDVI dynamics in the trans-boundary Tumen River Basin between 2000 and 2015. Sustainability, 9(12):2350. doi: 10.3390/su9122350
    [26] Kreuter U P, Harris H G, Matlock M D et al., 2001. Change in ecosystem service values in the San Antonio area, Texas. Eco-logical Economics, 39(3):333-346. doi:10.1016/S0921-8009 (01)00250-6
    [27] Lai L, Huang X J, Yang H et al., 2016. Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2(11):e1601063. doi:10.1126/sciadv. 1601063
    [28] Lal R 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B:Biological Sciences, 363(1492):815-830. doi: 10.1098/rstb.2007.2185
    [29] Li H Y, Man W D, Li X Y et al., 2017. Remote sensing investiga-tion of anthropogenic land cover expansion in the low-elevation coastal zone of Liaoning Province, China. Ocean & Coastal Management, 148:245-259. doi:10.1016/j.oce-coaman.2017.08. 007
    [30] Li R Q, Dong M, Cui J Y et al., 2007. Quantification of the impact of land-use changes on ecosystem services:a case study in Pingbian County, China. Environmental Monitoring and Assessment, 128(1-3):503-510. doi: 10.1007/s10661-006-9344-0
    [31] Liu M Y, Li H Y, Li L et al., 2017. Monitoring the invasion of spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing, 9(6):539. doi: 10.3390/rs9060539
    [32] Liu X M, Jiang D, Wang Q et al., 2016. Evaluating the sustaina-bility of nature reserves using an ecological footprint method:a case study in China. Sustainability, 8(12):1272. doi: 10.3390/su8121272
    [33] Martini U, Buffa F, Notaro S, 2017. Community participation, natural resource management and the creation of innovative tourism products:evidence from Italian networks of Reserves in the Alps. Sustainability, 9(12):2314. doi: 10.3390/su9122314
    [34] McInnes R J, Everard M, 2017. Rapid assessment of wetland ecosystem services (RAWES):an example from Colombo, Sri Lanka. Ecosystem Services, 25:89-105. doi:10.1016/j. ecos-er.2017.03.024
    [35] Mi Nan, Bu Xiaoyan, Mi Wenbao, 2013. Wetland ecosystem car-bon storage function in Ningxia. Jaurnal of Arid Land Re-sources and Environment, 27(7):52-55. (in Chinese)
    [36] Mondal B, Dolui G, Pramanik M et al., 2017. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecological Indicators, 83:62-73. doi: 10.1016/j.ecolind.2017.07.037
    [37] Mu Changcheng, Wang Biao, Lu Huicui et al., 2013. Carbon storage of natural wetland ecosystem in Daxing'anling of China. Acta Ecologica Sinica, 33(16):4956-4965. (in Chinese)
    [38] Nahuelhual L, Carmona A, Aguayo M et al., 2014. Land use change and ecosystem services provision:a case study of rec-reation and ecotourism opportunities in southern Chile. Land-scape Ecology, 29(2):329-344. doi: 10.1007/s10980-013-9958-x
    [39] Nan Ying, Ji Ze, Dong Yehui et al., 2012. Study of land use/cover dynamic change in Tumen River across national border region during the last 30 years. Journal of Natural Science of Hunan Normal University, 35(1):82-89. (in Chinese)
    [40] Ouyang Z Y, Hua Z, Xiao Y et al., 2016. Improvements in eco-system services from investments in natural capital. Science, 352(6292):1455-1459. doi: 10.1126/science.aaf2295
    [41] Poeplau C, Don A, 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192:189-201. doi:10.1016/j.geoderma.2012. 08.003
    [42] Qin Lei, Jiang Ming, Tian Wei et al., 2017. Effects of wetland vegetation on soil microbial composition:a case study in Tumen River Basin, Northeast China. Chinese Geographical Science, 27(2):239-247. doi: 10.1007/s11769-017-0853-2
    [43] Sharp R, Tallis H T, Ricketts T et al., 2015. InVEST 3.2.0 User's Guide. The Natural Capital Project, Stanford University, Uni-versity of Minnesota, The Nature Conservancy, and World Wildlife Fund.
    [44] Song W, Deng X Z, 2015. Effects of urbanization-induced culti-vated land loss on ecosystem services in the North China Plain. Energies, 8(6):5678-5693. doi: 10.3390/en8065678
    [45] Tallis H T, Ricketts T, Guerry A D et al., 2013. InVEST 2.6.0 Us-er's Guide. The Natural Capital Project, Stanford University.
    [46] Tao Y, Li F, Wang R S et al., 2015. Effects of land use and cover change on terrestrial carbon stocks in urbanized areas:a study from Changzhou, China. Journal of Cleaner Production, 103:651-657. doi: 10.1016/j.jclepro.2014.07.055
    [47] Tolessa T, Senbeta F, Kidane M 2017. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosystem Services, 23:47-54. doi: 10.1016/j.ecoser.2016.11.010
    [48] Wang Da, Wang Mingna, Wang Dan, 2003. Policy and Models for Conservarion of Wetland in International. Wetland Science, 1(2):153-158. (in Chinese)
    [49] Wang Zhiliang, 2016. GAP Analysis of Wetland Nature Reserve in Nenjiang River Basin, Northeast China. Changchun:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. (in Chinese)
    [50] Wei X R, Shao M A, Gale W et al., 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4:4062. doi: 10.1038/srep04062
    [51] Wu Bingfang et al., 2017. Land cover in China. Beijing:Science Press. (in Chinese)
    [52] Xiong X, Grunwald S, Myers D B et al., 2014. Interaction effects of climate and land use/land cover change on soil organic car-bon sequestration. Science of the Total Environment, 493:974-982. doi: 10.1016/j.scitotenv.2014.06.088
    [53] Yang H, 2014. China must continue the momentum of green law. Nature, 509(7502):535. doi: 10.1038/509535a
    [54] Yang Shuhua, Li Li, Zhang Naili et al., 2002. Present Situation and Problems of wetland in Tumen River Basin in China. China Environment Management, (3):17-18. (in Chinese)
    [55] Yigezu Y, El-Shater T, Aw-Hassan A, 2017. Are Development Projects Pursuing Short-Term Benefits at the Expense of Sus-tainability? Sustainability, 9(10):1803. doi:10.3390/su910 1803
    [56] Yirsaw E, Wu W, Shi X P et al., 2017. Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region. Sustainability, 9(7):1204. doi:10. 3390/su9071204
    [57] Yu Q, Gong P, Clinton N et al., 2006. Object-based detailed veg-etation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7):799-811. doi:10.14358/PERS.72. 7.799
    [58] Yuan Zhifen, Huang Guilin, Mo Hongwei et al., 2014. Dynamic assessment of the plant carbon storage in baoxing county of sichuan province. Forest Resources Management, (1):82-88. (in Chinese)
    [59] Zhang D, Huang Q X, He C Y et al., 2017. Impacts of urban ex-pansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China:a scenario analysis based on the Shared Socioeconomic Pathways. Resources, Conservation and Recycling, 125:115-130. doi:10.1016/j.resconrec.2017. 06.003
    [60] Zhang F, Zhan J Y, Zhang Q et al., 2017. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Physics and Chemistry of the Earth, Parts A/B/C, 101:195-203. doi: 10.1016/j.pce.2017.03.005
    [61] Zhang M, Huang X J, Chuai X W et al., 2015. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China:a spatial-temporal perspective. Scientific Reports, 5:10233. doi: 10.1038/srep10233
    [62] Zheng X J, Sun P, Zhu W H et al., 2017. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landscape and Ecological Engineering, 13(2):237-250. doi: 10.1007/s11355-016-0304-8
    [63] Zhu Guangqing, 2002. Legislation and management System of Natural Conservation Areas at Abroad. Environmental Protec-tion, (4):10-13. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(354) PDF downloads(407) Cited by()

