MAO Kebiao, ZUO Zhiyuan, SHEN Xinyi, XU Tongren, GAO Chunyu, LIU Guang. Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network[J]. Chinese Geographical Science, 2018, 28(1): 1-11. doi: 10.1007/s11769-018-0930-1
Citation: MAO Kebiao, ZUO Zhiyuan, SHEN Xinyi, XU Tongren, GAO Chunyu, LIU Guang. Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network[J]. Chinese Geographical Science, 2018, 28(1): 1-11. doi: 10.1007/s11769-018-0930-1

Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network

doi: 10.1007/s11769-018-0930-1
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41571427), National Key Project of China (No. 2016YFC0500203), Open Fund of State Key Laboratory of Remote Sensing Science (No. OFSLRSS 201515)
More Information
  • Corresponding author: MAO Kebiao
  • Received Date: 2017-07-20
  • Rev Recd Date: 2017-11-07
  • Publish Date: 2018-02-27
  • It is more difficult to retrieve land surface temperature (LST) from passive microwave remote sensing data than from thermal remote sensing data, because the emissivities in the passive microwave band can change more easily than those in the thermal infrared band. Thus, it is very difficult to build a stable relationship. Passive microwave band emissivities are greatly influenced by the soil moisture, which varies with time. This makes it difficult to develop a general physical algorithm. This paper proposes a method to utilize multiple-satellite, sensors and resolution coupled with a deep dynamic learning neural network to retrieve the land surface temperature from images acquired by the Advanced Microwave Scanning Radiometer 2 (AMSR2), a sensor that is similar to the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E). The AMSR-E and MODIS sensors are located aboard the Aqua satellite. The MODIS LST product is used as the ground truth data to overcome the difficulties in obtaining large scale land surface temperature data. The mean and standard deviation of the retrieval error are approximately 1.4° and 1.9° when five frequencies (ten channels, 10.7, 18.7, 23.8, 36.5, 89 V/H GHz) are used. This method can effectively eliminate the influences of the soil moisture, roughness, atmosphere and various other factors. An analysis of the application of this method to the retrieval of land surface temperature from AMSR2 data indicates that the method is feasible. The accuracy is approximately 1.8° through a comparison between the retrieval results with ground measurement data from meteorological stations.
  • [1] Aires F, Prigent C, Rossow W B et al., 2001. A new neural net-work approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. Journal of Geophysical Research, 106(D14):14887-14907. doi: 10.1029/2001JD900085
    [2] Basist A, Grody N C, Peterson T C et al., 1998. Using the special sensor microwave/imager to monitor land surface temperatures, wetness, and snow cover. Journal of Applied Meteorology, 37(9):888-911. doi: 10.1175/1520-0450(1998)037<0888:UTSSMI>2.0.CO;2
    [3] Becker F, Li Z L, 1990. Towards a local split window method over land surface. International Journal of Remote Sensing, 11(3):369-393. doi: 10.1080/01431169008955028
    [4] Bischof H, Schneider W, Pinz A J, 1992. Multispectral classifica-tion of landsat-images using neural networks. IEEE Transac-tions on Geoscience and Remote Sensing, 30(3):482-489. doi: 10.1109/36.142926
    [5] Blackwell W J, 2005. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Transactions on Geo-science and Remote Sensing, 43(11):2535-2546. doi: 10.1109/TGRS.2005.855071
    [6] Calvet J C, Chanzy A, Wigneron J P, 1996. Surface temperature and soil moisture retrieval in the Sahel from Airborne mul-tifrequency microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 34(2):588-600. doi:10.1109/36. 485135
    [7] Calvet J C, Wigneron J P, Mougin E et al., 1994. Plant water content and temperature of the Amazon forest from satellite microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 32(2):397-408. doi: 10.1109/36.295054
    [8] Chen K S, Wu T D, Tsang L et al., 2003. Emission of rough sur-faces calculated by the integral equation method with compar-ison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41(1):90-101. doi: 10.1109/TGRS.2002.807587
    [9] Chen S S, Chen X Z, Chen W Q et al., 2011. A simple retrieval method of land surface temperature from AMSR-E passive microwave data-A case study over Southern China during the strong snow disaster of 2008. International Journal of Applied Earth Observation and Geoinformation, 13(1):140-151. doi: 10.1016/j.jag.2010.09.007
    [10] Chen Z X, Davis D, Tsang L et al., 1992. Inversion of snow pa-rameters by neural network with iterative inversion. In:1992 International Geoscience and Remote Sensing Symposium. Houston, TX:IEEE, 1061-1063. doi:10.1109/IGARSS.1992. 578340
