JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping. Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming[J]. Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y
Citation: JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping. Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming[J]. Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y

Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming

doi: 10.1007/s11769-018-0978-y
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41571078, 41171072), Open Foundation of Changbai Scientific Research Academy (No. 201501)
More Information
  • Corresponding author: XU Jiawei.E-mail:xujw634@nenu.edu.cn
  • Received Date: 2017-10-13
  • Rev Recd Date: 2017-12-21
  • Publish Date: 2018-08-27
  • Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows:1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.
  • [1] Ackerly D D, Loarie S R, Cornwell W K et al., 2010.The geog-raphy of climate change:implications for conservation bioge-ography.Diversity and Distributions, 16(3):476-487.doi: 10.1111/j.1472-4642.2010.00654.x
    [2] Alexander L V, Zhang X, Peterson T C et al., 2006.Global ob-served changes in daily climate extremes of temperature and precipitation.Journal of Geophysical Research:Atmospheres, 111(D5):D05109.doi: 10.1029/2005JD006290
    [3] Bahn M, Körner C, 2003.Recent increases in summit flora caused by warming in the Alps.In:Nagy L et al.(eds).Alpine Biodiversity in Europe.Berlin:Springer, 437-441.doi: 10.1007/978-3-642-18967-8_27
    [4] Beckage B, Osborne B, Gavin D G et al., 2008.A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont.Proceedings of the National Academy of Science of the United States of America, 105(11):4197-4202.doi: 10.1073/pnas.0708921105
    [5] Bjorkman A D, Elmendorf S C, Beamish A L et al., 2015.Con-trasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.Global Change Biology, 21(12):4651-4661.doi: 10.1111/gcb.1305163
    [6] Britton A J, Beale C M, Towers W et al., 2009.Biodiversity gains and losses:evidence for homogenisation of Scottish alpine vegetation.Biological Conservation, 142(18):1728-1739.doi: 10.1016/j.biocon.2009.03.010
    [7] Bruun H H, Moen J, Virtanen R et al., 2006.Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities.Journal of Vegetation Science, 17(1):37-46.doi: 10.1111/j.1654-1103.2006.tb02421.x
    [8] Callaway R M, Brooker R W, Choler P et al., 2002.Positive in-teractions among alpine plants increase with stress.Nature, 417(6891):844-848.doi: 10.1038/nature00812
    [9] Colwell R K, Hurtt G C, 1994.Nonbiological gradients in species richness and a spurious rapoport effect.The American Natural-ist, 144(4):570-595.doi: 10.1086/285695
    [10] Dai L M, Wu G, Zhao J Z et al., 2002.Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra.Science in China Series D:Earth Sciences, 45(10):903-910.doi: 10.1360/02yd9089
    [11] Danby R K, Hik D S, 2007.Variability, contingency and rapid change in recent subarctic alpine tree line dynamics.Journal of Ecology, 95(2):352-363.doi: 10.1111/j.1365-2745.2006.01200.x
    [12] Danby R K, Koh S, Hik D S et al., 2011.Four decades of plant community change in the alpine tundra of Southwest Yukon, Canada.AMBIO, 40(6):660-671.doi: 10.1007/s13280-011-0172-2
    [13] DeChaine E G, Martin A P, 2004.Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA.Evolution, 58(1):113-127.doi: 10.1111/j.0014-3820.2004.tb01578.x
    [14] Diaz H F, Eischeid J K, 2007.Disappearing "alpine tundra" Kö-ppen climatic type in the western United States.Geophysical Research Letters, 34(18):L18707.doi:10.1029/2007GL 031253
    [15] Dirnböck T, Dullinger S, Grabherr G, 2003.A regional impact assessment of climate and land-use change on alpine vegetation.Journal of Biogeography, 30(3):401-417.doi: 10.1046/j.1365-2699.2003.00839.x
    [16] Engler R, Randin C F, Thuiller W et al., 2011.21st century climate change threatens mountain flora unequally across Europe.Global Change Biology, 17(7):2330-2341.doi: 10.1111/j.1365-2486.2010.02393.x
    [17] Erschbamer B, Kiebacher T, Mallaun M et al., 2009.Short-term signals of climate change along an altitudinal gradient in the South Alps.Plant Ecology, 202(1):79-89.doi:10.1007/s 11258-008-9556-1
    [18] Erschbamer B, Unterluggauer P, Winkler E et al., 2011.Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy).Preslia, 83(3):387-401.
