ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
Citation: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

doi: 10.1007/s11769-013-0622-9
Funds:  Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)
More Information
  • Corresponding author: WANG Shaoqiang,E-mail: sqwang@igsnrr.ac.cn
  • Received Date: 2012-10-09
  • Rev Recd Date: 2013-01-08
  • Publish Date: 2013-09-10
  • It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influenced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under different scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in climate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001-2100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001-2100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
  • [1] Ainsworth E A, Long S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2): 351-372. doi:  10.1111/j.1469-8137.2004.01224.x
    [2] Berthelot M, Friedlingstein P, Ciais P et al., 2002. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeo­-
    [3] ch­emical Cycles, 16(4): 1084. doi:  10.1029/2001GB001827
    [4] Bu R C, He H S, Hu Y M et al., 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in northeastern China. Forest Ecology and Management, 254(3): 407-419. doi: 10.1016/j.foreco. 2007.09.080
    [5] Caldwell I M, Maclaren V W, Chen J M et al., 2007. An integrated assessment model of carbon sequestration benefits: A case study of Liping County, China. Journal of Environ­mental Management, 85(3): 757-773. doi: 10.1016/j.jenvman. 2006.08.020
    [6] Cao M, Woodward F I, 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682): 249-252. doi:  10.1038/30460
    [7] Chen J M, Chen W J, Liu J et al., 2000. Annual carbon balance of Canada's forests during 1895-1996. Global Biogeochemical Cycles, 14(3): 839-849. doi:  10.1029/1999GB001207
    [8] Chen J M, Ju W M, Cihlar J et al., 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus B, 55(2): 622-641. doi:  10.1034/j.1600-0889.2003.00036.x
    [9] Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529-533. doi:  10.1038/nature03972
    [10] Coomes D A, Holdaway R J, Kobe R K et al., 2012. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1): 42-64. doi:  10.1111/j.1365-2745.2011.01920.x
    [11] Cooper C F, 1983. Carbon storage in managed forests. Canadian Journal of Forest Research, 13(1): 155-166. doi:  10.1139/x83-022
    [12] Cramer W, Bondeau A, Woodward F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373. doi: 10.1046/j.1365-2486.2001.00383.x
    [13] Eggers J, Lindner M, Zudin S et al., 2008. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14(10): 2288-2303. doi: 10.1111/j.1365-2486. 2008.01653.x
    [14] Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320-2322. doi:  10.1126/science.1058629
    [15] Fang J Y, Piao S L, Field C B et al., 2003. Increasing net primary production in China from 1982-1999. Frontiers in Ecology and the Environment, 1(6): 293-297. doi: 10.1890/1540-9295 (2003)001
    [16] [0294:INPPIC]2.0.CO;2
    [17] Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90. doi:  10.1007/BF00386231
    [18] Feng X, Liu G, Chen J M et al., 2007. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85(3): 563-573. doi:  10.1016/j.jenvman.2006.09.021
    [19] FAO (Food and Agriculture Organization of the United Nations), 2005. FAOSTAT Database. Available at: http://faostat.fao.org
    [20] Giorgi F, Mearns L O, 2002. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ‘Reliability Ensemble Averaging (REA)' method. Journal of Climate, 15(10): 1141-1158. doi:  10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
    [21] Giorgi F, Mearns L O, 2003. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical research letters, 30(12): 1629-1632. doi:  10.1029/2003GL017130
    [22] Govinda A, Chen, J M, Bernierc P et al., 2011. Spatially distri­buted modeling of the long-term carbon balance of a boreal landscape. Ecological Modelling, 222(15): 2780-2795. doi:  10.1016/j.ecolmodel.2011.04.007
    [23] Gusti M, 2010. An Algorithm for Simulation of Forest Management Decisions in the Global Forest Model. Artificial Intelligence, 4: 45-49.
    [24] Gusti M, Kindermann G, 2011. An Approach to Modeling Land Use Change and Forest Management on a Global Scale. Austria: International Institute for Applied Systems Analysis.
    [25] He H S, Larsen D R, Mladenoff D J, 2002. Exploring component based approaches in forest landscape modeling. Environmental Modelling and Software, 17(6): 519-529. doi:  10.1016/S1364-8152(02)00014-2
    [26] Hutchinson M F, 2002. ANUSPLIN Version 4.2 User Guide. Canberra: Australian National University, 1-48.
    [27] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
