[1] Askari M S, Cui J F, O’Rourke S M et al., 2015. Evaluation of soil structural quality using VIS-NIR spectra. Soil and Tillage Research, 146: 108–117. doi:  10.1016/j.still.2014.03.006
[2] Banwart S, 2011. Save our soils. Nature, 474(7350): 151–152. doi:  10.1038/474151a
[3] Lu, R K. Analysis method of soil and agricultural chemistry, 2000. China Agricultural Science and Technology, Beijing, PP 12–288. (in Chinese)
[4] Barthès B, Roose E, 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 47(2): 133–149. doi:  10.1016/S0341-8162(01)00180-1
[5] Chai Y J, Zeng X B, E S Z et al., 2014. Effects of freeze–thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions. Soil Use and Management, 30(4): 507–516. doi:  10.1111/sum.12153
[6] Cheng Q, Sun Y, Jones S B et al., 2014. In situ measured and simulated seasonal freeze–thaw cycle: a 2-year comparative study between layered and homogeneous field soil profiles. Journal of Hydrology, 519: 1466–1473. doi:  10.1016/j.jhydrol.2014.09.023
[7] Chivenge P, Vanlauwe B, Gentile R et al., 2011. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 43(3): 657–666. doi:  10.1016/j.soilbio.2010.12.002
[8] Dagesse D F, 2013. Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science, 93(4): 473–483. doi:  10.4141/cjss2012-046
[9] Edwards L M, 2013. The effects of soil freeze-thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: a review. Canadian Journal of Soil Science, 93(4): 459–472. doi:  10.4141/cjss2012-059
[10] Goebel M, Hobbie S E, Bulaj B et al., 2011. Decomposition of the finest root branching orders: linking belowground dynamics to fine‐root function and structure. Ecological Monographs, 81(1): 89–102. doi:  10.1890/09-2390.1
[11] Gray V, 2007. Climate change 2007: the physical science basis summary for policymakers. Energy & Environment, 18(3–4): 433–440. doi:  10.1260/095830507781076194
[12] Gruber S, 2020. Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement. The Cryosphere, 14(4): 1437–1447. doi:  10.5194/tc-14-1437-2020
[13] Henry H A L, 2007. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biology and Biochemistry, 39(5): 977–986. doi:  10.1016/j.soilbio.2006.11.017
[14] Hu W, Shao M A, Han F P et al., 2011. Spatio-temporal variability behavior of land surface soil water content in shrub- and grass-land. Geoderma, 162(3–4): 260–272. doi:  10.1016/j.geoderma.2011.02.008
[15] Jakšík O, Kodešová R, Kubiš A et al., 2015. Soil aggregate stability within morphologically diverse areas. Catena, 127: 287–299. doi:  10.1016/j.catena.2015.01.010
[16] Jin X Y, 2013. Let fragrance of apple-pear inYanbian floating everywhere. New Long March, (2): 62–63.
[17] Kahimba F C, Ranjan R S, Froese J et al., 2008. Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian prairies. Applied Engineering in Agriculture, 24(3): 321–333. doi:  10.13031/2013.24502
[18] Koopmans G F, Hiemstra T, Vaseur C et al., 2020. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: increase in soil reactive surface area and effect on soluble phosphorus. Science of the Total Environment, 711: 135220. doi:  10.1016/j.scitotenv.2019.135220
[19] Kværnø S H, Øygarden L, 2006. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena, 67(3): 175–182. doi:  10.1016/j.catena.2006.03.011
[20] Lal R, 1991. Soil structure and sustainability. Journal of Sustainable Agriculture, 1(4): 67–92. doi:  10.1300/J064v01n04_06
[21] Lehmann J, Kleber M, 2015. The contentious nature of soil organic matter. Nature, 528(7580): 60–68. doi:  10.1038/nature16069
[22] Lehrsch G A, Sojka R E, Carter D L et al., 1991. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55(5): 1401–1406. doi:  10.2136/sssaj1991.03615995005500050033x
[23] Li R P, Shi H B, Flerchinger G N et al., 2012. Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China. Geoderma, 173–174: 28–33. doi:  10.1016/j.geoderma.2012.01.009
[24] Li Z B, Geng Z, Li P et al., 2020. Soil organic matter and glomalin-related soil protein contents do not explain soil aggregate stability after freeze-thaw cycles at contrasting soil moisture contents. Archives of Agronomy and Soil Science, 66(11): 1497–1508. doi:  10.1080/03650340.2019.1676891
[25] Moreno-de las Heras M, 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-continental environment. Geoderma, 149(3–4): 249–256. doi:  10.1016/j.geoderma.2008.12.003
[26] Musa A M, Liu Y, Wang A Z et al., 2016. Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere. Geoderma, 264: 132–139. doi:  10.1016/j.geoderma.2015.10.008