    [19] Frei E, Bodin J, Walther G R, 2010.Plant species' range shifts in mountainous areas-All uphill from here? Botanica Helvetica, 120(2):117-128.doi: 10.1007/s00035-010-0076-y
    [20] Gottfried M, Pauli H, Futschik A et al., 2012.Continent-wide response of mountain vegetation to climate change.Nature Climate Change, 2(2):111-115.doi: 10.1038/nclimate1329
    [21] Gough L, Shaver G R, Carroll J et al., 2000.Vascular plant species richness in Alaskan arctic tundra:the importance of soil pH.Journal of Ecology, 88(1):54-66.doi: 10.1046/j.1365-2745.2000.00426.x
    [22] Grabherr G, Gottfried M, Pauli H, 1994.Climate effects on mountain plants.Nature, 369(6480):448.doi:10.1038/36944 8a0
    [23] Grabherr G, Gottfried M, Gruber A et al., 1995.Patterns and cur-rent changes in alpine plant diversity.In:Chapin Ⅲ F S and Körner C (eds).Arctic and Alpine Biodiversity:Patterns, Causes and Ecosystem Consequences.Berlin:Springer, 167-181.doi: 10.1007/978-3-642-78966-3_12
    [24] Grime J P, 1973a.Competitive exclusion in herbaceous vegetation.Nature, 242(5396):344-347.doi: 10.1038/242344a0
    [25] Grime J P, 1973b.Control of species density in herbaceous vege-tation.Journal of Environmental Management, 1:151-167.
    [26] Grime J P, 1979.Ecological classification.Science, 206(22):1176-1177.doi: 10.1126/science.206.4423.1176
    [27] Grime J P, 1998.Benefits of plant diversity to ecosystems:Immediate, filter and founder effects.Journal of Ecology, 86(6):902-910.doi: 10.1046/j.1365-2745.1998.00306.x
    [28] Grytnes J A, 2003.Species-richness patterns of vascular plants along seven altitudinal transects in Norway.Ecography, 26(3):291-300.doi: 10.1034/j.1600-0587.2003.03358.x
    [29] Heikkinen R K, Neuvonen S, 1997.Species richness of vascular plantsin the subarctic landscape of northern Finland:modelling relationships to the environment.Biodiversity and Conservation, 6(9):1181-1201.doi: 10.1023/A:1018356823171
    [30] Henry G H R, Molau U, 1997.Tundra plants and climate change:The International Tundra Experiment (ITEX).Global Change Biology, 3(S1):1-9.doi: 10.1111/j.1365-2486.1997.gcb132.x
    [31] Holzinger B, Hülber K, Camenisch M et al., 2008.Changes in plant species richness over the last century in the eastern Swiss Alps:elevational gradient, bedrock effects and migration rates.Plant Ecology, 195(2):179-196.doi: 10.1007/s11258-007-9314-9
    [32] Huang Xichou, Li Chonghao, 1984.An analysis on the ecology of alpine tundra landscape of Changbai Mountains.Acta Geo-graphica Sinica, 39(3):285-297. (in Chinese)
    [33] Huelber K, Gottfried M, Pauli H et al., 2006.Phenological re-sponses of snowbed species to snow removal dates in the Cen-tral Alps:implications for climate warming.Arctic, Antarctic, and Alpine Research, 38(1):99-103.doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2
    [34] Hughes L, 2000.Biological consequences of global warming:is the signal already apparent? Trends in Ecology and Evolution, 15(2):56-61.doi: 10.1016/S0169-5347(99)01764-4
    [35] Inouye D W, 2008.Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.Ecology, 89(2):353-362.doi: 10.1890/06-2128.1
    [36] IPCC, 2007.Climate Change 2007.The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment re-port of the Intergovernmental Panel on Climate Change.Cam-bridge:Cambridge University Press.
    [37] Jin Yinghua, Xu Jiawei, Liang Yu et al., 2013.Effects of volcanic interference on the vegetation distribution of Changbai Moun-tain.Scientia Geographica Sinica, 33(2):203-208. (in Chinese)
    [38] Jin Yinghua, Xu Jiawei, Liu Lina et al., 2016.Spatial distribution pattern and associations of dominant plant species in the alpine tundra of the Changbai Mountains.Scientia Geographica Sinica, 36(8):1212-1218. (in Chinese)
    [39] Jin Yinghua, Xu Jiawei, Wang Shaoxian et al., 2017.Distribution variations of dominant plant species in degraded shrub tundra on the western slope of the Changbai Mountains.Acta Ecologica Sinica, 37(11):3716-3723. (in Chinese)
    [40] Kazakis G, Ghosn D, Vogiatzakis I N et al., 2007.Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete.Biodiversity and Conservation, 16(6):1603-1615.doi: 10.1007/s10531-006-9021-1
    [41] Kelly A E, Goulden M L, 2008.Rapid shifts in plant distribution with recent climate change.Proceedings of the National Academy of Sciences of the United States of America, 105(33):11823-11826.doi: 10.1073/pnas.0802891105