    [28] Jarvis P G, 1998. European Forests and Global Change: The Likely Impacts of Rising CO2 and Temperature. Cambridge: Cambridge University Press, 1-398.
    [29] Joyce L A, Birdsey R, 2000. The Impacts of Climate Change on America's Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment. Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
    [30] Ju W M, Chen J M, 2005. Distribution of soil carbon stocks in Canada's forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes, 19(1): 77-94. doi:  10.1002/hyp.5775
    [31] Ju W M, Chen J M, Black T A et al., 2006. Modeling coupled water and carbon fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140(1-4): 136-151. doi: 10.1016/j. agrformet.2006.08.008
    [32] Ju W M, Chen J M, Harvey D et al., 2007. Future carbon balance of China's forests under climate change and increasing CO2. Journal of Environmental Management, 85(3): 538-562. doi:  10.1016/j.jenvman.2006.04.028
    [33] Ju W M, Chen J M, 2008. Simulating the effects of past changes in climate, atmospheric composition, and fire disturbance on soil carbon in Canada's forests and wetlands. Global Biogeochemical Cycles, 22(3): GB3010. doi:  10.1029/2007GB002935
    [34] Ju W M, Chen J M, Black T A et al., 2010. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada's forests and wetlands. Tellus, 62(3): 140-159. doi:  10.1111/j.1600-0889.2010.00459.x
    [35] Kaipainen T, Liski J, Pussinen A et al., 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7(3): 205-219. doi: 10.1016/j. envsci.2004.03.001
    [36] Karjalainen T, Pussinen A, Liski J et al., 2003. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics, 5(2): 141-155. doi: 10.1016/S1389-9341(03) 00021-2
    [37] Kindermann G, Obersteiner M, Rametsteiner E et al., 2006. Predicting the Deforestation-Trend under Different Carbon-Prices. Carbon Balance and Management, 1(15): 1-17. doi: 10.1186/ 1750-0680-1-15
    [38] Kindermann G, Obersteiner M, Sohngen B et al., 2008. Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10302-10307. doi:  10.1073/pnas.0710616105
    [39] Kindermann G, Schörghuber S, Linkosalo T et al., 2011. Potential Woody Biomass and Increments in the European Union until 2100. Austria: International Institute for Applied Systems Analysis.
    [40] Liski J, Pussinen A, Pingoud K et al., 2001. Which rotationlength is favourable for carbon sequestration. Canadian Journal of Forest Research, 31(11): 2004-2013. doi:  10.1139/x01-140
    [41] Liu Z L, Fang S Z, Liu D et al., 2011. Influence of thinning time and density on sprout development, biomass production and energy stocks of sawtooth oak stumps. Forest Ecology and Management, 262(2): 299-306. doi: 10.1016/j.foreco.2011.03. 035
    [42] Long S P, Ainsworth E A, Rogers A et al., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591-628. doi: 10.1146/annurev.arplant.55. 031903.141610
    [43] Luo T X, Li W H, Zhu H Z, 2002. Estimated biomass and productivity of natural vegetation on the Tibetan plateau. Ecological Applications, 12(4): 980-997. doi:  10.2307/3061031
    [44] Luo Tianxiang, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Its Mathematical Models. Beijing: Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences. (in Chinese)
    [45] Mäkipää R, Karjalainen T, Pussinen A et al., 1999. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Canadian Journal of Forest Research, 29(10): 1490-1501. doi: 10.1139/ cjfr-29-10-1490
    [46] McGuire A D, Sitch S, Clein J S et al., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183-206. doi:  10.1029/2000GB001298
    [47] Melillo J M, Mcguire A D, Kicklighter D W et al., 1993. Global climate-change and terrestrial net primary production. Nature, 363(6426): 234-240. doi:  10.1038/363234a0
    [48] Norby R J, DeLucia E H, Gielen B et al., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 18052-18056. doi: 10.1073/ pnas.0509478102
    [49] Pacala S W, Socolow R, 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current techno­logies. Science, 305(5686): 968-972. doi: 10.1126/science. 1100103
    [50] Parton W J, Scurlock J M O, Ojima D S et al., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4): 785-809. doi:  10.1029/93GB02042
    [51] Pussinen A, Karjalainen T, Mäkipää R et al., 2002. Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. Forest Ecology and Management, 158(1-3): 103-115. doi:  10.1029/93GB02042
    [52] Ranatunga K, Keenan R J, Wullshchleger S D et al., 2008. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. Forest Ecology and Management, 255(7): 2407-2415. doi:  10.1016/j.foreco.2008.01.002
    [53] Rathgeber C, Nicault A, Guiot J et al., 2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26(4): 405-421. doi:  10.1016/S0921-8181(00)00053-9