    [11] Choudhury B J, Major E R, Smith E A et al., 1992. Atmospheric effects on SMMR and SSM/1 37 GHz polarization difference over the Sahel. International Journal of Remote Sensing, 13(18):3443-3463. doi: 10.1080/01431169208904133
    [12] Coll C, Caselles V, Sobrino A et al., 1994. On the atmospheric dependence of the split-window equation for land surface temperature. International Journal of Remote Sensing, 15(1):105-122. doi: 10.1080/01431169408954054
    [13] Dash P, Göttsche F M, Olesen F S et al., 2002. Land surface temperature and emissivity estimation from passive sensor data:theory and practice-current trends. International Journal of Remote Sensing, 23(13):2563-2594. doi:10.1080/0143116 0110115041
    [14] Dobson M C, Ulaby F T, Hallikainen M T, 1985. Microwave dielectric behavior of wet soil-part Ⅱ:dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1):35-46. doi: 10.1109/TGRS.1985.289498
    [15] Faure T, Isaka H, Guillemet B, 2001. Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds:feasibility study. Remote Sensing of Environment, 77(2):123-138. doi: 10.1016/S0034-4257(01)00199-7
    [16] Fily M, Royer A, Goïta K et al., 2003. A simple retrieval method for land surface temperature and fraction of water surface de-termination from satellite microwave brightness tempera-tures in sub-arctic areas. Remote Sensing of Environment, 85(3):328-338. doi: 10.1016/S0034-4257(03)00011-7
    [17] Gillespie A, Rokugawa S, Matsunaga T et al., 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4):1113-1126. doi: 10.1109/36.700995
    [18] Givri J R, 1997. The extension of the split window technique to passive microwave surface temperature assessment. Interna-tional Journal of Remote Sensing, 18(2):335-353. doi:10. 1080/014311697219105
    [19] Hallikainen M T, Ulaby F T, Dobson M C, 1985. Microwave dielectric behavior of wet soil-part 1:empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1):25-34. doi:10.1109/TGRS. 1985.289497
    [20] Heermann P D, Khazenie N, 1992. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Transactions on Geoscience and Remote Sensing, 30(1):81-88. doi: 10.1109/36.124218
    [21] Hornik K, Stinchcombe M, White H, 1989. Multilayer feedforward networks are universal approximators. Neural Network, 2(5):359-366. doi: 10.1016/0893-6080(89)90020-8
    [22] Jackson T J, 1997. Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resources Research, 33(6):1475-1484. doi: 10.1029/97WR00661
    [23] Jackson T J, O'Neill P E, 1990. Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5 GHz. IEEE Transactions on Geoscience and Remote Sensing, 28(5):978-980. doi: 10.1109/36.58989
    [24] Jackson T J, Schmugge T J, 1991. Vegetation effects on the mi-crowave emission from soils. Remote Sensing of Environment, 36(3):203-212. doi: 10.1016/0034-4257(91)90057-D
    [25] Jackson T J, Schmugge T J, Wang J R, 1982. Passive microwave remote sensing of soil moisture under vegetation canopies. Water Resources Research, 18(4):1137-1142. doi: 10.1029/WR018i004p01137
    [26] Jin Y Q, Liu C, 1997. Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks. International Journal of Remote Sensing, 18(4):971-979. doi: 10.1080/014311697218863
    [27] Kerr Y H, Lagouarde J P, Imbernon J, 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing of Envi-ronment, 41(2-3):197-209. doi: 10.1016/0034-4257(92)90078-X
    [28] Kerr Y H, Njoku E G, 1990. A semiempirical model for inter-preting microwave emission from semiarid land surfaces as seen from space. IEEE Transactions on Geoscience and Re-mote Sensing, 28(3):384-393. doi: 10.1109/36.54364
    [29] Kerr Y H, Njoku E G, 1993. On the use of passive microwaves at 37 GHz in remote sensing of vegetation. International Journal of Remote Sensing, 14(10):1931-1943. doi:10.1080/014311 69308954013
    [30] Liang S L, 2001. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on Geoscience and Re-mote Sensing, 39(2):264-274. doi: 10.1109/36.905234
    [31] Mao K B, Shi J C, Li Z L et al., 2007a. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data. Journal of Geophysical Research, 112(D21):D21102, doi: 10.1029/2007JD008428
    [32] Mao K B, Shi J C, Tang H J et al., 2007c. A neural-network tech-nique for retrieving land surface temperature from AMSR-E passive microwave data. In:2007 IEEE International Geosci-ence and Remote Sensing Symposium. Barcelona:IEEE, 4422-4425. doi: 10.1109/IGARSS.2007.4423835
    [33] Mao K B, Shi J C, Tang H J et al., 2008. A neural network tech-nique for separating land surface emissivity and temperature from ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 46(1):200-208. doi:10.1109/TGRS.2007. 907333
    [34] Mao K, Qin Z, Shi J et al., 2005. A practical split-window algo-rithm for retrieving land-surface temperature from MODIS data. International Journal of Remote Sensing, 26(15):3181-3204. doi: 10.1080/01431160500044713
