[1] Alvarez-Garcia J A, Ortega J A, Gonzalez-Abril L et al., 2010. Trip destination prediction based on past GPS log using a hidden Markov model. Expert Systems with Applications, 37(12): 8166–8171. doi:  10.1016/j.eswa.2010.05.070
[2] Australian Research Council, 2020. An overview of ARC grant opportunities. Available at https://www.arc.gov.au/overview-arc-grant-opportunities/linkage-program-supporting-industry-research-collaboration. 2020-01-05.
[3] Babb C, Olaru D, Curtis C et al., 2017. Children’s active travel, local activity spaces and wellbeing: a case study in Perth, WA. Travel Behaviour and Society, 9: 81–94. doi:  10.1016/j.tbs.2017.06.002
[4] Becker R A, Caceres R, Hanson K et al., 2011. A tale of one city: using cellular network data for urban planning. IEEE Pervasive Computing, 10(4): 18–26. doi:  10.1109/MPRV.2011.44
[5] Buliung R N, Kanaroglou P S, 2006. Urban form and household activity-travel behavior. Growth and Change, 37(2): 172–199. doi:  10.1111/j.1468-2257.2006.00314.x
[6] Buliung R N, Remmel T K, 2008. Open source, spatial analysis, and activity-travel behaviour research: capabilities of the aspace package. Journal of Geographical Systems, 10(2): 191–216. doi:  10.1007/s10109-008-0063-7
[7] Chan C Y H, Chan A B, Lee T M C et al., 2018. Eye-movement patterns in face recognition are associated with cognitive decline in older adults. Psychonomic Bulletin & Review, 25(6): 2200–2207. doi:  10.3758/s13423-017-1419-0
[8] Cho S J, Janssens D, Joh C H et al., 2019. Space-time sequential similarity for identifying factors of activity-travel pattern segmentation: a measure of sequence alignment and path similarity. Geographical Analysis, 51(2): 203–220. doi:  10.1111/gean.12186
[9] Choi J, do Lee W, Park W H et al., 2014. Analyzing changes in travel behavior in time and space using household travel surveys in Seoul Metropolitan Area over eight years. Travel Behaviour and Society, 1(1): 3–14. doi:  10.1016/j.tbs.2013.10.003
[10] Chuk T, Chan A B, Hsiao J H, 2014. Understanding eye movements in face recognition using hidden Markov models. Journal of Vision, 14(11): 8. doi:  10.1167/14.11.8
[11] Chuk T, Chan A B, Hsiao J H, 2017. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling. Vision Research, 141: 204–216. doi:  10.1016/j.visres.2017.03.010
[12] Coltrane S, 2000. Research on household labor: modeling and measuring the social embeddedness of routine family work. Journal of Marriage and Family, 62(4): 1208–1233. doi:  10.1111/j.1741-3737.2000.01208.x
[13] Coviello E, Chan A B, Lanckriet G R G, 2014. Clustering hidden markov models with variational HEM. The Journal of Machine Learning Research, 15(1): 697–747. doi:  10.5555/2627435.2627457
[14] Eagle N, Pentland A, 2006. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4): 255–268. doi:  10.1007/s00779-005-0046-3
[15] Eagle N, Pentland A S, 2009. Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology, 63(7): 1057–1066. doi:  10.1007/s00265-009-0739-0
[16] European Commission, 2019. Cities as climate-resilient, connected multimodal nodes for smart and clean mobility: new approaches towards demonstrating and testing innovative solutions. Available at https://www.arc.gov.au/overview-arc-grant-opportunities. 2020-01-05.
[17] Ferreira N, Poco J, Vo H T et al., 2013. Visual exploration of big spatio-temporal urban data: a study of New York City taxi trips. IEEE Transactions on Visualization and Computer Graphics, 19(12): 2149–2158. doi:  10.1109/TVCG.2013.226
[18] Fransen K, Farber S, Deruyter G et al., 2018. A spatio-temporal accessibility measure for modelling activity participation in discretionary activities. Travel Behaviour and Society, 10: 10–20. doi:  10.1016/j.tbs.2017.09.002
[19] González M C, Hidalgo C A, Barabási A L, 2008. Understanding individual human mobility patterns. Nature, 453(7196): 779–782. doi:  10.1038/nature06958
[20] Greenhaus J H, Collins K M, Shaw J D, 2003. The relation between work-family balance and quality of life. Journal of Vocational Behavior, 63(3): 510–531. doi:  10.1016/S0001-8791(02)00042-8
[21] Gregory A, Milner S, 2009. Editorial: work-life balance: a matter of choice? Gender, Work & Organization, 16(1): 1–13.