[27] Oztas T, Fayetorbay F, 2003. Effect of freezing and thawing processes on soil aggregate stability. Catena, 52(1): 1–8. doi:  10.1016/S0341-8162(02)00177-7
[28] Paradelo R, Virto I, Chenu C, 2015. Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems & Environment, 202: 98–107. doi:  10.1016/j.agee.2015.01.005
[29] Rabot E, Wiesmeier M, Schlüter S et al., 2018. Soil structure as an indicator of soil functions: a review. Geoderma, 314: 122–137. doi:  10.1016/j.geoderma.2017.11.009
[30] Rillig M C, Muller L A H, Lehmann A, 2017. Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11(9): 1943–1948. doi:  10.1038/ismej.2017.56
[31] Shang C Y, Quan Z N, 2016. Problems existing in apple pears industry development of Yanbian prefecture. Agricultural Engineering, 6(6): 157–159. (in Chinese)
[32] Shi Z L, Li X Y, Zhang L et al., 2015. Impacts of farmland conversion to apple (Malus domestica) orchard on soil organic carbon stocks and enzyme activities in a semiarid loess region. Journal of Plant Nutrition and Soil Science, 178(3): 440–451. doi:  10.1002/jpln.201400211
[33] Six J, Bossuyt H, Degryze S et al., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1): 7–31. doi:  10.1016/j.still.2004.03.008
[34] Song Y, Zou Y C, Wang G P et al., 2017. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biology and Biochemistry, 109: 35–49. doi:  10.1016/j.soilbio.2017.01.020
[35] Steinweg J M, Fisk M C, McAlexander B et al., 2008. Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest. Biology and Fertility of Soils, 45(1): 1–10. doi:  10.1007/s00374-008-0305-3
[36] Sumner M E, 1992. The electrical double layer and clay dispersion. In: Sumner M E, Stewart B A (eds). Advances in Soil Science. Soil Crusting–Chemical and Physical Processes. Boca Raton: Lewis Publishers, 1–31.
[37] Sun T, Mao Z J, Han Y Y, 2013. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant and Soil, 372(1–2): 445–458. doi:  10.1007/s11104-013-1755-4
[38] Tisdall J M, Oades J M, 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2): 141–163. doi:  10.1111/j.1365-2389.1982.tb01755.x
[39] Von Bennewitz E, Cooper T, Losak T et al., 2015. Effects of decreasing levels of n amendments on organic ‘granny smith’ apple trees. Journal of Soil Science and Plant Nutrition, 15(4): 979–990. doi:  10.4067/S0718-95162015005000068
[40] Wang L, Li J, Li J et al., 2014a. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland. Chinese Journal of Applied Ecology, 25(3): 759–768. (in Chinese)
[41] Wang Z, Zhang Y L, Zou H T et al., 2014b. The effect of the freezing/thawing cycles on iron oxide forms in the soil. Chinese Journal of Soil Science, 45(1): 1–5. (in Chinese)
[42] Xiao C P, Yang L M, Zhang L X et al., 2016. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. Journal of Ginseng Research, 40(1): 28–37. doi:  10.1016/j.jgr.2015.04.004
[43] Xiao L, Yao K H, Li P et al., 2020. Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the Loess Plateau of China. Journal of Soils and Sediments, 20(3): 1222–1230. doi:  10.1007/s11368-019-02526-w
[44] Xu Q X, Wang T W, Cai C F et al., 2012. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation & Development, 23(1): 34–42. doi:  10.1002/ldr.1045
[45] Yang M, Wang S F, Zhao X N et al., 2020. Soil properties of apple orchards on China’s Loess Plateau. Science of the Total Environment, 723: 138041. doi:  10.1016/j.scitotenv.2020.138041
[46] Yi Y L, 2009. Soil Physics Research Method. Beijing: Peking University Press, 59. (in Chinese)
[47] Zeng Q C, Darboux F, Man C et al., 2018. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena, 167: 276–283. doi:  10.1016/j.catena.2018.05.009
[48] Zhang B, Horn R, 2001. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 99(1–2): 123–145. doi:  10.1016/s0016-7061(00)00069-0
[49] Zhang Z, Ma W, Feng W J et al., 2016. Reconstruction of soil particle composition during freeze-thaw cycling: a review. Pedosphere, 26(2): 167–179. doi:  10.1016/S1002-0160(15)60033-9
[50] Zhang Z Q, Yu D S, Shi X Z et al., 2010. Effect of sampling classification patterns on SOC variability in the red soil region, China. Soil and Tillage Research, 110(1): 2–7. doi:  10.1016/j.still.2010.05.007
[51] Zhu G Y, Deng L, Shangguan Z P, 2018. Effects of soil aggregate stability on soil N following land use changes under erodible environment. Agriculture, Ecosystems & Environment, 262: 18–28. doi:  10.1016/j.agee.2018.04.012