    [35] Mao Kebiao, Shi Jiancheng, Li Zhaoliang et al., 2007b. A phys-ics-based statistical algorithm for retrieving land surface tem-perature from AMSR-E passive microwave data. Science in China Series D:Earth Sciences, 50(7):1115-1120. doi: 10.1007/s11430-007-2053-x
    [36] McFarland M J, Miller R L, Neale C M U, 1990. Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Transactions on Geoscience and Remote Sensing, 28(5):839-845. doi: 10.1109/36.58971
    [37] Morland J C, Grimes D I F, Hewison T J, 2001. Satellite observa-tions of the microwave emissivity of a semi-arid land surface. Remote Sensing of Environment, 77(2):149-164. doi:10. 1016/S0034-4257(01)00202-4
    [38] Njoku E G, Ashcroft P, Chan T K et al., 2005. Global survey and statistics of radio-frequency interference in AMSR-E land ob-servations. IEEE Transactions on Geoscience and Remote Sensing, 43(5):938-947. doi: 10.1109/TGRS.2004.837507
    [39] Njoku E G, Chan S K, 2006. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sensing of En-vironment, 100(2):190-199. doi: 10.1016/j.rse.2005.10.017
    [40] Njoku E G, Jackson T J, Lakshmi V et al., 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41(2):215-229. doi:10.1109/TGRS. 2002.808243
    [41] Njoku E G, Li L, 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18GHz. IEEE Transac-tions on Geoscience and Remote Sensing, 37(1):79-93. doi: 10.1109/36.739125
    [42] Owe M, de Jeu R, Walker J, 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing, 39(8):1643-1654. doi: 10.1109/36.942542
    [43] Paloscia S, Pampaloni, 1988. Microwave polarization index for monitoring vegetation growth. IEEE Transactions on Geosci-ence and Remote Sensing, 26(5):617-621. doi: 10.1109/36.7687
    [44] Prata A J, 1994. Land surface temperatures derived from the ad-vanced very high resolution radiometer and the along-track scanning radiometer:2. Experimental results and validation of AVHRR algorithms. Journal of Geophysical Research, 99(D6):13025-13058. doi: 10.1029/94JD00409
    [45] Price J C, 1984. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research, 89(D5):7231-7237. doi: 10.1029/JD089iD05p07231
    [46] Prigent C, Aires F, Rossow W B, 2003. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures. Journal of Geophysical Research, 108(D10):4310, doi: 10.1029/2002JD002301
    [47] Pulliainen J T, Grandell J, Hallikainen M T, 1997. Retrieval of surface temperature in Boreal Forest Zone from SSM/I data. IEEE Transactions on Geoscience and Remote Sensing, 35(5):1188-1200. doi: 10.1109/36.628786
    [48] Shi J C, Jiang L M, Zhang L X et al., 2005. A parameterized mul-tifrequency-polarization surface emission model. IEEE Transactions on Geoscience and Remote Sensing, 43(12):2831-2841. doi: 10.1109/TGRS.2005.857902
    [49] Sobrino J A, Coll C, Caselles V, 1991. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of Environment, 38(1):19-34. doi: 10.1016/0034-4257(91)90069-I
    [50] Susskind J, Rosenfield J, Reuter D et al., 1984. Remote sensing of weather and climate parameters from HIRS2/MSU on Tiros-N. Journal of Geophysical Research, 89(D3):4677-4697. doi: 10.1029/JD089iD03p04677
    [51] Tang L, Chen Z, Oh S et al., 1992. Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model. IEEE Transactions on Geoscience and Remote Sensing, 30(5):1015-1024. doi: 10.1109/36.175336
    [52] Tedesco M, Pulliainen J, Takala M et al., 2004. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 90(1):76-85. doi: 10.1016/j.rse.2003.12.002
    [53] Tzeng Y C, Chen K S, Kao W L et al., 1994. A Dynamic learning neural network for remote sensing applications. IEEE Trans-actions on Geoscience and Remote Sensing, 32(5):1096-1102. doi: 10.1109/36.312898
    [54] Wan Z M, Dozier J, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4):892-905. doi: 10.1109/36.508406
    [55] Wan Z M, Zhang Y L, Zhang Q C et al., 2002. Validation of the land-surface temperature products retrieved from Terra Mod-erate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83(1-2):163-180. doi:10.1016/S 0034-4257(02)00093-7
    [56] Wan Z, Zhang Y, Zhang Q et al., 2004. Quality assessment and validation of the MODIS global land surface temperature. In-ternational Journal of Remote Sensing, 25:261-274. doi:10. 1080/0143116031000116417.
    [57] Weng F Z, Grody N C, 1998. Physical retrieval of land surface temperature using the special sensor microwave imager. Journal of Geophysical Research, 103(D8):8839-8848. doi: 1029/98JD00275
    [58] Wu T D, Chen K S, Shi J C et al., 2001. A transition model for the reflection coefficient in surface scattering. IEEE Transactions on Geoscience and Remote Sensing, 39(9):2040-2050. doi: 10.1109/36.951094
    [59] Xia L, Mao K B, Ma Y et al., 2014. An algorithm for retrieving land surface temperatures using VⅡRS data in combination with multi-sensors. Sensors, 14(11):21385-21408. doi:10. 3390/s141121385
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(326) PDF downloads(525) Cited by()