[22] Hägerstraand T, 1970. What about people in regional science? Papers in Regional Science, 24(1): 7–24. doi:  10.1111/j.1435-5597.1970.tb01464.x
[23] Han G, Sohn K, 2016. Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model. Transportation Research Part B: Methodological, 83: 121–135. doi:  10.1016/j.trb.2015.11.015
[24] Hanson S, Hanson P, 1980. Gender and urban activity patterns in Uppsala, Sweden. Geographical Review, 70(3): 291–299. doi:  10.2307/214257
[25] Jiang S, Ferreira J, González M C, 2012. Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25(3): 478–510. doi:  10.1007/s10618-012-0264-z
[26] Joh C H, Arentze T, Hofman F et al., 2002. Activity pattern similarity: a multidimensional sequence alignment method. Transportation Research Part B: Methodological, 36(5): 385–403. doi:  10.1016/S0191-2615(01)00009-1
[27] Jolly S, Griffith K A, DeCastro R et al., 2014. Gender differences in time spent on parenting and domestic responsibilities by high-achieving young physician-researchers. Annals of Internal Medicine, 160(5): 344–353. doi:  10.7326/M13-0974
[28] Jones F, Burke R J, Westman M, 2012. Work-life Balance: A Psychological Perspective. New York: Psychology Press.
[29] Kwan M P, 1998. Space-time and integral measures of individual accessibility: a comparative analysis using a point‐based framework. Geographical Analysis, 30(3): 191–216. doi:  10.1111/j.1538-4632.1998.tb00396.x
[30] Kwan M P, Xiao N C, Ding G X, 2014. Assessing activity pattern similarity with multidimensional sequence alignment based on a multiobjective optimization evolutionary algorithm. Geographical Analysis, 46(3): 297–320. doi:  10.1111/gean.12040
[31] Lam W W Y, Loo B P Y, Yao S J, 2013. Towards exposure-based time-space pedestrian crash analysis in facing the challenges of ageing societies in Asia. Asian Geographer, 30(2): 105–125. doi:  10.1080/10225706.2012.735436
[32] Lawrence R J, 2004. Housing and health: from interdisciplinary principles to transdisciplinary research and practice. Futures, 36(4): 487–502. doi:  10.1016/j.futures.2003.10.001
[33] Li S Y, Lyu D, Liu X P et al., 2020. The varying patterns of rail transit ridership and their relationships with fine-scale built environment factors: Big data analytics from Guangzhou. Cities, 99: 102580. doi:  10.1016/j.cities.2019.102580
[34] Lin H Z, Lo H P, Chen X J, 2009. Lifestyle classifications with and without activity-travel patterns. Transportation Research Part A: Policy and Practice, 43(6): 626–638. doi:  10.1016/j.tra.2009.04.002
[35] Liu F, Janssens D, Cui J X et al., 2015. Characterizing activity sequences using profile hidden markov models. Expert Systems with Applications, 42(13): 5705–5722. doi:  10.1016/j.eswa.2015.02.057
[36] Long Ying, Zhang Yu, Cui Chengyin, 2012. Identifying commuting pattern of Beijing using bus smart card data. Acta Geographica Sinica, 67(10): 1339–1352. (in Chinese)
[37] Loo B P Y, Lam W W Y, 2013. A multilevel investigation of differential individual mobility of working couples with children: A case study of Hong Kong. Transportmetrica A: Transport Science, 9(7): 629–652. doi:  10.1080/18128602.2011.643509
[38] Loo B P Y, Lam W W Y, Mahendran R et al., 2017. How is the neighborhood environment related to the health of seniors living in Hong Kong, Singapore, and Tokyo? Some insights for promoting aging in place. Annals of the American Association of Geographers, 107(4): 812–828. doi:  10.1080/24694452.2016.1271306
[39] Loo B P Y, Tang W S M, 2018. “Mapping” smart cities. Journal of Urban Technology, 26(2): 129–146. doi:  10.1080/10630732.2019.1576467
[40] Loo B P Y, Wang B, 2017. Progress of e-development in China since 1998. Telecommunications Policy, 41(9): 731–742. doi:  10.1016/j.telpol.2017.03.001
[41] Lv Q J, Mei Z S, Qiao Y Y et al., 2014. Hidden Markov model based user mobility analysis in LTE network. In Proceedings of 2014 International Symposium on Wireless Personal Multimedia Communications. Sydney, Australia: IEEE, 379–384. doi:  10.1109/WPMC.2014.7014848
[42] Lv Q J, Qiao Y Y, Ansari N et al., 2017. Big data driven hidden Markov model based individual mobility prediction at points of interest. IEEE Transactions on Vehicular Technology, 66(6): 5204–5216. doi:  10.1109/TVT.2016.2611654
[43] Miller H J, 1991. Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information System, 5(3): 287–301. doi:  10.1080/02693799108927856
[44] National Science Foundation, 2020. Environmental convergence opportunities in chemical, bioengineering, environmental, and transport systems (ECO-CBET). Available at https://www.nsf.gov/pubs/2020/nsf20517/nsf20517.htm. 2020-01-05.
