ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming. Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China[J]. Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
Citation: ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming. Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China[J]. Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8

Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China

doi: 10.1007/s11769-017-0884-8
Funds:  Under the auspices of National Key Research Program of China (No. 2016YFC0500404-5), National Natural Science Foundation of China (No. 41671081, 41471081, 41671087), Foundation of Jilin Province (No. 20140520141JH)
More Information
  • Corresponding author: XUE Zhenshan.E-mail:xuezhenshan@iga.ac.cn
  • Received Date: 2016-07-04
  • Rev Recd Date: 2016-10-14
  • Publish Date: 2017-08-27
  • Inspired by the importance of Redfield-type C:N:P ratios in global soils, we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors. By analyzing a suite of peatlands soil data (n = 1031), mean soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents were 50.51%, 1.45% and 0.13%, respectively, while average C:N, C:P and N:P ratios were 26.72, 1186.00 and 46.58, respectively. C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios. No consistent C:N:P ratio, though with a general value of 1245:47:1, was found for entire peatland soils in China. The Northeast China, Tibet, Zoigê Plateau and parts of Xinjiang had high soil SOC, TN, TP, and C:P ratio. Qinghai, parts of the lower reaches of the Yangtze River, and the coast zones have low TP and N:P ratio. Significant differences for SOC, TN, TP, C:N, C:P and N:P ratios were observed across groups categorized by predominant vegetation. Moisture, temperature and precipitation all closely related to SOC, TN, TP and their pairwise ratios. The hydrothermal coefficient (RH), defined as annual average precipitation divided by temperature, positively and significantly related to C:N, C:P and N:P ratios, implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.
  • [1] Achtnich C, Bak F, Conrad R, 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils, 19(1): 65-72. doi: 10.1007/BF00336349.
    [2] Aerts R, Verhoeven J T A, Whigham D F, 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology, 80(7): 2070-2181. doi:10.1890/0012-9658(1999)080 [2170:PMCONC]2.0.CO;2
    [3] Agren G I, 2004. The C:N:P stoichiometry of autotrophs-Theory and observations. Ecology Letters, 7(3): 185-191. doi:10.1111/j.1461-0248.2004.00567.xBai Junhong , Ouyang Hua, Deng Wei et al., 2005. A review on nitrogen transmission processes in natural wetlands. Acta Ecologica Sinica, 25(2): 326-333. (in Chinese)
    [4] Belyea L R, Malmer N, 2004. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biology, 10(7): 1043-1052. doi: 10.1111/j.1529-8817.2003.00783.x
    [5] Chimner R A, 2004. Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands, 24(1): 51-56. doi: 10.1672/0277-5212(2004)024[0051:SRROTP]2.0.CO;2
    [6] Cleveland C C, Liptzin D, 2007. C:N:P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0
    [7] Cramer W, Bondeau A, Woodward F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373. doi: 10.1046/j.1365-2486.2001.00383.x
    [8] Dise N B, Gorham E, Verry E S, 1993. Environmental-factors controlling methane emissions from peatlands in Northern Minnesota. Journal of Geophysical Research-Atmospheres, 98(D6): 10583-10594. doi: 10.1029/93JD00160
    [9] Elser J J, Fagan W F, Denno R F et al., 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812): 578-580. doi: 10.1038/35046058
    [10] Erwin K L, 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1): 71-84. doi: 10.1007/s11273-008-9119-1
    [11] Finke N, Vandieken V, Jorgensen B B, 2007. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 59(1): 10-22. doi: 10.1111/j.1574-6941.2006.00214.x
    [12] Geider R J, Roche J, 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37(1): 1-17.doi:10.1017/S096702 6201003456
    [13] Gorham E, 1991. Northern peatlands: Role in the carbon-cycle and probable response to climatic warming. Ecological Applications, 1(2): 182-195. doi: 10.2307/1941811
    [14] Heimann M, Reichstein M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176): 289-292. doi: 10.1038/nature06591
    [15] Hessen D O, Agren G I, Anderson T R et al., 2004. Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5): 1179-1192. doi: 10.1890/02-0251
    [16] Jablonska E, Falkowski T, Chormanski J et al., 2014. Understanding the long term ecosystem stability of a fen mire by analyzing subsurface geology, eco-hydrology and nutrient stoichiometry—case study of the Rospuda Valley (NE Poland). Wetlands, 34(4): 815-828. doi: 10.1007/s13157-014-0544-z
    [17] Köpke B, Wilms R, Engelen B et al., 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Applied and Environmental Microbiology, 71(12): 7819-7830. doi: 10.1128/AEM.71.12.7819-7830.2005
    [18] Kayranli B, Scholz M, Mustafa A et al., 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30(1): 111-124. doi: 10.1007/s13157-009-0003-4
    [19] Kirkby C A, Kirkegaard J A, Richardson A E et al., 2011. Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma, 163(3-4): 197-208. doi: 10.1016/j.geoderma.2011.04.010
    [20] Loladze I, Elser J J, 2011. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14(3): 244-250. doi: 10.1111/j.1461-0248.2010.01577.x
    [21] McGroddy M E, Daufresne T, Hedin L O, 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 85(9): 2390-2401. doi: 10.1890/03-0351
    [22] Michaels A F, 2003. The ratios of life. Science, 300(5621): 906-907. doi: 10.1126/science.1083140
    [23] Mulder C, Elser J J, 2009. Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15(11): 2730-2738. doi:10.1111/j.1365-2486.2009. 01899.x
    [24] Page S E, Rieley J O, Banks C J, 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2): 798-818. doi:10.1111/j.1365-2486.2010. 02279.x
    [25] Prentice K C, Fung I Y, 1990. The sensitivity of terrestrial carbon storage to climate change. Nature, (6279)346: 48-51. doi: 10.1038/346048a0
    [26] Qu F, Yu J, Du S et al., 2014. Influences of anthropogenic cultivation on C, N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta. Geoderma, 235-236(4): 227-232. doi: 10.1016/j.geoderma.2014.07.009
    [27] Reay D S, Dentener F, Smith P et al., 2008. Global nitrogen deposition and carbon sinks. Nature Geoscience, 1(7): 430-437. doi: 10.1038/ngeo230
    [28] Redfield A C, 1958. The biological control of chemical factors in the environment. American Scientist, 46(3): 205-221.
    [29] Ren Guoyu, Guo Jun, Xu Mingzhi et al., 2005. Climate change of China's mainland over past half century. Acta Meteorologica Sinica, 63(6): 942-956. (in Chinese)
    [30] Riutta T, Slade E M, Bebber D P et al., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry, 49(6): 124-131. doi: 10.1016/j.soilbio.2012.02.028
    [31] Sardans J, Rivas-Ubach A, Penuelas J, 2012. The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology Evolution and Systematics, 14(1): 33-47. doi: 10.1016/j.ppees.2011.08.002
    [32] Saunders D L, Kalff J, 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443(1): 205-212. doi: 10.1023/A:1017506914063
    [33] Schimel J P, Gulledge J M, Clein-Curley J S et al., 1999. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology and Biochemistry, 31(6): 831-838. doi: 10.1016/S0038-0717(98)00182-5
    [34] Song Xiaolin, Lu Xianguo, Liu Zhengmao et al., 2012. Runoff change of Naoli River in Northeast China in 1955-2009 and its influencing factors. Chinese Geographical Science, 22(2): 144-153. doi: 10.1007/s11769-012-0525-1
    [35] Tarnocai C, 2006. The effect of climate change on carbon in Canadian peatlands. Global and Planetary Change, 53(4): 222-232. doi: 10.1016/j.gloplacha.2006.03.012
    [36] Tian H, Chen G, Zhang C et al., 2010. Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry, 98(1): 139-151. doi: 10.1007/s10533-009-938-0
    [37] Vitousek P M, Aber J D, Howarth R W et al., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3): 737-750. doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
    [38] Vitousek P M, Porder S, Houlton B Z et al., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1): 5-15. doi: 10.1890/08-0127.1
    [39] Wang S Q, Tian H Q, Liu J Y et al., 2003. Pattern and change of soil organic carbon storage in China: 1960s-1980s. Tellus Series B-Chemical and Physical Meteorology, 55(2): 416-427. doi: 10.1034/j.1600-0889.2003.00039.x
    [40] Yu Q, Elser J J, He N et al., 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166(1): 1-10. doi: 10.1007/s00442-010-1902-z
    [41] Zhao Kuiyi, 1999. Chinese Marsh. Beijing: Science Press. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(658) PDF downloads(1119) Cited by()