Proportional views
Related

Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network

doi: 10.1007/s11769-018-0930-1
Funds:  Under the auspices of National Natural Science Foundation of China (No. 41571427), National Key Project of China (No. 2016YFC0500203), Open Fund of State Key Laboratory of Remote Sensing Science (No. OFSLRSS 201515)
    Corresponding author: MAO Kebiao

Abstract: It is more difficult to retrieve land surface temperature (LST) from passive microwave remote sensing data than from thermal remote sensing data, because the emissivities in the passive microwave band can change more easily than those in the thermal infrared band. Thus, it is very difficult to build a stable relationship. Passive microwave band emissivities are greatly influenced by the soil moisture, which varies with time. This makes it difficult to develop a general physical algorithm. This paper proposes a method to utilize multiple-satellite, sensors and resolution coupled with a deep dynamic learning neural network to retrieve the land surface temperature from images acquired by the Advanced Microwave Scanning Radiometer 2 (AMSR2), a sensor that is similar to the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E). The AMSR-E and MODIS sensors are located aboard the Aqua satellite. The MODIS LST product is used as the ground truth data to overcome the difficulties in obtaining large scale land surface temperature data. The mean and standard deviation of the retrieval error are approximately 1.4° and 1.9° when five frequencies (ten channels, 10.7, 18.7, 23.8, 36.5, 89 V/H GHz) are used. This method can effectively eliminate the influences of the soil moisture, roughness, atmosphere and various other factors. An analysis of the application of this method to the retrieval of land surface temperature from AMSR2 data indicates that the method is feasible. The accuracy is approximately 1.8° through a comparison between the retrieval results with ground measurement data from meteorological stations.

MAO Kebiao, ZUO Zhiyuan, SHEN Xinyi, XU Tongren, GAO Chunyu, LIU Guang. Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network[J]. Chinese Geographical Science, 2018, 28(1): 1-11. doi: 10.1007/s11769-018-0930-1
Citation: MAO Kebiao, ZUO Zhiyuan, SHEN Xinyi, XU Tongren, GAO Chunyu, LIU Guang. Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network[J]. Chinese Geographical Science, 2018, 28(1): 1-11. doi: 10.1007/s11769-018-0930-1
Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return