Proportional views
Related

Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia

doi: 10.1007/s11769-018-1006-y
Funds:  Under the auspices of the National Key Research and Development Project (No. 2016YFA0602301), National Natural Science Foundation of China (No. 41730643, 41671219, 41771109, 31500400)
    Corresponding author: JIA Mingming,E-mail:jiamingming@iga.ac.cn;ZHU Weihong.E-mail:whzhu@ybu.edu.cn

Abstract: Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and environmental protection, particularly in the transboundary region that has undergone marked changes. This study aimed to examine the impacts of land cover changes on ecosystem carbon stocks in the transboundary Tumen River Basin (TTRB). We extracted the spatial information from Landsat Thematic Imager (TM) and Operational Land Imager (OLI) images for the years 1990 and 2015 and obtained convincing estimates of terrestrial biomass and soil carbon stocks with the InVEST model. The results showed that forestland, cropland and built-up land increased by 57.5, 429.7 and 128.9 km2, respectively, while grassland, wetland and barren land declined by 24.9, 548.0 and 43.0 km2, respectively in the TTRB from 1990 to 2015. The total carbon stocks encompassing aboveground, belowground, soil and litter layer carbon storage pools have declined from 831.48 Tg C in 1990 to 831.42 Tg C in 2015 due to land cover changes. In detail, the carbon stocks decreased by 3.13 Tg C and 0.44 Tg C in Democratic People's Republic of Korea (North Korea) and Russia, respectively, while increased by 3.51 Tg C in China. Furthermore, economic development, and national policy accounted for most land cover changes in the TTRB. Our results imply that effective wetland and forestland protection policies among China, North Korea, and Russia are much needed for protecting the natural resources, promoting local ecosystem services and regional sustainable development in the transnational area.

XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong. Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia[J]. Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
Citation: XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong. Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia[J]. Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
Reference (63)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return