Proportional views
Related

Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China

doi: 10.1007/s11769-017-0884-8
Funds:  Under the auspices of National Key Research Program of China (No. 2016YFC0500404-5), National Natural Science Foundation of China (No. 41671081, 41471081, 41671087), Foundation of Jilin Province (No. 20140520141JH)
    Corresponding author: XUE Zhenshan.E-mail:xuezhenshan@iga.ac.cn

Abstract: Inspired by the importance of Redfield-type C:N:P ratios in global soils, we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors. By analyzing a suite of peatlands soil data (n = 1031), mean soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents were 50.51%, 1.45% and 0.13%, respectively, while average C:N, C:P and N:P ratios were 26.72, 1186.00 and 46.58, respectively. C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios. No consistent C:N:P ratio, though with a general value of 1245:47:1, was found for entire peatland soils in China. The Northeast China, Tibet, Zoigê Plateau and parts of Xinjiang had high soil SOC, TN, TP, and C:P ratio. Qinghai, parts of the lower reaches of the Yangtze River, and the coast zones have low TP and N:P ratio. Significant differences for SOC, TN, TP, C:N, C:P and N:P ratios were observed across groups categorized by predominant vegetation. Moisture, temperature and precipitation all closely related to SOC, TN, TP and their pairwise ratios. The hydrothermal coefficient (RH), defined as annual average precipitation divided by temperature, positively and significantly related to C:N, C:P and N:P ratios, implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.

ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming. Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China[J]. Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
Citation: ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming. Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China[J]. Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return