    [42] Kessler M, 2000.Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes.Plant Ecology, 149(2):181-93.doi:10.1023/A:1026500 710274
    [43] Klanderud K, Birks H J B, 2003.Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants.The Holocene, 13(1):1-6.doi:10.1191/0959 683603hl589ft
    [44] Körner C, 1998.A re-assessment of high elevation treeline posi-tions and their explanation.Oecologia, 115(4):445-459.doi: 10.1007/s004420050540
    [45] Körner C, 2000.Why are there global gradients in species rich-ness? Mountains might hold the answer.Trends in Ecology and Evolution, 15(12):513-514.doi:10.1016/S0169-5347(00) 02004-8
    [46] Körner C, Paulsen J, 2004.A world-wide study of high altitude treeline temperatures.Journal of Biogeography, 31(5):713-732.doi: 10.1111/j.1365-2699.2003.01043.x
    [47] Lesica P, McCune B, 2004.Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming.Journal of Vegetation Science, 15(5):679-690.doi: 10.1111/j.1654-1103.2004.tb02310.x
    [48] Lomolino M V, 2001.Elevation gradients of species-density:historical and prospective views.Global Ecology and Biogeography, 10(1):3-13.doi: 10.1046/j.1466-822x.2001.00229.x
    [49] McDougall K L, Morgan J W, Walsh N G et al., 2005.Plant inva-sions in treeless vegetation of the Australian Alps.Perspectives in Plant Ecology, Evolution and Systematics, 7(3):159-171.doi: 10.1016/j.ppees.2005.09.001
    [50] Meng Xianxi, 1982.The alpine tundra soil on the Changbai Mountain of China.Scientia Geographica Sinica, 2(1):57-64. (in Chinese)
    [51] Mitchell M G E, Cahill J F, Hik D S, 2009.Plant interactions are unimportant in a subarctic-alpine plant community.Ecology, 90(9):2360-2367.doi: 10.1890/08-0924.1
    [52] Moser D, Dullinger S, Englisch T et al., 2005.Environmental determinants of vascular plant species richness in the Austrian Alps.Journal of Biogeography, 32(7):1117-1127.doi: 10.1111/j.1365-2699.2005.01265.x
    [53] Mueller-Dombois D, Ellenberg H, 1974.Aims and Methods of Vegetation Ecology.New York:John Wiley and Sons,
    [54] Myers-Smith I H, Forbes B C, Wilmking M et al., 2011.Shrub expansion in tundra ecosystems:Dynamics, impacts and re-search priorities.Environmental Research Letters, 6(4):045509.doi: 10.1088/1748-9326/6/4/045509
    [55] Odland A, Birks H J B, 1999.The altitudinal gradient of vascular plant richness in Aurland, western Norway.Ecography, 22(5):548-566.doi: 10.1111/j.1600-0587.1999.tb01285.x
    [56] Odland A, Høitomt T, Olsen S L, 2010.Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s.Arctic, Antarctic, and Alpine Research, 42(4):458-470.doi: 10.1657/1938-4246-42.4.458
    [57] Oommen M A, Shanker K, 2005.Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants.Ecology, 86(11):3039-47.doi: 10.1890/04-1837
    [58] Parmesan C, Yohe G, 2003.A globally coherent fingerprint of climate change impacts across natural systems.Nature, 421(6918):37-42.doi: 10.1038/nature01286
    [59] Parolo G, Rossi G, 2008.Upward migration of vascular plants following a climate warming trend in the Alps.Basic and Ap-plied Ecology, 9(2):100-107.doi: 10.1016/j.baae.2007.01.005
    [60] Pauli H, Gottfried M, Dullinger S et al., 2012.Recent plant diver-sity changes on Europe's mountain summits.Science, 336(6079):353-355.doi: 10.1126/science.1219033
    [61] Pauli H, Gottfried M, Dirnböck T et al., 2003.Assessing the long-term dynamics of endemic plants at summit habitats.In:Nagy L et al.(eds).Alpine Biodiversity in Europe.Berlin:Springer, 195-207.doi: 10.1007/978-3-642-18967-8_9
    [62] Pauli H, Gottfried M, Reiter K et al., 2007.Signals of range ex-pansions and contractions of vascular plants in the high Alps:observations (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria.Global Change Biology, 13(1):147-156.doi: 10.1111/j.1365-2486.2006.01282.x
    [63] Qian Jiaju, Zhang Wenzhong, 1980.A brief report on the research of the Changbaishan alpine tundra vegetation.Journal of Northeast Normal University (Natural Science Edition), (1):51-67. (in Chinese)
    [64] Qian Hong, 1990.Numerical classification and ordination of plant communities in the alpine tundra of Mt.Changbai.Journal of Applied Ecology, 1(3):254-263. (in Chinese)
    [65] Rahbek C, 1995.The elevational gradient of species richness-A uniform pattern.Ecography, 18(2):200-205.doi: 10.1111/j.1600-0587.1995.tb00341.x
