SUN Ranhao, ZHANG Baiping, CHEN Liding. Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes[J]. Chinese Geographical Science, 2014, (1): 104-112. doi: 10.1007/s11769-013-0647-0
Citation: SUN Ranhao, ZHANG Baiping, CHEN Liding. Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes[J]. Chinese Geographical Science, 2014, (1): 104-112. doi: 10.1007/s11769-013-0647-0

Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes

doi: 10.1007/s11769-013-0647-0
More Information
  • Corresponding author: SUN Ranhao,rhsun@rcees.ac.cn
  • Received Date: 2013-04-09
  • Rev Recd Date: 2013-07-01
  • Publish Date: 2014-01-06
  • The altitudinal pattern of vegetation is usually identified by field surveys, however, these can only provide discrete data on a local mountain. Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available. This study selected central Inner Mongolia as the study area, presented a method for extracting vegetation patterns in altitudinal and horizontal directions. The data included a vegetation map at a 1:1 000 000 scale and a digital elevation model at a 1:250 000 scale. The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes. From low to high elevations, there were five vegetation types in the southern mountain flanks, including the montane steppe, broad-leaved forest, coniferous mixed forest, montane dwarf-scrub and sub-alpine shrub-meadow. Correspondingly, only four vegetation types were found in the northern flanks, except for the montane steppe. This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.
  • [1] Batllori E, Blanco-Moreno J M, Ninot J M et al., 2009. Vegetation patterns at the alpine treeline ecotone: The influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science, 20(5): 814-825. doi:  10.1111/j.1654-1103.2009.01085.x
    [2] Bhattarai K R, Vetaas O R, 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12(4): 327-340. doi: 10.1046/j.1466-822X.2003. 00044.x
    [3] Bussmann R W, 2006. Vegetation zonation and nomenclature of African mountains—An overview. Lyonia, 11(1): 41-66.
    [4] Da L J, Kang M M, Song K et al., 2009. Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China. Ecological Research, 24(6): 1287-1299. doi:  10.1007/s11284-009-0613-6
    [5] Daniels L D, Veblen T T, 2003. Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. Journal of Vegetation Science, 14(5): 733-742. doi:  10.1111/j.1654-1103.2003.tb02205.x
    [6] Erschbamer B, Kiebacher T, Mallaun M et al., 2009. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecology, 202(1): 79-89. doi:  10.1007/s11258-008-9556-1
    [7] Fang J Y, Ohsawa M, Kira T, 1996. Vertical vegetation zones along 30 degrees N latitude in humid East Asia. Plant Ecology, 126(2): 135-149. doi:  10.1007/BF00045600
    [8] Frahm J P, Gradstein S R, 1991. An altitudinal zonation of tropical rain-forests using bryophytes. Journal of Biogeography, 18(6): 669-678. doi:  10.2307/2845548
    [9] Gian-Reto W, Beissner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 541-548. doi:  10.1111/j.1654-1103.2005.tb02394.x
    [10] Hagen S B, Jepsen J U, Ims R A et al., 2007. Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: A response to recent climate warming? Ecography, 30(2): 299-307. doi:  10.1111/j.2007.0906-7590.04981.x
    [11] Hamilton A C, Perrott R A, 1981. A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya/Uganda. Plant Ecology, 45(2): 107-125. doi:  10.1007/BF00119220
    [12] Hemp A, 2002. Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro—I. Altitudinal distribution. Plant Ecology, 159(2): 211-239. doi:  10.1023/A:1015569125417
    [13] Hemp A, 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology, 184(1): 27-42. doi:  10.1007/s11258-005-9049-4
    [14] Hörsch B, 2003. Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models. Ecological Modelling, 168(3): 267-282. doi:  10.1016/S0304-3800(03)00141-8
    [15] Kessler M, 2000. Altitudinal zonation of Andean cryptogam communities. Journal of Biogeography, 27(2): 275-282. doi:  10.1046/j.1365-2699.2000.00399.x
    [16] Kitayama K, 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Plant Ecology, 102(2): 149-171. doi:  10.1007/BF00044731
    [17] Kitayama K, Aiba S I, 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology, 90(1): 37-51. doi: 10.1046/j.0022-0477. 2001.00634.x
    [18] Körner C, 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15(12): 513-514. doi: 10.1016/S0169-5347(00) 02004-8
    [19] Körner C, 2007. The use of 'altitude' in ecological research. Trends in Ecology & Evolution, 22(11): 569-574. doi:  10.1016/j.tree.2007.09.006
    [20] Lauer W, 1993. Human development and environment in the Andes: A geoecological overview. Mountain Research and Development, 13(2): 157-166. doi:  10.2307/3673633
    [21] Leuschner C, 2000. Are high elevations in tropical mountains arid environments for plants? Ecology, 81(5): 1425-1436. doi:  10.1890/0012-9658(2000)081
    [22] Li Bo, 1962. The basic types and ecogeographic distribution of regional characteristic vegetation in the Inner Mongolia. Journal of Inner Mongolia University, 4(2): 41-71. (in Chinese)
    [23] Liu Huaxun, 1981. The vertical zonation of mountain vegetation in China. Acta Geographica Sinica, 36(3): 267-279. (in Chinese)
    [24] Liu Peigui, 1992. The vertical distribution patterns of higher fungus and their evaluation from the Mt. Daqing, Inner Mongolia. Mountain Research, 10(1): 19-24. (in Chinese)
    [25] Lovett J C, 1996. Elevational and latitudinal changes in tree associations and diversity in the eastern Arc Mountains of Tanzania. Journal of Tropical Ecology, 12(5): 629-650. doi:  10.1017/S0266467400009846
    [26] Mekbib F, 2008. Farmers' breeding of Sorghum in the center of diversity, Ethiopia: I. socioecotype differentiation, varietal mixture and selection efficiency. Journal of New Seeds, 9(1): 43-67. doi:  10.1080/15228860701879299
    [27] Miehe G, Miehe S, Vogel J et al., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27(2): 169-173. doi:  10.1659/mrd.0792
    [28] Miehe S, 1994. Humidity-dependent sequences of altitudinal vegetation belts in the northwestern Karakorum. In: Zheng D et al. (eds.). Proceedings of International Symposium on the Karakorum and Kunlun Mountains. Beijing: China Meteorological Press, 347-363.
    [29] Mysterud A, Iversen C, Austrheim G, 2007. Effects of density, season and weather on use of an altitudinal gradient by sheep. Applied Animal Behaviour Science, 108(1-2): 104-113. doi:  10.1016/j.applanim.2006.10.017
    [30] Odland A, 2009. Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9(3): 409-421. doi:  10.1016/j.ecolind.2008.05.012
    [31] Peng Buzhuo, 1986. Some problems of vertical zonation in Mt Namjagbarwa area. Acta Geographica Sinica, 41(1): 51-58. (in Chinese)
    [32] Proctor J, Edwards I D, Payton R W et al., 2007. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecology, 192(2): 251-269. doi:  10.1007/s11258-007-9326-5
    [33] Sachs A, 2003. The ultimate 'other': Post-colonialism and Alexander von Humboldt's ecological relationship with nature. History and Theory, 42(4): 111-135. doi:  10.1046/j.1468-2303.2003.00261.x
    [34] Sang W G, 2009. Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24(2): 303-314. doi:  10.1007/s11284-008-0507-z
    [35] Smith W K, Germino M J, Johnson D M et al., 2009. The altitude of alpine treeline: a bellwether of climate change effects. Botanical Review, 75(2): 163-190. doi:  10.1007/s12229-009-9030-3
    [36] Sun R H, Zhang B P, Tan J, 2008. A multivariate regression model for precipitation estimation in the Daqing Mountains. Mountain Research and Development, 28(3-4): 318-325. doi:  10.1659/mrd.0944
    [37] Takyu M, Kubota Y, Aiba S et al., 2005. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research, 20(3): 287-296. doi:  10.1007/s11284-005-0044-y
    [38] Tang C Q, 2006. Forest vegetation as related to climate and soil conditions at varying altitudes on a humid subtropical mountain, Mount Emei, Sichuan, China. Ecological Research, 21(2): 174-180. doi:  10.1007/s11284-005-0106-1
    [39] Tang C Q, Ohsawa M, 1997. Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecology, 133(1): 63-78. doi:  10.1023/A:1009729027521
    [40] Troll C, 1973. The upper timberlines in different climatic zones. Arctic Antarctic and Alpine Research, 5(3): A3-A18.
    [41] Walther G R, Beissner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 542-548. doi:  10.1111/j.1654-1103.2005.tb02394.x
    [42] Wang G H, Zhou G S, Yang L M et al., 2002. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165(2): 169-181. doi:  10.1023/A:1022236115186
    [43] Wang X P, Fang J Y, Sanders N J et al., 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32(1): 133-142. doi:  10.1111/j.1600-0587.2008.05507.x
    [44] Wang Z H, Tang Z Y, Fang J Y, 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13(6): 845-854. doi:  10.1111/j.1472-4642.2007.00335.x
    [45] Wieser G, Matyssek R, Luzian R et al., 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Annals of Forest Science, 66(4): 402. doi:  10.1051/forest/2009023.
    [46] Zhang B P, 1995. Geoecology and sustainable development in the Kunlun Mountains, China. Mountain Research and Development, 15(3): 283-292. doi:  10.2307/3673935
    [47] Zhang B P, Wu H Z, Xiao F et al., 2006. Integration of data on Chinese mountains into a digital altitudinal belt system. Mountain Research and Development, 26(2): 163-171. doi:  10.1659/0276-4741(2006)26
    [48] Zimmerer K S, 1999. Overlapping patchworks of mountain agriculture in Peru and Bolivia: Toward a regional-global landscape model. Human Ecology, 27(1): 135-165. doi:  10.1023/A:1018761418477
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(341) PDF downloads(1103) Cited by()