[45] Offer S, Schneider B, 2011. Revisiting the gender gap in time-use patterns: multitasking and well-being among mothers and fathers in dual-earner families. American Sociological Review, 76(6): 809–833. doi:  10.1177/0003122411425170
[46] Pugh T A M, MacKenzie A R, Whyatt J D et al., 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environmental Science & Technology, 46(14): 7692–7699. doi:  10.1021/es300826w
[47] Putnam R D, 1993. The prosperous community: social capital and public life. The American Prospect, 13: 35–42.
[48] Sallis J F, Frank L D, Saelens B E et al., 2004. Active transportation and physical activity: opportunities for collaboration on transportation and public health research. Transportation Research Part A: Policy and Practice, 38(4): 249–268. doi:  10.1016/j.tra.2003.11.003
[49] Shaw S L, Yu H B, Bombom L S, 2008. A space-time GIS approach to exploring large individual-based spatiotemporal datasets. Transactions in GIS, 12(4): 425–441. doi:  10.1111/j.1467-9671.2008.01114.x
[50] Shi H Z, Li Y, Cao H C et al., 2019. Semantics-aware hidden Markov model for human mobility. IEEE Transactions on Knowledge and Data Engineering. doi:  10.1109/TKDE.2019.2937296
[51] Wilson W C, 1998. Activity pattern analysis by means of sequence-alignment methods. Environment and Planning A: Economy and Space, 30(6): 1017–1038. doi:  10.1068/a301017
[52] Wilson W C, 2008. Activity patterns in space and time: calculating representative Hagerstrand trajectories. Transportation, 35(4): 485–499. doi:  10.1007/s11116-008-9162-z
[53] Xu Y Y, Jiang S, Li R Q et al., 2019. Unraveling environmental justice in ambient PM2. 5 exposure in Beijing: a big data approach. Computers, Environment and Urban Systems, 75: 12–21. doi:  10.1016/j.compenvurbsys.2018.12.006
[54] Xu Z, Liu Y H, Yen N Y et al., 2020. Crowdsourcing based description of urban emergency events using social media big data. IEEE Transactions on Cloud Computing, 8(2): 387–397. doi:  10.1109/TCC.2016.2517638
[55] Zhang J X, Chan A B, Lau E Y Y et al., 2019. Individuals with insomnia misrecognize angry faces as fearful faces while missing the eyes: an eye-tracking study. Sleep, 42(2): zsy220. doi:  10.1093/sleep/zsy220
[56] Zhang P, Zhou J P, Zhang T R, 2017. Quantifying and visualizing jobs-housing balance with big data: a case study of Shanghai. Cities, 66: 10–22. doi:  10.1016/j.cities.2017.03.004
[57] Zhao P J, Hu H Y, 2019. Geographical patterns of traffic congestion in growing megacities: big data analytics from Beijing. Cities, 92: 164–174. doi:  10.1016/j.cities.2019.03.022
[58] Zhou X G, Yeh A G O, Yue Y, 2018. Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data. Journal of Transport Geography, 68: 102–108. doi:  10.1016/j.jtrangeo.2017.12.006
[59] Zhu W Z, Zhang C, Yao S C et al., 2018. A spherical hidden Markov model for semantics-rich human mobility modeling. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 4613–4620.