    [66] Ricklefs R E, 1989.Speciation and diversity:the integration of local and regional processes.In:Otte D and Endler J A (eds).Speciation and Its Consequences.Sunderland, MA, USA:Sinauer, 599-622.
    [67] Sammul M, Kull K, Oksanen L et al., 2000.Competition intensity and its importance:results of field experiments with An-thoxanthum odoratum.Oecologia, 125(1):18-25.doi: 10.1007/PL00008887
    [68] Scherrer D, Körner C, 2011.Topographically controlled ther-mal-habitat differentiation buffers alpine plant diversity against climate warming.Journal of Biogeography, 38(2):406-416.doi: 10.1111/j.1365-2699.2010.02407.x
    [69] Shimono A, Zhou H K, Shen H H et al., 2010.Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plat-eau.Journal of Plant Ecology, 3(1):1-7.doi: 10.1093/jpe/rtq002
    [70] Stanisci A, Pelino G, Blasi C, 2005.Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy).Biodiversity and Conservation, 14(6):1301-1318.doi: 10.1007/s10531-004-9674-6
    [71] Symon C, Arris L, Heal B, 2005.Arctic Climate Impact Assess-ment.Cambridge:Cambridge University Press.
    [72] Theurillat J P, Guisan A, 2001.Potential impact of climate change on vegetation in the European Alps:A review.Climatic Change, 50(1-2):77-109.doi: 10.1023/A:1010632015572
    [73] Thuiller W, Richardson D M.Midgley G F, 2006.Will climate change promote alien plant invasions? In:Nentwig W (ed).Bi-ological Invasions.Berlin, Heidelberg:Springer, 193:197-211.doi: 10.1007/978-3-540-36920-2_12
    [74] Vittoz P, Rulence B, Largey T et al., 2008.Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps.Arctic, Antarctic, and Alpine Research, 40(1):225-232.doi:10.1657/1523-0430(06-010)[VITTOZ] 2.0.CO;2
    [75] von Haller A, 1742.Enumeratio Methodica Stirpium Helvetiae Indigenarum.Gottingae, DE:A Vanderhoek.
    [76] Walther G R, 2003.Plants in a warmer world.Perspectives in Plant Ecology, Evolution and Systematics, 6(3):169-185.doi: 10.1078/1433-8319-00076
    [77] Walther G R, Beißner S, Burga C A, 2005.Trends in the upward shift of alpine plants.Journal of Vegetation Science, 16(5):542-548.doi:1 0.1111/j.1654-1103.2005.tb02394.x
    [78] Wang X L, Feng Y, 2013.RHtestsV4 User Manual.Toronto, On-tario, Canada:Climate Research Division, Science and Tech-nology Branch, Environment Canada.http://etccdi.pacificclimate.org/software.shtml.
    [79] Wei J, Jiang P, Yu D Y et al., 2007.Distribution patterns of vege-tation biomass and nutrients bio-cycle in alpine tundra ecosystem on Changbai Mountains, Northeast China.Journal of Forestry Research, 18(4):271-278.doi: 10.1007/S11676-007-0055-3
    [80] Xu Jiawei, Zhang Feihu, 2010.Several main questions of physical geography research of Changbai Mountains.In Wang Yeqiao et al.(eds.).Geosystems and ecological security of the Changbai Mountainss:IV.Changchun:Northeast Normal University Press, 266-274. (in Chinese)
    [81] Yang Meihua, 1981.The climatic features of Changbaishan and its vertical climatic zone on the northern slop.Acta Meteorologica Sinica, 39(3):57-66. (in Chinese)
    [82] Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013.Investigation and mechanism analysis on the invasion of Deyeuxia.angusti-folia to tundra zone in western slope of Changbai Mountain.Journal of Mountain Science, 31(4):448-455. (in Chinese)
    [83] Zong Shengwei, Xu Jiawei, Wu Zhengfang et al., 2014.Analysis of the process and impacts of Deyeuxia angustifolia invasion on the Alpine Tundra, Changbai Mountain.Acta Ecologica Sinica, 34(23):6837-6846. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(424) PDF downloads(312) Cited by()

Proportional views
Related

Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming

doi: 10.1007/s11769-018-0978-y
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41571078, 41171072), Open Foundation of Changbai Scientific Research Academy (No. 201501)
    Corresponding author: XU Jiawei.E-mail:xujw634@nenu.edu.cn

Abstract: Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows:1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.

JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping. Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming[J]. Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y
Citation: JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping. Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming[J]. Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y
Reference (83)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return