Proportional views
Related

Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes

doi: 10.1007/s11769-013-0647-0
    Corresponding author: SUN Ranhao,rhsun@rcees.ac.cn

Abstract: The altitudinal pattern of vegetation is usually identified by field surveys, however, these can only provide discrete data on a local mountain. Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available. This study selected central Inner Mongolia as the study area, presented a method for extracting vegetation patterns in altitudinal and horizontal directions. The data included a vegetation map at a 1:1 000 000 scale and a digital elevation model at a 1:250 000 scale. The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes. From low to high elevations, there were five vegetation types in the southern mountain flanks, including the montane steppe, broad-leaved forest, coniferous mixed forest, montane dwarf-scrub and sub-alpine shrub-meadow. Correspondingly, only four vegetation types were found in the northern flanks, except for the montane steppe. This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.

SUN Ranhao, ZHANG Baiping, CHEN Liding. Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes[J]. Chinese Geographical Science, 2014, (1): 104-112. doi: 10.1007/s11769-013-0647-0
Citation: SUN Ranhao, ZHANG Baiping, CHEN Liding. Regional-scale Identification of Three-dimensional Pattern of Vegetation Landscapes[J]. Chinese Geographical Science, 2014, (1): 104-112. doi: 10.1007/s11769-013-0647-0
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return