    [54] Seely B, Welham C, Kimmins H, 2002. Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model. Forest Ecology and Management, 169(1-2): 123-135. doi:  10.1016/S0378-1127(02)00303-1
    [55] Shang Z B, He H S, Xi W M et al., 2012. Integrating LANDIS model and a multi-criteria decision-making approach to eva­luate cumulative effects of forest management in the Missouri Ozarks, USA. Ecological Modelling, 229: 50-63. doi: 10. 1016/j.ecolmodel.2011.08.014
    [56] Shanin V N, Komarov A S, Mikhailov A V et al., 2011. Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling, 222(14): 2262-2275. doi:  10.1016/j.ecolmodel.2010.11.009
    [57] Shao Y, Pan J, Yang L et al., 2007. Tests of soil organic carbon density modeled by InTEC model in China's forest ecosystems. Journal of Environmental Management, 85(3): 696-701. doi:  10.1016/j.jenvman.2006.09.006
    [58] Simioni G, Ritson P, Kirschbaum M U F et al., 2009. The carbon budget of pinus radiata plantations in south-western Australia under four climate change scenarios. Tree Physiology, 29(9): 1081-1093. doi:  10.1093/treephys/tpp049.
    [59] State Forestry Administration, 1999. China Forestry Yearbook: 1998-2003. Beijing: China Forestry Publishing House, 1-783. (in Chinese)
    [60] Thomas S C, Malczewski G, Saprunoff M, 2007. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. Journal of Environmental Management, 85(3): 663-671. doi:  10.1016/j.jenvman.2006.04.027
    [61] Thornton P E, Lamarque J F, Rosenbloom N A et al., 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4): GB4018. doi:10.1029/2006GB00 2868
    [62] Wang S Q, Chen J M, Ju W M et al., 2007. Carbon sinks and sources in China's forests during 1901-2001. Journal of Environmental Management, 85(3): 524-537. doi: 10.1016/j. jenvman.2006.09.019
    [63] Wang S Q, Zhou L, Chen J M et al., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 92(6): 1651-1662. doi: 10.1016/j. jenvman.2011.01.024
    [64] Wang W F, Wei X H, Liao W M et al., 2012. Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model. Forest Ecology and Management, in press. doi: 10.1016/j.foreco.2012. 06.044
    [65] White A, Cannell M G R, Friend A D, 2000. The high-latitude terrestrial carbon sink: a model analysis. Global Change Biology, 6(2): 227-245. doi:  10.1046/j.1365-2486.2000.00302.x
    [66] Xu Y, Gao X J, Giorgi F, 2009. Upgrades to the reliability ensemble averaging method for producing probabilistic climate change projections. Climate Research, 41(1): 61-81. doi:  10.3354/cr00835
    [67] Yang L X, Pan J J, Shao Y H et al., 2007. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management, 85(3): 690-695. doi:  10.1016/j.jenvman.2006.09.011
    [68] Yao J, He X, Wang A et al., 2012. Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China. PLoS ONE, 7(6): e39058. doi:  10.1371/journal.pone.0039058
    [69] Yu Guirui, He Honglin, Liu Xinan et al., 2004. Atlas for Spa­tia­liz­ed Information of Terrestrial Ecosystem in China: Volume of Clima­tological Elements. Beijing: China Meteorological Press, 1-317. (in Chinese)
    [70] Zeeman M J, Hiller R, Gilgen A K et al., 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology, 150(4): 519-530. doi:  10.1016/j.agrformet.2010.01.011
    [71] Zeng N, Qian H, Rödenbeck C et al., 2005. Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32(22): L22709. doi:  10.1029/2005GL024607
    [72] Zhang J B, Shangguan T L, Meng Z Q, 2011. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological research, 26(1): 153-161. doi:  10.1007/s11284-010-0772-5
    [73] Zhao M F, Xiang W H, Deng X W, 2013. Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 250: 58-71. doi:  10.1016/j.ecolmodel.2012.10.011
    [74] Zhou L X, Conway T J, White J W C et al., 2005. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991-2002. Global Biogeochemical Cycles, 19(2): GB3021. doi:  10.1029/2004GB002430
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(422) PDF downloads(1360) Cited by()

Proportional views
Related

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

doi: 10.1007/s11769-013-0622-9
Funds:  Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)
    Corresponding author: WANG Shaoqiang,E-mail: sqwang@igsnrr.ac.cn

Abstract: It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influenced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under different scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in climate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001-2100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001-2100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.

ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
Citation: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return